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1 Introduction
Gr\"obner bases and the Buchberger algorithm (Buchberger [3]) are now central
techniques in Computational Algebra ([2]). One of serious problems is the inter-
mediate swell of the size of the coefficients of polynomials during computation
of Gr\"obner bases (Ebert [4]).

To avoid this, the modular algorithm is considered to be useful (Winkler
[5] $)$ . Choosing a suitable prime $p$ compute a Gr\"obner basis $\overline{G}$ over the field
$\mathbb{Z}_{p}=\mathbb{Z}/(p)$ , then reconstruct a system $G$ over $\mathbb{Z}$ from C. If $p$ is large enough
and lucky, $G$ is a correct Gr\"obner basis. But there is no effective way to check
that $p$ is lucky and large enough beforehand.

Let $H$ be a finite set of polynomials in $\mathbb{Z}[X]=\mathbb{Z}[X_{1}, \ldots, X_{n}]$ and let $p$ be a
prime number. For a polynomial $f$ in $\mathbb{Z}[X],$ $f_{p}$ denotes the polynomial on $\mathbb{Z}_{p}[X]$

induced from $f$ . Moreover, define $H_{p}=\{f_{p}|f\in H\}$ . Let $>$ be a term order on
$\mathbb{Z}[X]$ and $\overline{G}$ be the Gr\"obner basis obtained by the Buchberger algorithm from
$H_{p}$ on $\mathbb{Z}_{p}[X]$ . Let $G$ be a set of polynomial in $\mathbb{Z}[X]$ such that $G_{p}=\overline{G}.$

To see that $G$ is a Gr\"obner basis we check that (i) every $S$-polynomial of $G$

is reduced to $0$ modulo $G$ . If this is checked, then $G$ is a Gr\"obner basis of’some’
ideal of $\mathbb{Z}[X]$ . To see that $G$ is a Gr\"obner basis of the ideal $I(H)$ generated by
$H$ , we check that (ii) every $h\in H$ is reduced to $0$ modulo $G$ . If this is checked,
$I(H)\subset I(G)$ holds. Here, if the converse inclusion $G\subset I(H)$ is satisfied, $G$ is
a correct Gr\"obner basis for $H.$

Arnold [1] proved that if $H$ is homogeneous, the converse inclusion holds
if the conditions (i) and (ii) above are checked. If $H$ is not homogeneous, we
homogenize it to $hG$ , and complete it to $G’$ by the modular algorithm, and then
ahomogenizing it we obtain the Gr\"obner basis $G=aG’$ of $I(H)$ . In this note we
examine these steps precisely.

2 Compatible orders and weights
A quasi-order $\geq$ on a set $A$ is a reflexive, transitive and comparable relation on
$A$ . For $a,$ $b\in A$ we write $x\sim y$ if $x\geq y$ and $y\geq x$ , and $x>y$ if $x\geq y$ and
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$(x\star y)$ .
A quasi-order $\geq$ on $A$ is well-founded if there is no infinite decreasing se-

quence $a_{1}>a_{2}>\ldots$ , or equivalently, any nonempty subset of $A$ has a minimal
element. $A$ well-founded order is a well-order.

Let $X=\{X_{1}, X_{2}, \ldots, X_{r}\}$ be a finite set of symbols (variables). Let $M(X)$

be the set of (monic) monomials, that is, $M(X)$ is the free abehan monoid
generated by $X$ . Any element $x$ in $M(X)$ is written as

$x=X_{1}^{e_{1}}X_{2}^{e_{2}}\cdots X_{r^{r}}^{e}$ (1)

with $e_{i}\in \mathbb{N}=\{0,1,2, \ldots\}$ , in particular, 1 denotes the identity element (the
empty monomial). For another $y=X_{1}^{f1}X_{2}^{f2}\cdots X_{r^{r}}^{f}\in M(X)$ , we have

$xy^{=x_{1}^{e_{1}+f_{X_{2}^{e2}}+f2}}1\ldots X_{r^{r}}^{e+f_{r}}.$

From now on we consider only (quasi-)orders on $M(X)$ .
A quasi-order on $M(X)$ is compatible, if

$x\geq y\Rightarrow sxt\geq \mathcal{S}yt$

for any $x,$ $y,$ $s,$ $t\in M(X)$ . It is positive (resp. non-negative), if

$x>1$ (resp. $x\geq 1$ )

for any $x(\neq 1)\in M(X)$ .
As is well known as a variant of Dickson’s lemma (see [2]), a non-negative

compatible quasi-order on $M(X)$ is well-founded.
A weight function (simply a weight) $\omega$ is a homomorphism from $M(X)$ to

the additive group $\mathbb{R}$ of real numbers. The weight $\omega$ is determined by the values
$\omega(X_{i})$ of $X_{i}\in X$ . In fact, for $x\in M(X)$ in (1) we have

$\omega(x)=e_{1}\omega(X_{1})+e_{2}\omega(X_{2})+\cdots+e_{r}\omega(X_{r})$ .

The set of weights on $M(X)$ forms an $\mathbb{R}$-space of dimension $d.$

A weight $\omega$ is positive (resp. non-negative), if

$\omega(X_{\iota})>0$ $($ resp. $\omega(X_{i})\geq 0)$

for every $i$ . It is rational (resp. integral), if

$\omega(X_{i})\in \mathbb{Q}$ $($ resp. $\omega(X_{i})\in \mathbb{Z})$

for every $i$ . The degree function $\deg$ is a typical positive integral weight.
For a weight $\omega$ , the associated quasi-order $\geq_{\omega}$ is defined by

$x\geq_{\omega}y\Leftrightarrow\omega(x)\geq\omega(y)$

for $x,$ $y\in M(X)$ .
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For a weight $\omega$ on $M(X\rangle, \geq_{\omega} is a$ compatible $quasi-$order $on M(X)$ . If $\omega$ is
positive (resp. non-negative), so is $\geq_{\omega}$ and it is well-founded.

A weight $\omega$ is $\geq$-monotone (simply monotone), if

$x\geq y\Rightarrow\omega(x)\geq\omega(y)$ ,

or equivalently,
$\omega(x)>\omega(y)\Rightarrow x>y$

for $x,$ $y\in M(X)$ .

3 Gr\"obner bases
Let $K$ be a field and let $K[X]$ be the polynomial ring in $X_{1},$ $X_{2},$

$\ldots,$
$X_{r}$ over

$K.$ $A$ compatible positive order on $M(X)$ is called a term order, and we fix a
term order $\geq$ in this section.

For a polynomial

$f= \sum_{x\in M(X)}k_{x}\cdot x(k\in K)$
(2)

in $K[X]$ , the maximal $x$ such that $k_{x}\neq 0$ is the leading monomial of $f$ denoted by
lt $(f)$ , here $k_{x}$ is the leading coefficient denoted by lc $(f)$ and $k_{x}\cdot x=$ lc $(f)$ .lm$(f)$

is the leadin9 term denoted by lt $(f)$ . We set rt$(f)=f-$ lt $(f)$ . For a subset $G$

of $K[X]$ , set
$1m(G)=\{1m(g)|g\in G\}.$

We extend $\geq to$ the quasi-order $\geq$ on $M(X)$ as follows. First,
(i) $f>0$

for any nonzero $f\in K[X]$ , and
(ii) $f\geq 9$ if lm$(f)>$ lm$(g)$ or $(1m(f)=$ lm$(g)$ and rt $(f)\geq$ rt $(g))$

for any nonzero $f,g\in K[X].$

Let $G\subset K[X]$ . If some term of $f\in K[X]$ is divided by $1m(g)$ for some
$g\in G,$ $f$ is $G$-reducible, otherwise, $f$ is $G$-irreducible. Let Red$(G)$ (resp. Irr $(G)$ )
denote the set of $G$-reducible (resp. $G$-irreducible) monomials. Clearly,

Red$(G)=$ lm$(G)\cdot M(X)$ , Irr $(G)=M(X)\backslash$ Red$(G)$ .
For $f\in K[X]$ , if some term $k\cdot x(k\in K\backslash \{O\}, x\in M(X))$ of $f$ is $G$-reducible;
$x=x’$ . lm$(g)$ for some $x’\in K[X]$ and $g\in G$ , then we can rewrite $f$ to

$f’=f-k \cdot x’(1m(g)-\frac{rt(g)}{lc(g)})=f-\frac{k}{1c(g)}\cdot x’g.$

In this situation we write as
$farrow_{G}f’.$

The reflexive transitive closure of the relation $arrow G$ is denoted by $arrow_{G}^{*}$ . If $farrow^{*}Gf’$

for $f,$ $f’\in K[X]$ , we say that $f$ is reduced to $f’$ modulo $G.$
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Let $I$ be an ideal of $K[X].$ $A$ finite set $G\subset K[X]$ is a Gr\"obner basis of $I$ , if
(i) $G\subset I$ , and
(ii) every $f\in I$ is reduced to $0$ modulo $G.$

The condition (ii) is equivalent to the inclusion lm$(I)\subset$ Red$(G)$ .
$G$ is reduced, if any $g\in G$ is $(G\backslash \{9\})$ -irreducible. $G$ is monic, if every $f\in G$

is monic, that is lc$(f)=1$ . Any ideal in $K[X]$ has a unique monic reduced
Gr\"obner basis (if the order $\geq$ is fixed).

Lemma 3.1. Let I be an ideal, and for $x\in$ lm(I) choose one $f_{x}$ in I such that
lm$(f_{x})=x$ . Then, $\{f_{x}\}_{x\in 1m(I)}$ is a $K$ -linear base of I. If is $G$ a Gr\"obner basis
of $I$ , then $\{f_{x}\}_{x\in Red(G)}$ is a $K$-linear base of $I.$

Suppose that $K$ is the quotient field of an integral domain $R$ . Let $P$ be
a maximal ideal of $R$ and let $\rho_{P}$ be the canonical surjection from $R$ to the
quotient $\overline{R}=R/P$ . The homomorphism $\rho p$ extends to the homomorphism $\rho$ :
$R[X]arrow\overline{R}[X].$

Proposition 3.2. With the situation above, suppose that a subset $G$ of $R[X]$ is
a Gr\"obner basis of an ideal I of $K[X]$ . If $lc(G)$ is out of $P$, then $G_{P}=\rho_{P}(G)$

is a Gr\"obner basis of the ideal $I_{P}=\rho_{P}(I\cap R[X])$ in $R_{P}[X].$

4 Homogeneous ideals
Let $\omega$ be a weight on $M(X)$ and let $v\in \mathbb{R}.$ $A$ polynomial $f\in K[X]$ is $\omega-$

homogeneous (we simply say homogeneous) of weight $v$ , if all the monomials in
$f$ have the same weight $v$ . In this case $v$ is the weight of $f$ and we write $\omega(f)=v.$

Any polynomial $f$ is decomposed as a sum of the homogeneous polynomials;

$f= \sum_{v\in \mathbb{R}}f[v],$

where $f[v]$ is homogeneous with weight $v.$

For a subset $H$ of $K[X],$ $H[v]$ denotes the set of homogeneous elements
with weight $v.$ $H$ is homogeneous, if every element of it is. homogeneous, that
is, $H= \bigcup_{v\in \mathbb{R}}H[v]$ . An ideal of $K[X]$ is homogeneous if it is generated by
homogeneous polynomials. If $I$ is a homogeneous ideal, then any element in $I$

is a sum of homogeneous elements of $I$ . Thus, $I[v]$ is the set of homogeneous
elements of $I$ of weight $v.$ $A$ homogeneous ideal $I$ has a homogeneous Gr\"obner
basis. In fact, a reduced Gr\"obner basis of $I$ is homogeneous.

If $\omega$ is positive, then the set $M(X)[v]$ of monomials with a given weight
$v\in \mathbb{R}$ is finite. If $I$ is a homogeneous ideal, then for $x\in$ lm(I), $f_{x}$ can be chosen
from $I[v]$ such that lm$(f_{x})=x$ . By this observation together with Lemma 3.1,
we have

Lemma 4.1. Let $\omega$ be a positive weight on $M(X)$ and I be a homogeneous ideal
$ofK[X]$ . Then, $I[v]$ is a finite dimensional $K$-space with base $\{f_{x}|x\in lm(I)[v]\},$

and $\dim_{K}I[v]=|$ lm$(I)[v]|$ . If $G$ is a Gr\"obner basis of $I$ , then $\dim_{K}I[v]=$

$|$ Red$(G)[v]|$
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From here in this section $R$ is a principal ideal domain, $K$ is its quotient
field, $p$ is a prime element of $R$ , and $\rho_{p}$ denotes the canonical surjection from $R$

to $R_{p}=R/(p)$ as well as the canonical surjection from $R[X]$ to $R_{p}[X]$ . For an
ideal $I$ of $K[X],$ $I_{p}$ denotes the ideal $\rho_{p}(I\cap R[X])$ of $R_{p}[X]$ . If $J$ is an ideal of
$R[X]$ , then $J_{p}=\rho_{p}(J)$ .
Lemma 4.2. Let $\omega$ be a positive weight on $M(X)$ and let I be a $homo9eneous$
ideal of $K[X]$ . Then, for any $v\in \mathbb{R},$

$\dim_{K}I[v]\geq\dim_{R_{p}}I_{p}[v].$

Lemma 4.3. Let $\omega$ be a positive weight on $M(X)$ , and let I be a homogeneous
ideal of $K[X]$ . Let $G$ be $a$ (homogeneous) Gr\"obner basis of a homogeneous ideal
L. Let $\overline{G}$ be $a$ (homogeneous) Gr\"obner basis of a homogeneous ideal $\overline{J}$ of $R_{p}[X].$

If (i) $I\subset L,$ $(ii)$ lm$(G)=$ lm$(\overline{G})$ , and (iii) $\overline{J}\subset I_{p}(=\rho_{p}(I\cap R[X])$, then $I=L$
and $G$ is a Gr\"obner basis of $I.$

Corollary 4.4. Let $\omega$ be a positive weight on $M(X)$ , and let $H$ be a homo-
gen eous subset of $R[X]$ . Let $I$ (resp. $J$) be the ideal of $K[X]$ (resp. $R[X]$)
genemted by H. Let $G$ be $a$ (homogeneous) Gr\"obner basis of a homogeneous
ideal L. Let $\overline{G}$ be $a$ (homogeneous) Gr\"obner basis of a homogeneous ideal $\sqrt{}p$ of
$R_{p}[X]$ . If (i) $I\subset L$ , and (ii) $1m(G)=1m(\overline{G})$ , then $I=L$ and $G$ is a Gr\"obner
basis of $I.$

5 Homogenization and ahomogenization
Let $\omega$ be a fixed non-negative integral weight on $M(X)$ with $\omega(X_{i})=v_{i}$ for
$i=1,$ $\ldots,$

$r$ . For $f\in K[X]$ , let $m_{\omega}(f)$ denote the maximum of the weights of
the monomials appearing in $f.$

We introduce a new indeterminate $X_{0}$ and the weight $\omega_{0}$ on $M(X_{0}, X)=$

$M([X_{0}, X_{1}, \ldots, X_{r}]$ defined $by \omega_{0}(X_{0})=1$ , and $\omega_{0}(X_{i})=v_{i}$ for $i=1,$ $\ldots,$
$r.$

Let $K[X_{0}, X]=K[X_{0}, X_{1}, \ldots, X_{r}].$

For $f\in K[X]$ , define $hf\in K[X_{0}, X]$ by

$hf=X_{0}^{t}f(X_{1}X_{0}^{-v_{1}}, \ldots, X_{r}X_{0}^{-v_{r}})$ ,

where $t=m_{\omega}(f)$ . Then $hf$ is $\geq 0$-homogeneous. On the other hand for $f\in$

$K[X_{0}, X]$ , we define $af\in K[X]$ by

$af=f[1, X].$

For a subset $H$ of $K[X]$ $(resp. K[X_{0}, X])$ , set

$hH=\{^{h}f|f\in H\}$ $($ resp. $aH=\{^{a}f|f\in H\})$ .

For an ideal $I$ of $K[X],\overline{h}I$ denotes the ideal of $K[X_{0},X]$ generated by $hI.$

Because the mapping sending $f\in K[X_{0}, X]$ to $af\in K[X]$ is a homomorphism,
$aI$ is an ideal of $K[X]$ for an ideal $I$ of $K[X_{0}, X].$
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An order $\geq 0$ on $M(X_{0},X)$ is defined as follows. For $x,y\in M(X_{0},X)$

$x\geq 0y\Leftrightarrow\omega_{0}(x)>\omega_{0}(y)$ or $(\omega_{0}(x)=\omega_{0}(y)$ and $a_{X}\geq ay)$ .

If $\geq$ is positive (non-negative, well-founded, compatible) on $M(X)$ , so is it on
$M(X_{0}, X)$ . If $\omega$ is monotone, $\geq 0$ is an extension of $\geq$ , that is, $\geq_{0|M(X)}=\geq.$

Lemma 5.1. (1) $(f\cdot g)=h.$
$h$ for $f,$ $g\in K[X].$

(2) $f=f$ for any $f\in K[X].$

(3) $H=H$ and $a\overline{h}I=I$ for a subset $H$ of $K[X]$ and an ideal I of $K[X],$

(4) For any homogeneous $f\in K[X_{0}, X],$ $X_{0}^{t.ha}f=f$ for some $t\in \mathbb{N}$

(5) For any $f\in K[X]$ lm$(^{h}f)=X_{0}^{t}$ .lm$(f)$ for some $t\in \mathbb{N}.$ If $\omega$ is monotone,
$1m(^{h}f)=1m(f)$ .

(6) For any homogeneous $f\in K[X_{0}, X],$ $X_{0}^{t}$ .lm$(^{a}f)=$ lm$(f)$ for some $t\in \mathbb{N}.$

Lemma 5.2. (1) If $G$ is a homogeneous Gr\"obner basis of a homogeneous ideal
I of $K[X_{0}, X]$ , then $aG$ is a Gr\"obner basis of the idea$l^{a}I$ of $K[X].$

(2) Suppose that $\omega$ is monotone. If $G$ is a Gr\"obner basis of an ideal I of
$K[X]$ , then $hG$ is a homogeneous Gr\"obner basis of $hI.$

Hereafter in this section, $K$ is the quotient field of a principal ideal domain
$R$ and $p$ is a prime element of $R.$

Lemma 5.3. Let $\omega$ be a $\omega$mpatible positive integml weight on $M(X)$ . Let $H$

be a subset of $R[X]$ , and let $I$ (resp. $J$) be the ideal of $K[X]$ (resp. $R[X]$ )
generated by H. Let $G$ be a Gr\"obner basis of an ideal $L$ of $K[X]$ . Let $\overline{G}$ be
a Gr\"obner basis of a homogeneous ideal $\sqrt{}p$ of $R_{p}[X]$ . If (i) $I\subset L$ , and (ii)
$]m(G)=kn(\overline{G})$ , and (iii) $h(f_{p})\in(^{\overline{h}}I)_{p}$ for all $f\in J$ , then $I=L$ and $G$ is a
Gr\"obner basis of $I.$

If the condition (iii) in the above Lemma is satisfied, $p$ is called lucky, but
there is no way to find $p$ is lucky effectively. Next we work in the homogenized
side.

Proposition 5.4. Let $H$ be a subset of $K[X]$ and let I be an ideal of $K[X]$

generated by H. Let $I’$ (resp. $J’$) be the ideal of $K[X_{0}.X]$ $(resp. R[X_{0}, X])$

generated by hH. Let $\overline{G}$ be a homogeneous Gr\"obner basis of $J_{p}’$ and let $G$ be
a homogeneous Gr\"obner basis of a homogeneous ideal L’.of $K[X_{0}, X]$ . If $I’\subset$

$L’$ , and ]$m(G)=$ lm$(\overline{G})$ , then $aG$ is a Gr\"obner basis of I. Moreover, if $\omega$ is
monotone, $haG$ is a Gr\"obner basis of $\overline{h}I$

6 Algorithms and examples
Let $p$ be a odd prime and let $>$ be a term order on $M(X)$ . For $f=a_{n}X^{n}+$

$a_{n-1}X^{n-1}+\cdots a_{1}X+a_{0}\in \mathbb{Z}[X]$ , let $||f||$ be the maximal norm of $f$ , that is,

$||f||= \max\{|a_{i}||i=0, \ldots,n\}.$
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For $f\in \mathbb{Z}_{p}[X]$ , let $g=$ re$(f)$ is a polynomial in $\mathbb{Z}[X]$ with minimal $||g||Satis\mathfrak{h}ring$

$g_{p}=c\cdot f$ with $c\in \mathbb{Z}_{p}$ . For a set $G$ of polynomials in $\mathbb{Z}_{p}[X]$ , set $re(G)=$
$\{re(f)|f\in G\}$ . Let $H$ be a finite subset of $\mathbb{Z}[X].$

(i) Compute the reduced Gr\"obner basis $\overline{G}$ of $hH_{p}$ in $\mathbb{Z}_{p}[X_{0}, X]$ with respect
to $>0.$

(ii) Compute $G_{0}=$ re $(\overline{G})$ .
(iii) Check if every $S$-polynomial reduced to $0$ modulo $G_{0}$ in $\mathbb{Z}[X_{0}, X].$

(iv) Check if every $h\in hH$ is reduced to $0$ modulo $G_{0}$ in $\mathbb{Z}[X_{0}, X].$

(v) Let $G=aG_{0}.$

If $G_{0}$ obtained in (ii) passes the tests (iii) and (iv), then $G$ is a correct
Gr\"obner basis of $H.$

Example 6.1. Let
$H=\{X^{2}+2Y, XY+1\}.$

We consider the pure lexicographic order with $X>Y$ . We have an $S$-polynomial
$X-2Y^{2}$ , and reducing the system $H\cup\{X-2Y^{2}\}$ we have a Gr\"obner basis

$G=\{2Y^{3}+1, X-Y^{2}\}$

of $I(H)$ . On the other hand, homogenizing $H$ , we have

$hH=\{X^{2}+2YZ, XY+Z^{2}\}.$

Let $p=5$ , Completing $hH_{p}$ in $\mathbb{Z}_{p}[X, Y, Z]$ , we have a Gr\"obner basis

$\overline{G}=\{X^{2}+2YZ, XY+Z^{2}, XZ^{2}+3Y^{2}Z, 2Y^{3}Z+Z^{4}\}$

of $I(^{h}H_{p})$ . From this we reconstruct a Gr\"obner basis

$G’=\{X^{2}+2YZ, XY+Z^{2}, XZ^{2}-2Y^{2}Z, 2Y^{3}Z+Z^{4}\}$

of $I(^{h}H)$ on $\mathbb{Z}[X, Y, Z]$ . Then, ahomogenizing it we have a Gr\"obner basis

$aG’=\{X^{2}+2Y, XY+1, X-2Y^{2},2Y^{3}+1\}.$

of $I(H)$ . Then, reducing it we have $\{2Y^{3}+1, X-Y^{2}\}=G.$

As seen in the above example $aG’$ may not be reduced, though $G’$ is reduced.
Sometimes, $G’$ can be very big compared with $G$ . In these cases, our methods
are not practical.

Example 6.2. Let

$H=\{3X^{2}+5X^{3}-3Y^{2}, -4-4X^{2}+3XY+Y^{3},3+XY+5X^{2}Y+4Y^{2}-3XY^{2}\}.$

The reduced Gr\"obner basis of $H$ is {1}. However, the reduced Gr\"obner basis of
$hH$ is very big with a polynomial which involves an integer with 1120 digits in
decimal expression in its coefficients.
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