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Abstract

We consider the two kinds of maps between numerical semigroups. One sends a
numerical semigroup to the one whose genus is decreased by 1. The other is the
quotient map by two. We investigate Weierstrass (reps. non-Weierstrass) numerical
semigroups whose images by the two maps are Weierstrass(reps. non-Weierstrass).

1 Introduction

Let Ny be the additive monoid of non-negative integers. A submonoid H of Nj is
called a numerical semigroup if the complement No\H is finite. The cardinality of
No\H is called the genus of H, denoted by g(H). For a numerical semigroup H we
set
c(H) =min{c € Ny | c+ Ny & H},

which is called the conductor of H. We note that ¢(H) — 1 ¢ H. We set p(H) =
H U {c(H) — 1}, which is a numerical semigroup of genus g(H) — 1. The numerical
semigroup p(H) is called the parent of H. For a numerical semigroup H we set

dy(H) = {g

which is a numerical semigroup. We call d; the fractional map by two. We set

n=n(H) =min{h € H | h is odd}.

he H is even},

Then we get
H) n-1 L
g<2>~ 1 S 9(d(H) = g(H) - —

(see [3]).

Lemma 1.1 Let H be a numerical semigroup with odd ¢(H). Then we have ds o
p(H) = pody(H). Namely we have a commutative diagram

H +% p(H)
"o o
do(H) 5 p(da(H)) = da(p(H))

1This paper is an extended abstract and the details will appear elsewhere.
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Example 1.1 Let H = (6,7,8,9,11). Then ¢(H) = 11, which is odd. In fact, we
have
(6,7,8,9,11) & (6,7,8,9,10,11)
\Ldz O ‘Ldz
(3,40 S (3,45)

Lemma 1.2 . Let H be a numerical semigroup with even c¢(H). Then we have
dy o p(H) = dy(H). Namely we have a commutative diagram

H & p(H)

da
N
do(H)

Example 1.2 Let H = (6,7,8). Then ¢(H) = 18, which is even. In fact, we have
6,7,8) A (6,7,8,17)
2

2/
(3,4)

Y

2 Weierstrass Diagrams

A curve means a complete non-singular irreducible algebraic curve over an alge-
braically closed field k of characteritic 0. For a pointed curve (C, P) we set

H(P) = {n € Ny | 3f € k(C) such that (f)e =nP}

where k(C) is the field of rational functions on C. A numerical semigroup H is said
to be Weierstrass if there exists a pointed curve (C, P) with H(P) = H. A diagram

H & p(H)
1%
d(H)
is said to be Weierstrass if H, do(H) and p(H) are Weierstrass.

Example 2.1 If a numerical semigroup H is of genus < 8, then the diagram

H % p(H)
1%
do(H)

is Weierstrass, because H, dy(H) and p(H) are Weierstrass (see [2] and [7]).
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Example 2.2 Let g be odd. The diagram

(g+1—294+1) B (g—29-1)
2

T Z
(o g)

is Weierstrass, because the above three numerical semigroups are the Weierstrass
semigroups of ordinary points.

Example 2.3 Let g be even. The diagram

(g+1-29+1) B (gr29-1)
erQ erz
(Fg+1) B (Eg-1)
is Weierstrass, because the above four numerical semigroups are the Weierstrass
semigroups of ordinary points.

3 Double Covering Diagrams

A numerical semigroup H is said to be of double covering type if there exists a double
covering 7 : C —» C’ with a ramification point P such that H(P) = H. In this case
we have do(H(P)) = H(w(P)). A diagram

H & p(H)
4
do(H)

is said to be of double covering type if H, dy(H) and p(H) are of double covering
type.

Example 3.1 Let H' be a numerical semigroup of double covering type and n an
odd integer 2 4g(H') + 1. The diagram

H=2H+nN, ¥ p(H)
I V.
do(H) = H'

is of double covering type (see [4] and [8]).

4 Buchweitz Diagrams

Let H be a numerical semigroup. For any m 2 2 we set

Ln(H)={l 40"+ +£™ | D € No\H, all i }.



The numerical semigroup H is said to be Buchweitz if for some m we have
§Lm(H) > (2m —1)(g(H) - 1).
In this case, H is non-Weierstrass (see [1]). A diagram

H & pH)
1%
do(H)

is said to be Buchweitz if the above three numerical semigroups H, do(H) and p(H)
are Buchwietz, It is not easy to construct Buchweitz diagrams. So, we prepare some
terminologies and lemmas. A numerical semigroup H is called an m-semigroup if
m = min{h € H | h > 0}. An m-semigroup H is said to be primitive if we have
v < 2m for any v & H.

Example 4.1 A subset H of Ng with No\H = {1,2,...,m—1}U{m+ 1} isa
primitive m-semigroup.

Remark 4.1 We have a bijective correspondence between the set of subsets S of the
set Smy1 = {m~+1,m+2,...,2m—1} and the set of primitive m-semigroups sending
S to Hg with

No\Hs = {1,2,...,m—1}US.

Lemma 4.2 Let H be a primitive n-semigroup with g(H) = n+ 5. Let H be a
primitive 2n-semigroup with

N\H ={1,...,2n = 1} U {265,201, ..., 26y} U {4n — 3,4n — 1}
where NoO\H = {1,...,n — 1,6, < ... < {ym)}. Assume that §L,(H) = 3g(H) — 2,
Then we have do(H) = H, §L2(H) 2 39(H) — 2 and §Ls(p(H)) 2 39(p(H)) — 2 (see
[5]).

Example 4.2 Lett 25 and n 2 4t + 1. Let H be a primitive n-semigroup with
No\H ={1,...,n—1}U
2n—2t—1,2n—2t—142-1,....20 -2t —1+2-(t —2)}U {20 — 2,2 — 1}.
Then H satisfies §Lo(H) = 3g(H) — 2. For example, if we set t = 5 and n = 21, we

have {1,...,20} U {31, 33, 35,37,40,41}.

Example 4.3 A diagram

H & p(H)
2

e
do(H) = H

=)

is Buchweitz where H is one of the above examples and H is as in the above Lemma.
In this case H, H = dy(H) and p(H) are Buchweitz.
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5 Quasi-Stohr-Torres Diagrams

For a numerical semigroup H we have ¢(H) < 2g(H). The numerical semigroup H
is said to be symmetric if ¢(H) = 29(H).

Remark 5.1 For a numerical semigroup H and g 2 4g(H) we set
S(H,g)=2HU{2g—-1-2t|te Z\H}.
Then S(H,g) is a symmetric numerical semigroup of genus g (see [10]).

Theorem 5.2 (Oliveira [9]) Every symmetric numerical semigroup is non-Buchweitz.

A numerical semigroup H is said to be quasi-Stéhr-Torres if it is non-Weierstrass
and non-Buchweitz and do(H) is non-Weierstrass.

Theorem 5.3 (Stohr-Torres [10]) Let H be a non- Weierstrass numerical semigroup,
for exzample a Buchweitz numerical semigroup. Assume that g 2 6g(H) + 4. Then
the symmetric numerical semigroup S(H, g) is quasi-Stohr-Torres.

Theorem 5.4 Let H be a non-Buchweitz numerical semigroup of genus g with
No\H = {1 < ... < {;}. Assume that £, + €45 > 2¢4_1. Then p(H) is non-
Buchweitz (see [5]).

Lemma 5.5 Let H be a symmetric numerical semigroup of genus g. We set ny =
min{h € H | h > 0} and ny = min{h € H | h > n;}. Assume that ny < 2n;. Then
we get £y + £g_o > £,y (see [5]).
A diagram ,
H & p(H)
~Ld2
d2(H)
is said to be quasi-Stohr-Torres if H, do(H) and p(H) are quasi-Stohr-Torres.

Example 5.1 Let H be a Buchweitz n-semigroup with h € H satisfying n < h <
2n. Let g 2 6g(H) +4 and § = 6g + 5. Then we have a quasi-Stohr-Torres diagram

S(S(H,9),8) > p(S(S(H,g),d)).
7
S(H,g)
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6 Mixed Diagrams

A diagram consisting of numerical semigroups

H A p(H)
1
dy(H)

is said to be mized if H, do(H) and p(H) are not the same type.
Example 6.1 A diagram
B = (13 — 18,20,22,23)

1%
W = (7~ 11,13)

(13 — 18,20, 22, 23, 25)

N& Is

is mixed, because B is Buchweitz and W is Weierstrass.
Example 6.2 A diagram

H=(812,8(+2,80+6,nn+4) > H+(n+8—2)N
I Y
W = (4,6,4¢ + 1,4¢ + 3)
with £ 2 2 and odd n 2 16¢ + 19 is mixed, because H is non-Weierstrass, non-
Buchweitz and non-quasi-Stohr-Torres (see [4]), and W is Weierstrass. Moreover,
p(H) = H + (n+ 8¢ — 2)Ny is of double covering type (see [6)]).
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