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Poly-Cauchy numbers
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1 Introduction.

In 1997 M. Kaneko ([7]) introduced the poly-Bernoulli numbers BY for an
integer k£ and a non-negative integer n by
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denotes the k-th polylogarithm function (k > 1) It becomes a rational func-

tion if £ < 0. When k£ = 1, B = B, are the Bernoulli numbers (with
B; =1/2), defined by the generating function

ZB(U"” .

B is explicitly expressed as

where
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are the Stirling numbers of the second kind ([7, Theorem 1]).
For a positive mt;eger k and a non-negative integer n, poly-Cauchy num-
bers (of the first kind) c! ) are given by
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where
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are called the k-th polylogarithm factorial function. When k = 1, ¢’ = ¢,
are the Cauchy numbers ([4]) defined by the generating function defined by
the generating function
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P is explicitly expressed as
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where U:J are the (unsigned) Stirling numbers of the first kind appeared as
the coefficients of the rising factorial
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We record the values of ¢ for n = 0,1,...,5.
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Poly-Cauchy numbers (of the first kind) may be defined by using integrals.
Theorem 1. Forn >0 and k > 1, let C,(zk) be

1 1
C,(,k)zf ..._/(:clxz...a;k)(xlxg...xk—l)
0 0
k

(xlxgxk—n—t-l)dxldxgda:k

Then Cq(zk) = c&k).

As the Stirling numbers of the second kind is related to e — 1 and the
Stirling numbers of the second is to 1/1In(1 — t) via Riordan arrays (see e.g.
[9, 11, 12]), it may be natural to consider if some properties which hold
on Bernoulli numbers (polynomials) would also hold on Cauchy numbers
(polynomials).

2 Polylogarithm factorial function

Note that for k > 2
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Lig(2) = / 1k_l(t)d ,
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on the other hand,
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A Riordan array is a pair (d(t), h(t)) where d and h are analytic functions
and d(0) # 0 ([11, 12]). This pair then defines an infinite lower triangular
array {d,}, where

i dpmt™ = d(t)(t - h(2))™.

n=0
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From this definition, d(¢)(¢- h(¢))™ is the generating function of column & in
the array. It is known that Pascal triangle { Py m}n k>0 is represented by a
Riordan array:

1 t \" = (n),, <« n
() - () -xae
n=0 n=0

(Unsigned) Stirling numbers of the first kind [ ], which arise as coefficients
of the rising factorial

n

zz+1)...(z+n—-1)= {n]xm,

is represented by
1 \" &mlrn
(=) =3 %"+
(nl—t) gn! m

Stirling numbers of the second kind { :L}, which are determined by

ny_ L~ u(m Y
is represented by

R T

n=0

Notice that Li;(2) = —In(1 — z) and Lif;(2) = (e* — 1) /2.

3 Poly-Bernoulli numbers and poly-Cauchy
numbers

The generating function of the poly-Bernoulli numbers can be written in
terms of iterated integrals:
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The generating function of the poly-Cauchy numbers of the first kind ct®)

(k > 2) are also written in terms of iterated integrals:

1 ¥ 1 ¥ 1 * T
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It is known that the identity

ke m|n+1 n!
21 [m—i—l} B’(’f)z(n+1)k

m=0

holds. On the other hand,
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It is known that the duality theorem holds for poly-Bernoulli numbers.

Namely,
B&® =BU™ form,k > 0.

It is due to the symmetric formula:
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However, the duality theorem does not hold for poly-Cauchy numbers. In
fact, we have
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4 Poly-Cauchy polynomials

We introduce the poly-Cauchy polynomials (of the first kind) cg“)(z) for a
positive integer k and a non-negative integer n, given by the generating
function

(1 + x)z - nX:(:)cn (Z) TL' ’ (3)
where -

z

Lify(2) = ) i T

When z = 0, ¢’ (0) = ¢ are the poly-Cauchy numbers. We may also define
the poly-Cauchy polynomials of the first kind c,(mk)(z) by

1 1 _
cg“)(z):n!/.../ (xla:g...xk Z)dxldxg...dxk.
0 0 n
k

The first several polynomials are

$(z) =1,

k 1

cg)(z)=2—k—z,

k 1 1 2

®, 2 3 1 6 3
P =g-grg+(2rx-5)

3
+ (—3+2—k) 22— 2

&, 6 11 6 1 22 18 4
A =grtEoEtEt\brtEog)

18 6 4
+(11-—§+§]€>22+(6—2—k)23+z4.

Poly-Bernoulli polynomials B{” (2) were defined as
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([1]). Note that B (2) are defined in [5] by replacing €** by e~**. In [10],
B¥)(2) are defined by

le(l — e_x) 2T (k) z"
et ¢ LBy

Concerning the poly-Bernoulli polynomials, for an integer k and a positive
integer n we have

d
d_Bf(f) (2) = nB (2)
([1, Theorem 1.4]).  The poly-Cauchy polynomials cn *) however, are not
Appell sequences. By differentiating e ), we have
d = (1"

——cg‘)z= —1)"n! q (2 n>1).
FE = e 02

We have a recurrence formula for the poly-Cauchy polynomials ¢, )( ) in
terms of the poly-Cauchy numbers cn %) and the Cauchy polynomials c,(2).

Theorem 2. For a positive integer k and a non-negative integer n we have

m (k 1)n l
(k) _ ' (_1) C[(Z)
Cn ”Z -+l

m=0

Poly-Cauchy polynomials of the first kind can be also expressed explicitly
in terms of the Stirling number of the first kind:

wo-L ]S (Naay o

5 Poly-Cauchy 'numbers and polynomials of
the second kind

The poly-Cauchy polynomials of the second kind aﬁf‘)(z) are defined by

o

(1 + ) Lif(~In(l+2)) = 3 e(2) %

n=0
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The first several polynomials are

k

& (z) =1,
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If z=0, then & ( ) = ¢® are the poly-Cauchy numbers of the second kind.
If k = 1, then & (2) = é,(2) are the Cauchy polynomials given in [3]. The
generating function of ¢,(z) is given by
z(1 + z)*
(1+z) ln(l + z)

_ch

n=0

(14 z)?Lif;(—In(1 + z)) =

Note that z is replaced by —z in the generating function in [3]. Under these

definitions we call ¢ and c® (z) poly-Cauchy numbers of the first kind and
poly-Cauchy polynomials of the first kind, respectively. In similar methods,
we have the corresponding results to those in the previous sections.

Proposition 1.

ii (0T YE e
na kT Tta)e

n=0 k=0
Theorem 3. For a positive integer k and a non-negative integer n we have

m a(k—1) n—m ~
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Theorem 4.

FO = 0y (e 2

6 Some generalizations of poly-Cauchy num-
bers and polynomials

The generating function of ordinary generalized poly-Bernoulli numbers Bn,x
([10]) is given by

le 1 —e fx) - z™ 2

n=0

The generating function of generalized poly-Bernoulli polynomials B,&k,)((z)
([2]) is given by

L1k1~e f=z) o)z 2
fZX s+ ZB o 2l < -

The generating function of poly-Bernoulli polynomials with a, b parame-
ters BY (2;a,b) ([6]) is given by

le(]‘ — (ab)_x) zT __ = k)(.,. z"
r— —ZBn (z,a,b)m.

The generating function of poly-Bernoulli polynomials with a, b, ¢ parameters
B¥)(z;a,b,¢) ([6]) is given by

Lix(1 = (aD)™®) .0 _ X nie)y,. z"
EEp—— —;Bn (z,a,b,c);!—.

Mari Yokohama (Hirosaki University) proposes the following generaliza-
tions of Cauchy numbers. Let n and k be integers with n > 0 and k > 1.

Let ¢ be a real number with ¢ # 0. Define the poly-Cauchy numbers with q



pammeter (of the first kind) cp ) by

f / 501332 171332 iﬂk"Q)

(1o ..z — (n— 1)Q)dz1dz, . . . dx

Then for a real number g # 0

(@3_2[2]% (n>0k>1).

m=0

The generating function of c%k?] is given by

Lify, (M) = icgc):c_" (g #0).

W n )
q 0 n:

The generating function can be also written in the form of iterated integrals
as that of the poly-Cauchy numbers. For k& > 2 we have

q : q i q
In(1 + gz) ./o (1+gz)In(l + q:z;) / (14 gz) In(1 + g2)
k-1

1/q _
((tami-1)
(1+ gx)In(1 + qz) ‘-—v—-’

For kK = 1 we have

q((1 + gz)¥/7—1)
ZCW s

In(1 + gzx)

n=0

Slmﬂarly( define the poly-Cauchy numbers of the second kind with ¢

parameter ¢4 by

A(k) _/ / (—331332 ("‘ZEL’EQ Tk —Q)

. (—CC]_.’L‘Q R 5 (n — 1)(])dﬂ31d1'2 . dcck .
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Then

iy = (1" ZO LT:L] (mq—+1?'

The generafmngc function of the poly-Cauchy numbers of the second kind with
q parameter Cng is given by

_ In(1 + gx) > T
Llfk (——-;1‘——'—-) = ch’q;l,_! .

n=0

For k > 2 we have

q x q z q x
1n(1+qx)/0 (1+qac)1n(1+qa:)/0 (1 +¢z)In(1 + gz) /oj

k-1

g(1 — (1 + qz)%9)
(1% g2) In(1 + g2) —,——fdxdf_'l‘ .4z

_ZA(k)-’” _

n=0

For k = 1 we have

q(1 = (1 + qz)~/9) i z"

In(1+ gz)

Poly-Cauchy polynomials with ¢ parameter of the first kind ogkg(z) and
of the second kind &)(z) are also similarly defined.

Even more generalizations are possible. For example, define ct Cn (ll, lo, ..., lk),
where Iy, 15, ...,y are nonzero real numbers, by

15 Iy I
Cszlf)(llalm---,lk): (123 . - - zh) (2122 - . . TR — Q)
! o Jo 0
(T2 .. 7k — (n— 1)q)dz1dZs . . . d)

Then, for a real number q # 0

"1 (=) ™(lily. . . )™
Dby 1) =[] - (Tr(tfl)k D" 20,k 21).

m=0
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