goooboooobgon
0 1809 0 201200 140-144

140

Reduction of Squares in Suffix Arrays

Peter Leupold*
Research Group in Mathematical Linguistics
Rovira i Virgili University, Tarragona, Spain
eMail: Peter.Leupold@ueb.de

0 Reducing Squares

A mutation which occurs frequently in DNA
strands is the duplication of a factor inside a
strand [5]. The result is called a tandem re-
peat, and the detection of these repeats has re-
ceived a great deal of attention in bioinformat-
ics [1, 9]. The reconstruction of possible dupli-
cation histories of a gene is used for the con-
struction of a phylogenetic network in the in-
vestigation of the evolution of a species [10].
Thus duplicating factors and deleting halves
of squares is an interesting algorithmic prob-
lem with some motivation from bioinformat-
ics, although squares do not always need to
be exact there. A very similar reduction was
also introduced in the context of data compres-
sion by Ilie et al. [2, 3]. They, however con-
serve information about each reduction step in
the resulting string such that the operation can
also be undone again. In this way the original
word can always be reconstructed, which is es-
sential for data compression.

Our main aim here is the development of ef-
ficient methods for the repeated reduction of
squares. At the heart of this is the detection

*Peter Leupold’s work was done while he was funded
as a Beatriu de Pin6s researcher by the Departament
d'Universitats, Recerca i Societat de la Informacié de
la Generalitat de Catalunya. His stay in Japan was
kindly supported by Prof. Masami Ito from Kyoto
Sangyo University

of squares, or, as we will see, the detection
of runs. Several methods for this are known
[6]. Usually they use suffix arrays or related
data structures. What we want to avoid here is
having to construct these for every string from
scratch. Since the deletion of half a square is a
very local change, it might be more efficient to
update the old suffix array.

In recent work Salson et al. [8, 7] have inves-
tigated the updating of suffix arrays and re-
lated data structures. They considered inser-
tions, deletions and changes of factors. Basi-
cally, the reduction of a square is just a dele-
tion. However, it has the special property that
another copy of the deleted factor remains just
next to the deletion site. Thus the suffixes
and LCP values of the new string’s suffix ar-
ray are more related to the old one’s than usu-
ally. Here our aim is to characterize this re-
lation and use it for an efficient update of the
suffix array.

1 Repetitions and Duplication

We introduce a few formalisms to describe the
reductions of squares in strings. We call a
string w square-free iff it does not contain any
non-empty factor of the form u2, where ex-
ponents of strings refer to iterated catenation,
and thus ' is the i-fold catenation of the string
u with itself. A string w has a positive integer

k as a period, if for all i, j such that i = j(modk)
we have w[i] = w(j], if both w[i] and w[j] are
defined.

We formalize the duplication relation as a
string-rewriting system defined as
uQu :& Jz[z € Y Au = uyzup Av = ugzzuy).
Notice how the symbol © nicely visualizes the
operation going from one origin to two equal
halves. ©* is the reflexive and transitive clo-
sure of the relation ©. The duplication closure of
a string w is then w" := {u : wQ*u}. Because
our main topic is the reduction of squares, we
will mainly use the inverse of O and will de-
note itby > := Q71 The set IRR(>) of
the strings irreducible under > is exactly the
set of all square-free strings. With this we have
all the prerequisites for defining the central no-
tion of this work, the duplication root.

Definition 1. The duplication root of a non-
empty word w is

Vw:=IRR(>)N{u:w>" u}.

As usual, this notion is extended in the canon-
ical way from words to languages such that

VL= Yw.
wel

If we do not only want the irreducible
strings, then we use the notation
w” = {u:w>"*u}.

When talking about squares, we will say
that a square u? is of length |u|; in this case
u will be called the base of this square.

Concerning the size of duplication roots we
know that they can be exponentially large in
terms of a string’s length.

Theorem 2. [4] The number duproots(n) of du-
plication roots of the string of length n with the
maximum number of such roots satisfies

3%1101"5 < duproots(w) < 2" foralln > 0.

2 Runs, not Squares

Before we start to reduce squares, let us take
a look at the effect that this operation has in

141

periodic factors. In the following example, we
see that reduction of either of the three squares
in the periodic factor bcbcbe leads to the same
result:

abcbcbca abcbcba abcbcbea

Y i Ve

abcbca

Thus it would not be efficient to do all the
three reductions. A maximal periodic factor
like this is called a run. So rather than looking
for squares, we should actually look for runs
and reduce one square within each of them.

As stated above, the most common algo-
rithms for detecting runs are based on suffix
arrays and related data structures [6]. Using
these, we would employ a method along the
lines of Algorithm 1. Then this method would

Algorithm 1: Constructing all words
reachable from w by reduction of
squares.

Input: string: w;
Data: stringlist: S (contains w);
while (S nonempty) do
x := POP(S);
Construct the suffix array of x;
if (there are runs in x) then
foreach runr do
Reduce r;
Add new string to S;
end
end
else output x;
end

W 00 NS G R WN e

[
= o

be applied to all the resulting strings which
are not square-free. Our aim is to improve
line 3 by modifying the antecedent suffix ar-
ray instead of constructing the new one from
scratch. For this we first look at what a suffix
array is.

142

SA LCP SA LCP
7 1 a 7—-3=4 1 a
0 0 abcbbcba 0 0 (new) abcba
6 1 ba 6—-3=3 1 ba
3 1 bbcba = —
5 3 bcba 5-3=2 1 bcba
1 0 bcbbeba —
4 2 cba 4-3=1 cba
2 cbbcba —

Figure 1: Modification of the suffix array by deletion of beb in abcbbeba.

3 Suffix Arrays

In string algorithms suffix arrays are a very
common data structure, because they allow
fast search for patterns. A suffix array of a
string w consists of the two tables depicted on
the left-hand side of Figure 1: SA is the lexico-
graphically ordered list of all the suffixes of w;
typically their starting position is saved rather
than the entire suffix. LCP is the list of the
longest common prefixes between these suf-
fixes. Here we only provide the values for di-
rect neighbors. Depending on the application,
they may be saved for all pairs.

On the right-hand side of Figure 1 we see
how the deletion of beb changes the suffix ar-
ray. Obviously there is no change in the rel-
ative order nor in the LCP values for all the
suffixes that start to the right of the deletion
site; here it is more convenient to consider the
first half of the square as the deleted one, be-
cause then we see immediately that also for
the positions in the remaining right half noth-
ing changes.

The only new suffix is abcba. It starts with
the same letter as abcbbeba, the one it comes
from; also the following bcb is the same as be-
fore, because the deleted factor is replaced by
another copy of itself — only after that there
can be change. Thus the new sulffix will not be
very far from the old one in lexicographic or-
der. Formulating these observations in a more

general and exact way will be the objective of
the next section.

4 Updating the Suffix Array

The problem we treat here is the following:
Given a string w with a square of length n
starting at position k and given the suffix ar-
ray of w, compute the suffix array of w(0...k —
Nwk+n...lw—1]. Sowk—1...k+n—1]
is deleted, not wlk +n...k+2n—1].

First we formulate the obvious fact that the
positions to the right of a deleted square re-
main in the same order.

Lemma 3. The lexicographic order of the suffixes
of a string w and their longest common prefixes
are the same as for the corresponding suffixes in a
longer string uw.

For updating a suffix array, this means that
can simply copy the values for these. The posi-
tions to the left of the deleted site may change.
We formulate the conditions for this in terms
of the old suffix array values.

Lemma 4. Let the LCP of two strings z and uvw
be k and let z < uvw. Then z and uvvw have the
same LCP and z < uvvw unless LCP(z, uvw) >
|uv|; in the latter case also LCP(z, uvow) > |uv).

Proof. 1f LCP(z, uvw) < |uv| then the first po-
sition from the left where z and uvw differ is

within uv. As uv is also a prefix of uvvw, z and
uvvw have their first difference in the same po-
sition. Thus LCP and the lexicographic order
remain the same.

If LCP(z,uvw) > |uv|, then uv is a
common prefix of z and uvvw. Thus also
LCP(z,uvvw) > |uv|. O

This characterizes the conditions under
which actually a change in the suffix array has
to be done. Salson et al. have shown effi-
cient ways for reordering a suffix array after
a deletion [8]. So we do not enter into details
about this here. Algorithm 2 implements the
updating of a suffix array after the deletion of
a square avoiding unnecessary work accord-
ing to the observations of this section.

Algorithm 2: Computing the new
suffix array.

Input: string: w, SA, LCP;

length and pos of square: n/k;
1i:=k-1;
while (LCP[i] > n+k—i AND
i>0)do
3 compute new SA of

wli...k—=1wk+n...|lw| —-1];

4 compute new LCP[i];
5 i=i—1;
6 end

N

The test in line 2 checks exactly the condi-
tion of Lemma 4. Note that if LCP(u,v) < k
then LCP(wu, wv) < k + |w|; thus as soon as
the test fails once, we do not need to continue
testing for longer suffixes. Rather we can stop
the updating immediately, because the follow-
ing LCP values will all fail the test.

The runtime of this updating depends very
much on how often this test is successful.
This, in turn, depends mainly on two fac-
tors: the length of the square that is reduced
and the LCP values. The latter are higher for
longer strings, because the probability of a fac-
tor occurring twice increases with the string’s

143

length; on the other hand, a larger alphabet de-
creases this probability. Both factors are not
very much under our influence.

On the other hand, we can possibly do
something about the length of the squares that
are reduced. Squares of lengths one can be re-
duced first, if we do not want the entire reduc-
tion graph, but only the duplication root. For
detecting and reducing them, it is faster to just
run a window of size two over the string in
low linear time without building the suffix ar-
ray. After this, the value n + k — i from line
2 of the algorithm would always be at least
two. Squares of length two can already over-
lap with others in a way that reduction of one
square makes reduction of the other impossi-
ble like in the string abcbabcebe; here reduction
of the final bebe leads to a square-free string,
and the other root abc cannot be reached any-
more.

Comparing theoretical worst case runtime,
we have not achieved anything. There are al-
gorithms for constructing suffix arrays in lin-
ear time. Salson et al.’s dynamic suffix arrays
allow deletion in linear time, but in practice
have proven much faster than the construction
of a new suffix array. Similarly, our method
will require linear time in the worst case. But
as we have argued, the test in line 2 will often
fail even in the first iteration. Then the com-
putation consists only in removing the entries
for the deleted positions. How much time this
saves in practice can only be shown by experi-
ments on large texts.

5 Perspectives

We have only looked at how to update a suf-
fix array efficiently. But for actually comput-
ing a duplication history or a duplication root
several more problems must be handled in an
efficient way: as one word can produce many
descendants, many suffix arrays must be de-
rived from the same one and be stored; can
this be done better than just storing them all

144

in parallel? A typical duplication history con- tended suffix arrays. |. Discrete Algorithms
tains many paths to a given word; how do we 8,2 (2010), 241-257.

avoid computing a word more than once?
puting [9] SokoL, D., BENSON, G., AND TOJEIRA,

J. Tandem repeats over the edit distance.
References Bioinformatics 23, 2 (2007), 30-35.

[1] BENSON, D. A. Tandem Repeat Finder: [10] WAPINSKI, 1., PFEFFER, A., FRIEDMAN,

A Program to Analyze DNA Sequences. N., AND REGEV, A. Natural History and

Nucleic Acids Research 27, 2 (1999), 573 Evolutionary Principles of Gene Duplica-
580. tion in Fungi. Nature 449 (2007), 54-61.

[2] ILIE, L., YU, S., AND ZHANG, K. Repeti-
tion Complexity of Words. In: COCOON
(2002), O. H. Ibarra and L. Zhang, Eds.,
vol. 2387 of Lecture Notes in Computer Sci-
ence, Springer, pp. 320-329.

[3] ILIE, L., YU, S., AND ZHANG, K. Word
Complexity And Repetitions In Words.
Int.]. Found. Comput. Sci. 15, 1 (2004), 41-
55.

[4] LEurOLD, P. Reducing Repetitions.
In: Prague Stringology Conference (Prague,
2009), J. Holub and J. Zdéarek, Eds.,
Prague Stringology Club Publications,
pp. 225-236.

[5] PENNISI, E. MOLECULAR EVOLU-
TION: Genome Duplications: The Stuff of
Evolution? Science 294, 5551 (2001), 2458-
2460.

[6] PuGLisi, S. J., SMYTH, W. E, AND
YUSUFU, M. Fast, Practical Algorithms
for Computing All the Repeats in a
String. Mathematics in Computer Science 3,
4 (2010), 373-389.

[7] SALsON, M., LECROQ, T., LEONARD,
M., AND MOUCHARD, L. A four-stage al-
gorithm for updating a Burrows-Wheeler
transform. Theor. Comput. Sci. 410, 43
(2009), 43504359.

[8] SALSON, M., LECROQ, T., LEONARD,
M., AND MOUCHARD, L. Dynamic ex-

