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Francis Brown showed that Hoffman’s conjectural basis generates the
vector space spanned by all multiple zeta values. The remaining problem on
Hoffinan’s basis conjecture is to show independence of the basis elements, and
it seems to be completely out of reach nowadays. For example, irrationality
$isnot’ earuntilnowof_{\zeta(2}^{\zeta(3}\frac{3)}{2,2,ci},$isthefirstst.$ep$ of this problem, it is equivalent to that of $\zeta(\zeta(\frac{3)^{2}}{6)}$ , and

Twoone formula is a conjectural formula for multiple zeta star-values.
For some restricted cases, their proofs have been obtained, but not yet shown
in general.

In this note, we shall review Hoffman’s basis conjecture and Two-one
formula.

1 Dimension and Direct sum conjectures
We call the $n$-tuple $k=$ $(k_{1}, k_{2}, \ldots , k_{n})$ of integers $k_{1}\geq 2,$ $k_{j}\in \mathbb{N}$ $(j=$

$1,2,$
$\ldots,$

$n)$ admissible index for multiple zeta values. The multiple zeta val-
ues (MZVs) and multiple zeta-star values (MZSVs) are defined, for admissible
index $k$ , by

$\zeta(k)=\zeta(k_{1}, k_{2}, \ldots, k_{n})=m_{1}>m>\cdots>m_{n}>0^{m}\sum_{2}\frac{1}{k_{1}k_{2} ,1m_{2}\cdots m_{n^{m}}^{k}}$

and
$\zeta^{\star}(k)=\zeta^{\star}(k_{1}, k_{2}, \ldots, k_{n})=\sum_{m_{1}\geq m_{2}\geq\cdots\geq m_{n}>0^{m}}\frac{1}{k_{1}k_{2},1m_{2}\cdots m_{n^{n}}^{k}},$

respectively. The integers wt(k) $=k_{1}+k_{2}+\cdots+k_{n}$ , dep(k) $=n$ and
ht(k) $=\#\{j|k_{j}\geq 2\}$ are called the weight, the depth and the height of $k,$

respectively. $A$ multiple zeta-star value is a linear combination of multiple
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zeta values of the same weight, and vise versa. Thus MZSVs span the same
$\mathbb{Q}$-vector space as MZVs.

We define a series of vector spaces $\{\mathcal{Z}_{k}\}$ by $\mathcal{Z}_{0}=\mathbb{Q},$ $Z_{1}=\{0\}$ and
$\mathcal{Z}_{k}=\sum_{k\in I_{0}(k)}\mathbb{Q}\zeta(k)$

for $k\geq 2$ , and
$\mathcal{Z}=\sum_{k\geq 0}\mathcal{Z}_{k}$

is the vector space spanned

by all multiple zeta values. Here, we meant by $I_{0}(k)$ the set of all admissible
indices with weight $k$ . It is known that $Z_{k}\cdot \mathcal{Z}_{k’}\subset Z_{k+k’}$ are satisfied.

We define an integer sequence $\{d_{k}\}$ by $d_{0}=1,$ $d_{1}=0,$ $d_{2}=1$ and $d_{k}=$

$d_{k-2}+d_{k-3}$ for $k\geq 3.$

Two famous conjectures on multiple zeta values are as follows.

Conjecture 1 (Dimension Conjecture). For any non-negative integer
$k$ , we conjecture

$dimQ^{Z_{k}=d_{k}}.$

Conjecture 2 (Direct Sum Conjecture). For the vector space spanned
by $MZVs_{f}$ we conjecture

$Z= \bigoplus_{k\geq 0}\mathcal{Z}_{k}.$

The table of each values, based on numerical experimentation, is as fol-
lows.

$|\begin{array}{l}k\# I_{0}(k)d_{k}\end{array}|01$ $01$ $211$ $231$ $441$ $285$ $1626$ $3_{3}27$ $6448 \frac{1282565121024|\overline{9101112}|}{57912|}$

The following result is known for Dimension conjecture.

Theorem 1 (Terasoma [9], Deligne-Goncharov [3]). For any non-negativ
integer $k$ , we have

$dimQ\mathcal{Z}_{k}\leq d_{k}.$

2 {2,3}-Basis
In 1997, Hoffman [4] presented a conjectural basis for $\mathbb{Q}$-vector space of
MZVs. The base is called {2, 3}-basis because its basis elements are all
multiple zeta values whose index is constructed by $2$ ’s and $3’ s$ . To be precise,
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Hoffman’s basis conjecture can be stated as follows. First, we deflne sets of
indices $H$ and $H_{k}$ by

$H = \{k=(k_{1}, \ldots, k_{n})|n\in \mathbb{N}, k_{i}\in\{2,3\}, (i=1,2, \ldots, n)\},$

$H_{k}$ $=$ $\{k\in H|$ wt$(k)=k\}.$

Conjecture 3 ({2,3}-Basis Conjecture [4]). The set $\{\zeta(k) k\in H\}$

$\cup\{1\}$ is a basis of $\mathcal{Z}$ over $\mathbb{Q}.$

Hoffman’s {2,3}-basis conjecture is based on the following fact and nu-
merical experimentation for some extent.
Fact. For any $k\in \mathbb{N},$

$\# H_{k}=d_{k}$

is satisfied.

As we mentioned in the introduction of present note, Francis Brown [2]
showed

$\mathcal{Z}=\sum_{k\in H}\mathbb{Q}\zeta(k)$
,

by using an argument on motivic zeta values and Don Zagier’s result [11] on
$\zeta(2, \ldots, 2,3,2, \ldots, 2)$ .

If we shift, without much thought, the above conjectural basis to multiple
zeta-star values, we find another conjecture as follows.

Conjecture 4 $(\{2,3\}^{\star}-$Basis Conjecture $[5])$ . The set $\{\zeta^{\star}(k)|k\in H\}\cup$

$\{1\}$ is a basis of $\mathcal{Z}$ over $\mathbb{Q}.$

We can get supporting evidence of $\{2,3\}^{\star}$-basis conjecture up to weight
15 by numerical experimentation. Also the above mentioned “Fact” supports
this conjecture again.

For $\{2,3\}^{\star}$-basis conjecture, we obtain the following result. Here $\{2\}_{k}$

denotes the $k$-tuple $\backslash ,\sim.\sim 22,$. $.,$ $2.$

$k$

Theorem 2 (Ihara-Kajikawa- $O$ .-Okuda [5]). For any integer $k>1$ , we
have

$\zeta(k)\in\sum_{k\in H_{k}}\mathbb{Q}\zeta^{\star}(k)$
.
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Moreover, $\zeta(k)$ has the following expressions by $\{2,3\}^{\star}$ -basis.

$\zeta(2k)=\{2(1-2^{1-2k})\}^{-1}\zeta^{\star}(\{2\}_{k})$ ,

$\zeta(2k+1)=\{4k(1-2^{-2k})^{-1}(2\sum_{i=1}^{k-1}\zeta^{\star}(\{2\}_{i-1},3,\{2\}_{k-i})+3\zeta^{\star}(\{2\}_{k-1},3))$

Remark. The above formula for $\zeta(2k)$ is firstly obtained by Sergey Zlobin
[12], and is a restricted case of the results in [1] and [6]. On the other
hand, the formula for $\zeta(2k+1)$ is newly obtained in [5]. After releasing our
draft of [5], Don Zagier [11] gave another proof of the formula for $\zeta(2k+1)$

of Theorem 2 by giving a linear relation between $\zeta^{\star}(2, \ldots, 2,3,2, \ldots , 2)$ ’s
and $\zeta(2, \ldots, 2,3,2, \ldots, 2)$ ’s (that is to say, zeta and zeta-star values with
many $2$ ’s and only one 3) and applying his new formula of relations between
Riemann zeta values and $\zeta(2, \ldots , 2, 3, 2, . . . , 2)’ s.$

3 Two-one formula
In 2008, we presented in [8] a conjectural formula “Two-one formula” and
its proof for some specific cases. The conjectural formula is not yet proved
in general, but we believe that it might give some further information for
understanding the precise structure of multiple zeta algebra $\mathcal{Z}.$

As we mentioned in the previous section, the formula

$\zeta^{\star}(\{2\}_{n})=2(1-2^{1-2n})\zeta(2n)$

is due to Sergey Zlobin [12], and the other formula

$\zeta^{\star}(\{2\}_{n}, 1)=2\zeta(2n+1)$

is also appeared in his paper. The second identity is also obtained as a special
case of Cyclic sum formula for MZSVs given in [7]. The following identity
was discovered experimentally when we searched for a generalization of the
above formula (which is the particular case $1=1$ of our finding).

Conjecture 5 (Two-one formula [8]). $Fork=0,1,2,$ $\ldots,$ $\mu_{2k+1}$ denotes
$(\{2\}_{k}, 1)$ . Then for any $admis\mathcal{S}ible$ index $(S_{1}, S_{2}, \ldots, \mathcal{S}_{l})$ with odd entries
$s_{1},$ $s_{2},$

$\ldots,$
$s_{l}$ , we conjecture

$\zeta^{\star}(\mu_{s_{1}}, \mu_{s2}, \ldots, \mu_{S\downarrow})=\sum_{p}2^{l-\sigma(p)}\zeta(p)$
,
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where $p$ runs through all indices of the form $(s_{1}\circ s_{2}\circ\cdots os_{l})$ with $/_{o}$ being
either the symbol “, ” or the sign $(+, and the$ exponent $\sigma(p)$ denotes the
number of signs $+$ ” in $p.$

The right hand side of the equality in Conjecture 5 can also be written
as

$\sum_{p}(-1)^{\sigma(p)}2^{\iota-\sigma(p)}\zeta^{\star}(p)$
.

In spite of a simple, but somehow mysterious, shape of Two-one formula,
we cannot yet prove it in the full generality. The following two particular
cases as well as our experimental results support the validity of the formula.

Theorem 3 ( $O$ .-Zudilin [8]). For any integers $n\geq i\geq 1$ , we have

$\zeta^{\star}(\{2\}_{i}, 1, \{2\}_{n-i}, 1)=4\zeta^{\star}(2i+1,2n-2i+1)-2\zeta(2n+2)$ .

Theorem 4 ( $O$ .-Zudilin [S]). For any integer $l\geq 1$ , we have

$\zeta^{\star}(2, \{1\}_{l})=\sum_{0=,or+}2^{l-\#\{\circ=+\}}\zeta(3_{\backslash }\circ 1$
科

$\check{l-1}arrow\circ 1)$

$= \sum_{i=0}^{\iota-1}2^{l-i}\sum_{e_{1}+\cdots e_{1-i}=i}\zeta(3+e_{1},1+e_{2},1+e_{3}, \ldots , 1+e_{l-i})$ ,

where all $e_{j}$ are non-negative integers.

A recent development on studying the algebraic structure (of the right
hand side, especially) of Two-one formula given by Shuji Yamamoto can be
found in [10].
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