Homogenized modular algorithms for Gröbner
 bases

Yuji Kobayashi
Department of Information Science，Toho University， Funabashi 274－8510，Japan

1 Introduction

Gröbner bases and the Buchberger algorithm（Buchberger［3］）are now central techniques in Computational Algebra（［2］）．One of serious problems is the inter－ mediate swell of the size of the coefficients of polynomials during computation of Gröbner bases（Ebert［4］）．

To avoid this，the modular algorithm is considered to be useful（Winkler ［5］）．Choosing a suitable prime p compute a Gröbner basis \bar{G} over the field $\mathbb{Z}_{p}=\mathbb{Z} /(p)$ ，then reconstruct a system G over \mathbb{Z} from \bar{G} ．If p is large enough and lucky，G is a correct Gröbner basis．But there is no effective way to check that p is lucky and large enough beforehand．

Let H be a finite set of polynomials in $\mathbb{Z}[X]=\mathbb{Z}\left[X_{1}, \ldots, X_{n}\right]$ and let p be a prime number．For a polynomial f in $\mathbb{Z}[X], f_{p}$ denotes the polynomial on $\mathbb{Z}_{p}[X]$ induced from f ．Moreover，define $H_{p}=\left\{f_{p} \mid f \in H\right\}$ ．Let $>$ be a term order on $\mathbb{Z}[X]$ and \bar{G} be the Gröbner basis obtained by the Buchberger algorithm from H_{p} on $\mathbb{Z}_{p}[X]$ ．Let G be a set of polynomial in $\mathbb{Z}[X]$ such that $G_{p}=\bar{G}$ ．

To see that G is a Gröbner basis we check that（i）every S－polynomial of G is reduced to 0 modulo G ．If this is checked，then G is a Gröbner basis of＇some＇ ideal of $\mathbb{Z}[X]$ ．To see that G is a Gröbner basis of the ideal $I(H)$ generated by H ，we check that（ii）every $h \in H$ is reduced to 0 modulo G ．If this is checked， $I(H) \subset I(G)$ holds．Here，if the converse inclusion $G \subset I(H)$ is satisfied，G is a correct Gröbner basis for H ．

Arnold［1］proved that if H is homogeneous，the converse inclusion holds if the conditions（i）and（ii）above are checked．If H is not homogeneous，we homogenize it to ${ }^{\mathrm{h}} G$ ，and complete it to G^{\prime} by the modular algorithm，and then ahomogenizing it we obtain the Gröbner basis $G={ }^{\mathrm{a}} G^{\prime}$ of $I(H)$ ．In this note we examine these steps precisely．

2 Compatible orders and weights

A quasi－order \geq on a set A is a reflexive，transitive and comparable relation on A ．For $a, b \in A$ we write $x \sim y$ if $x \geq y$ and $y \geq x$ ，and $x>y$ if $x \geq y$ and
$(x \not \downarrow y)$.
A quasi-order \geq on A is well-founded if there is no infinite decreasing sequence $a_{1}>a_{2}>\ldots$, or equivalently, any nonempty subset of A has a minimal element. A well-founded order is a well-order.

Let $X=\left\{X_{1}, X_{2}, \ldots, X_{r}\right\}$ be a finite set of symbols (variables). Let $M(X)$ be the set of (monic) monomials, that is, $M(X)$ is the free abelian monoid generated by X. Any element x in $M(X)$ is written as

$$
\begin{equation*}
x=X_{1}^{e_{1}} X_{2}^{e_{2}} \cdots X_{r}^{e_{r}} \tag{1}
\end{equation*}
$$

with $e_{i} \in \mathbb{N}=\{0,1,2, \ldots\}$, in particular, 1 denotes the identity element (the empty monomial). For another $y=X_{1}^{f_{1}} X_{2}^{f_{2}} \cdots X_{r}^{f_{r}} \in M(X)$, we have

$$
x y=X_{1}^{e_{1}+f_{1}} X_{2}^{e_{2}+f_{2}} \ldots X_{r}^{e_{r}+f_{r}} .
$$

From now on we consider only (quasi-)orders on $M(X)$.
A quasi-order on $M(X)$ is compatible, if

$$
x \geq y \Rightarrow s x t \geq s y t
$$

for any $x, y, s, t \in M(X)$. It is positive (resp. non-negative), if

$$
x>1(\text { resp. } x \geq 1)
$$

for any $x(\neq 1) \in M(X)$.
As is well known as a variant of Dickson's lemma (see [2]), a non-negative compatible quasi-order on $M(X)$ is well-founded.

A weight function (simply a weight) ω is a homomorphism from $M(X)$ to the additive group \mathbb{R} of real numbers. The weight ω is determined by the values $\omega\left(X_{i}\right)$ of $X_{i} \in X$. In fact, for $x \in M(X)$ in (1) we have

$$
\omega(x)=e_{1} \omega\left(X_{1}\right)+e_{2} \omega\left(X_{2}\right)+\cdots+e_{r} \omega\left(X_{r}\right) .
$$

The set of weights on $M(X)$ forms an \mathbb{R}-space of dimension d.
A weight ω is positive (resp. non-negative), if

$$
\omega\left(X_{\imath}\right)>0\left(\text { resp. } \omega\left(X_{i}\right) \geq 0\right)
$$

for every i. It is rational (resp. integral), if

$$
\omega\left(X_{i}\right) \in \mathbb{Q}\left(\text { resp. } \omega\left(X_{i}\right) \in \mathbb{Z}\right)
$$

for every i. The degree function deg is a typical positive integral weight.
For a weight ω, the associated quasi-order \geq_{ω} is defined by

$$
x \geq_{\omega} y \Leftrightarrow \omega(x) \geq \omega(y)
$$

for $x, y \in M(X)$.

For a weight ω on $M(X), \geq_{\omega}$ is a compatible quasi-order on $M(X)$. If ω is positive (resp. non-negative), so is \geq_{ω} and it is well-founded.

A weight ω is \geq-monotone (simply monotone), if

$$
x \geq y \Rightarrow \omega(x) \geq \omega(y)
$$

or equivalently,

$$
\omega(x)>\omega(y) \Rightarrow x>y
$$

for $x, y \in M(X)$.

3 Gröbner bases

Let K be a field and let $K[X]$ be the polynomial ring in $X_{1}, X_{2}, \ldots, X_{r}$ over K. A compatible positive order on $M(X)$ is called a term order, and we fix a term order \geq in this section.

For a polynomial

$$
\begin{equation*}
f=\sum_{x \in M(X)} k_{x} \cdot x \quad(k \in K) \tag{2}
\end{equation*}
$$

in $K[X]$, the maximal x such that $k_{x} \neq 0$ is the leading monomial of f denoted by $\operatorname{lt}(f)$, here k_{x} is the leading coefficient denoted by $\operatorname{lc}(f)$ and $k_{x} \cdot x=\operatorname{lc}(f) \cdot \operatorname{lm}(f)$ is the leading term denoted by $\operatorname{lt}(f)$. We set $\operatorname{rt}(f)=f-\operatorname{lt}(f)$. For a subset G of $K[X]$, set

$$
\operatorname{lm}(G)=\{\operatorname{lm}(g) \mid g \in G\}
$$

We extend \geq to the quasi-order \geq on $M(X)$ as follows. First,
(i) $f>0$
for any nonzero $f \in K[X]$, and
(ii) $f \geq g$ if $\operatorname{lm}(f)>\operatorname{lm}(g)$ or $(\operatorname{lm}(f)=\operatorname{lm}(g)$ and $\operatorname{rt}(f) \geq \mathrm{rt}(g))$ for any nonzero $f, g \in K[X]$.

Let $G \subset K[X]$. If some term of $f \in K[X]$ is divided by $\operatorname{lm}(g)$ for some $g \in G, f$ is G-reducible, otherwise, f is G-irreducible. Let $\operatorname{Red}(G)($ resp. $\operatorname{Irr}(G))$ denote the set of G-reducible (resp. G-irreducible) monomials. Clearly,

$$
\operatorname{Red}(G)=\operatorname{lm}(G) \cdot M(X), \operatorname{Irr}(G)=M(X) \backslash \operatorname{Red}(G)
$$

For $f \in K[X]$, if some term $k \cdot x(k \in K \backslash\{0\}, x \in M(X))$ of f is G-reducible; $x=x^{\prime} \cdot \operatorname{lm}(g)$ for some $x^{\prime} \in K[X]$ and $g \in G$, then we can rewrite f to

$$
f^{\prime}=f-k \cdot x^{\prime}\left(\operatorname{lm}(g)-\frac{\mathrm{rt}(g)}{l c(g)}\right)=f-\frac{k}{\operatorname{lc}(g)} \cdot x^{\prime} g
$$

In this situation we write as

$$
f \rightarrow_{G} f^{\prime}
$$

The reflexive transitive closure of the relation \rightarrow_{G} is denoted by \rightarrow_{G}^{*}. If $f \rightarrow_{G}^{*} f^{\prime}$ for $f, f^{\prime} \in K[X]$, we say that f is reduced to f^{\prime} modulo G.

Let I be an ideal of $K[X]$. A finite set $G \subset K[X]$ is a Gröbner basis of I, if
(i) $G \subset I$, and
(ii) every $f \in I$ is reduced to 0 modulo G.

The condition (ii) is equivalent to the inclusion $\operatorname{lm}(I) \subset \operatorname{Red}(G)$.
G is reduced, if any $g \in G$ is ($G \backslash\{g\}$)-irreducible. G is monic, if every $f \in G$ is monic, that is $\operatorname{lc}(f)=1$. Any ideal in $K[X]$ has a unique monic reduced Gröbner basis (if the order \geq is fixed).

Lemma 3.1. Let I be an ideal, and for $x \in \operatorname{lm}(I)$ choose one f_{x} in I such that $\operatorname{lm}\left(f_{x}\right)=x$. Then, $\left\{f_{x}\right\}_{x \in \operatorname{lm}(I)}$ is a K-linear base of I. If is G a Gröbner basis of I, then $\left\{f_{x}\right\}_{x \in \operatorname{Red}(G)}$ is a K-linear base of I.

Suppose that K is the quotient field of an integral domain R. Let P be a maximal ideal of R and let ρ_{P} be the canonical surjection from R to the quotient $\bar{R}=R / P$. The homomorphism ρ_{P} extends to the homomorphism ρ : $R[X] \rightarrow \bar{R}[X]$.
Proposition 3.2. With the situation above, suppose that a subset G of $R[X]$ is a Gröbner basis of an ideal I of $K[X]$. If $l c(G)$ is out of P, then $G_{P}=\rho_{P}(G)$ is a Gröbner basis of the ideal $I_{P}=\rho_{P}(I \cap R[X])$ in $R_{P}[X]$.

4 Homogeneous ideals

Let ω be a weight on $M(X)$ and let $v \in \mathbb{R}$. A polynomial $f \in K[X]$ is ω homogeneous (we simply say homogeneous) of weight v, if all the monomials in f have the same weight v. In this case v is the weight of f and we write $\omega(f)=v$. Any polynomial f is decomposed as a sum of the homogeneous polynomials;

$$
f=\sum_{v \in \mathbb{R}} f[v]
$$

where $f[v]$ is homogeneous with weight v.
For a subset H of $K[X], H[v]$ denotes the set of homogeneous elements with weight $v . H$ is homogeneous, if every element of it is homogeneous, that is, $H=\cup_{v \in \mathbb{R}} H[v]$. An ideal of $K[X]$ is homogeneous if it is generated by homogeneous polynomials. If I is a homogeneous ideal, then any element in I is a sum of homogeneous elements of I. Thus, $I[v]$ is the set of homogeneous elements of I of weight v. A homogeneous ideal I has a homogeneous Gröbner basis. In fact, a reduced Gröbner basis of I is homogeneous.

If ω is positive, then the set $M(X)[v]$ of monomials with a given weight $v \in \mathbb{R}$ is finite. If I is a homogeneous ideal, then for $x \in \operatorname{lm}(I), f_{x}$ can be chosen from $I[v]$ such that $\operatorname{lm}\left(f_{x}\right)=x$. By this observation together with Lemma 3.1, we have

Lemma 4.1. Let ω be a positive weight on $M(X)$ and I be a homogeneous ideal of $K[X]$. Then, $I[v]$ is a finite dimensional K-space with base $\left\{f_{x} \mid x \in \operatorname{lm}(I)[v]\right\}$, and $\operatorname{dim}_{K} I[v]=|\operatorname{lm}(I)[v]|$. If G is a Gröbner basis of I, then $\operatorname{dim}_{K} I[v]=$ $|\operatorname{Red}(G)[v]|$

From here in this section R is a principal ideal domain, K is its quotient field, p is a prime element of R, and ρ_{p} denotes the canonical surjection from R to $R_{p}=R /(p)$ as well as the canonical surjection from $R[X]$ to $R_{p}[X]$. For an ideal I of $K[X], I_{p}$ denotes the ideal $\rho_{p}(I \cap R[X])$ of $R_{p}[X]$. If J is an ideal of $R[X]$, then $J_{p}=\rho_{p}(J)$.

Lemma 4.2. Let ω be a positive weight on $M(X)$ and let I be a homogeneous ideal of $K[X]$. Then, for any $v \in \mathbb{R}$,

$$
\operatorname{dim}_{K} I[v] \geq \operatorname{dim}_{R_{p}} I_{p}[v]
$$

Lemma 4.3. Let ω be a positive weight on $M(X)$, and let I be a homogeneous ideal of $K[X]$. Let G be a (homogeneous) Gröbner basis of a homogeneous ideal L. Let \bar{G} be a (homogeneous) Gröbner basis of a homogeneous ideal \bar{J} of $R_{p}[X]$. If (i) $I \subset L$, (ii) $\operatorname{lm}(G)=\operatorname{lm}(\bar{G})$, and (iii) $\bar{J} \subset I_{p}\left(=\rho_{p}(I \cap R[X])\right.$, then $I=L$ and G is a Gröbner basis of I.

Corollary 4.4. Let ω be a positive weight on $M(X)$, and let H be a homogeneous subset of $R[X]$. Let I (resp. J) be the ideal of $K[X]$ (resp. $R[X]$) generated by H. Let G be a (homogeneous) Gröbner basis of a homogeneous ideal L. Let \bar{G} be a (homogeneous) Gröbner basis of a homogeneous ideal J_{p} of $R_{p}[X]$. If (i) $I \subset L$, and (ii) $\operatorname{lm}(G)=\operatorname{lm}(\bar{G})$, then $I=L$ and G is a Gröbner basis of I.

5 Homogenization and ahomogenization

Let ω be a fixed non-negative integral weight on $M(X)$ with $\omega\left(X_{i}\right)=v_{i}$ for $i=1, \ldots, r$. For $f \in K[X]$, let $\mathrm{m}_{\omega}(f)$ denote the maximum of the weights of the monomials appearing in f.

We introduce a new indeterminate X_{0} and the weight ω_{0} on $M\left(X_{0}, X\right)=$ $M\left(\left[X_{0}, X_{1}, \ldots, X_{r}\right]\right.$ defined by $\omega_{0}\left(X_{0}\right)=1$, and $\omega_{0}\left(X_{i}\right)=v_{i}$ for $i=1, \ldots, r$. Let $K\left[X_{0}, X\right]=K\left[X_{0}, X_{1}, \ldots, X_{r}\right]$.

For $f \in K[X]$, define ${ }^{\mathrm{h}} f \in K\left[X_{0}, X\right]$ by

$$
{ }^{\mathrm{h}} f=X_{0}^{t} f\left(X_{1} X_{0}^{-v_{1}}, \ldots, X_{r} X_{0}^{-v_{r}}\right)
$$

where $t=\mathrm{m}_{\omega}(f)$. Then ${ }^{\mathrm{h}} f$ is \geq_{0}-homogeneous. On the other hand for $f \in$ $K\left[X_{0}, X\right]$, we define ${ }^{\text {a }} f \in K[X]$ by

$$
{ }^{\mathrm{a}} f=f[1, X] .
$$

For a subset H of $K[X]$ (resp. $K\left[X_{0}, X\right]$), set

$$
{ }^{\mathrm{h}} H=\left\{{ }^{\mathrm{h}} f \mid f \in H\right\} \quad\left(\mathrm{resp} .{ }^{\mathrm{a}} H=\left\{{ }^{\mathrm{a}} f \mid f \in H\right\}\right) .
$$

For an ideal I of $K[X],{ }^{\bar{h}} I$ denotes the ideal of $K\left[X_{0}, X\right]$ generated by ${ }^{\mathrm{h}} I$. Because the mapping sending $f \in K\left[X_{0}, X\right]$ to ${ }^{\text {a }} f \in K[X]$ is a homomorphism, ${ }^{\mathrm{a}} I$ is an ideal of $K[X]$ for an ideal I of $K\left[X_{0}, X\right]$.

An order \geq_{0} on $M\left(X_{0}, X\right)$ is defined as follows. For $x, y \in M\left(X_{0}, X\right)$

$$
x \geq_{0} y \Leftrightarrow \omega_{0}(x)>\omega_{0}(y) \text { or }\left(\omega_{0}(x)=\omega_{0}(y) \text { and }{ }^{\mathrm{a}} x \geq^{\mathrm{a}} y\right)
$$

If \geq is positive (non-negative, well-founded, compatible) on $M(X)$, so is it on $M\left(X_{0}, X\right)$. If ω is monotone, \geq_{0} is an extension of \geq, that is, $\geq_{0 \mid M(X)}=\geq$.

Lemma 5.1. (1) ${ }^{\mathrm{h}}(f \cdot g)={ }^{\mathrm{h}} f \cdot{ }^{\mathrm{h}} g$ for $f, g \in K[X]$.
(2) ${ }^{\text {ah }} f=f$ for any $f \in K[X]$.
(3) ${ }^{\text {ah }} H=H$ and ${ }^{\mathrm{ah}} I=I$ for a subset H of $K[X]$ and an ideal I of $K[X]$,
(4) For any homogeneous $f \in K\left[X_{0}, X\right], X_{0}^{t} \cdot{ }^{\text {ha }} f=f$ for some $t \in \mathbb{N}$
(5) For any $f \in K[X] \operatorname{lm}\left({ }^{\mathrm{h}} f\right)=X_{0}^{t} \cdot \operatorname{lm}(f)$ for some $t \in \mathbb{N}$. If ω is monotone, $\operatorname{lm}\left({ }^{\mathrm{h}} f\right)=\operatorname{lm}(f)$.
(6) For any homogeneous $f \in K\left[X_{0}, X\right], X_{0}^{t} \cdot \operatorname{lm}\left({ }^{a} f\right)=\operatorname{lm}(f)$ for some $t \in \mathbb{N}$.

Lemma 5.2. (1) If G is a homogeneous Gröbner basis of a homogeneous ideal I of $K\left[X_{0}, X\right]$, then ${ }^{\text {a }} G$ is a Gröbner basis of the ideal ${ }^{\text {a }} I$ of $K[X]$.
(2) Suppose that ω is monotone. If G is a Gröbner basis of an ideal I of $K[X]$, then ${ }^{\mathrm{h}} G$ is a homogeneous Gröbner basis of ${ }^{\mathrm{h}} I$.

Hereafter in this section, K is the quotient field of a principal ideal domain R and p is a prime element of R.

Lemma 5.3. Let ω be a compatible positive integral weight on $M(X)$. Let H be a subset of $R[X]$, and let I (resp. J) be the ideal of $K[X]$ (resp. $R[X]$) generated by H. Let G be a Gröbner basis of an ideal L of $K[X]$. Let \bar{G} be a Gröbner basis of a homogeneous ideal J_{p} of $R_{p}[X]$. If (i) $I \subset L$, and (ii) $\operatorname{lm}(G)=\operatorname{lm}(\bar{G})$, and (iii) ${ }^{\mathrm{h}}\left(f_{p}\right) \in\left({ }^{\overline{\mathrm{h}}}\right)_{p}$ for all $f \in J$, then $I=L$ and G is a Gröbner basis of I.

If the condition (iii) in the above Lemma is satisfied, p is called lucky, but there is no way to find p is lucky effectively. Next we work in the homogenized side.

Proposition 5.4. Let H be a subset of $K[X]$ and let I be an ideal of $K[X]$ generated by H. Let I^{\prime} (resp. J^{\prime}) be the ideal of $K\left[X_{0} \cdot X\right]$ (resp. $R\left[X_{0}, X\right]$) generated by ${ }^{\mathrm{h}} H$. Let \bar{G} be a homogeneous Gröbner basis of J_{p}^{\prime} and let G be a homogeneous Gröbner basis of a homogeneous ideal L^{\prime} of $K\left[X_{0}, X\right]$. If $I^{\prime} \subset$ L^{\prime}, and $\operatorname{lm}(G)=\operatorname{lm}(\bar{G})$, then ${ }^{a} G$ is a Gröbner basis of I. Moreover, if ω is monotone, ha G is a Gröbner basis of ${ }^{\overline{\mathrm{h}}} \mathrm{I}$

6 Algorithms and examples

Let p be a odd prime and let $>$ be a term order on $M(X)$. For $f=a_{n} X^{n}+$ $a_{n-1} X^{n-1}+\cdots a_{1} X+a_{0} \in \mathbb{Z}[X]$, let $\|f\|$ be the maximal norm of f, that is,

$$
\|f\|=\max \left\{\left|a_{i}\right| \mid i=0, \ldots, n\right\}
$$

For $f \in \mathbb{Z}_{p}[X]$, let $g=\operatorname{re}(f)$ is a polynomial in $\mathbb{Z}[X]$ with minimal $\|g\|$ satisfying $g_{p}=c \cdot f$ with $c \in \mathbb{Z}_{p}$. For a set G of polynomials in $\mathbb{Z}_{p}[X]$, set $\operatorname{re}(G)=$ $\{\operatorname{re}(f) \mid f \in G\}$. Let H be a finite subset of $\mathbb{Z}[X]$.
(i) Compute the reduced Gröbner basis \bar{G} of ${ }^{\mathrm{h}} H_{p}$ in $\mathbb{Z}_{p}\left[X_{0}, X\right]$ with respect to >0.
(ii) Compute $G_{0}=\operatorname{re}(\bar{G})$.
(iii) Check if every S-polynomial reduced to 0 modulo G_{0} in $\mathbb{Z}\left[X_{0}, X\right]$.
(iv) Check if every $h \in{ }^{\mathrm{h}} H$ is reduced to 0 modulo G_{0} in $\mathbb{Z}\left[X_{0}, X\right]$.
(v) Let $G={ }^{2} G_{0}$.

If G_{0} obtained in (ii) passes the tests (iii) and (iv), then G is a correct Gröbner basis of H.

Example 6.1. Let

$$
H=\left\{X^{2}+2 Y, X Y+1\right\}
$$

We consider the pure lexicographic order with $X>Y$. We have an S-polynomial $X-2 Y^{2}$, and reducing the system $H \cup\left\{X-2 Y^{2}\right\}$ we have a Gröbner basis

$$
G=\left\{2 Y^{3}+1, X-Y^{2}\right\}
$$

of $I(H)$. On the other hand, homogenizing H, we have

$$
{ }^{\mathrm{h}} H=\left\{X^{2}+2 Y Z, X Y+Z^{2}\right\}
$$

Let $p=5$, Completing ${ }^{\mathrm{h}} H_{p}$ in $\mathbb{Z}_{p}[X, Y, Z]$, we have a Gröbner basis

$$
\bar{G}=\left\{X^{2}+2 Y Z, X Y+Z^{2}, X Z^{2}+3 Y^{2} Z, 2 Y^{3} Z+Z^{4}\right\}
$$

of $I\left({ }^{\mathrm{h}} H_{p}\right)$. From this we reconstruct a Gröbner basis

$$
G^{\prime}=\left\{X^{2}+2 Y Z, X Y+Z^{2}, X Z^{2}-2 Y^{2} Z, 2 Y^{3} Z+Z^{4}\right\}
$$

of $I\left({ }^{\mathrm{h}} H\right)$ on $\mathbb{Z}[X, Y, Z]$. Then, ahomogenizing it we have a Gröbner basis

$$
{ }^{\mathrm{a}} G^{\prime}=\left\{X^{2}+2 Y, X Y+1, X-2 Y^{2}, 2 Y^{3}+1\right\}
$$

of $I(H)$. Then, reducing it we have $\left\{2 Y^{3}+1, X-Y^{2}\right\}=G$.
As seen in the above example a ${ }^{\text {a }} G^{\prime}$ may not be reduced, though G^{\prime} is reduced. Sometimes, G^{\prime} can be very big compared with G. In these cases, our methods are not practical.

Example 6.2. Let
$H=\left\{3 X^{2}+5 X^{3}-3 Y^{2},-4-4 X^{2}+3 X Y+Y^{3}, 3+X Y+5 X^{2} Y+4 Y^{2}-3 X Y^{2}\right\}$.
The reduced Gröbner basis of H is $\{1\}$. However, the reduced Gröbner basis of ${ }^{\mathrm{h}} H$ is very big with a polynomial which involves an integer with 1120 digits in decimal expression in its coefficients.

References

[1] E.A. Arnold, Modular algorithms for computing Gröbner bases, J. Symbolic Comp. 35 (2003), 403-419.
[2] T. Becker, V. Weispfenning, Gröbner bases, Springer, 1993.
[3] B. Buchberger, Gröbner-bases: an algorithmic method in polynomial ideal theory, In: Multidimensional Systems Theory (1985), 184-232.
[4] G.L. Elbert, Some comments on the modular approach to Gröbner-bases. ACM SIGSAM Bulletin 17, (1983), 28-32.
[5] F. Winkler, A p-adic approach to the computation of Gröbner bases, J. Symbolic Comp. 6 (1987), 287- 304.

