<table>
<thead>
<tr>
<th>Title</th>
<th>Composite residuosity and its application to cryptography (Algebraic Systems and Theoretical Computer Science)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Author(s)</td>
<td>Adachi, Tomoko</td>
</tr>
<tr>
<td>Citation</td>
<td>数理解析研究所講究録 2012年, 1809: 73-78</td>
</tr>
<tr>
<td>Issue Date</td>
<td>2012-09</td>
</tr>
<tr>
<td>URL</td>
<td>http://hdl.handle.net/2433/194472</td>
</tr>
<tr>
<td>Type</td>
<td>Departmental Bulletin Paper</td>
</tr>
<tr>
<td>Textversion</td>
<td>publisher</td>
</tr>
</tbody>
</table>
Composite residuosity and its application to cryptography

Tomoko Adachi
Department of Information Sciences, Toho University
2-2-1 Miyama, Funabashi, Chiba, 274-8510, Japan
E-mail: adachi@is.sci.toho-u.ac.jp

Abstract It is well-known that a quadratic residue is adopted to public key cryptosystem, for example, we show Rabin cryptosystem. In this paper, we describe a composite residue and its application to cryptography.

1. Introduction
At first, we review a quadratic residue and its application to cryptography. Suppose p is an odd prime and a is an integer. a is defined to be a quadratic residue modulo p if $a \not\equiv 0 \pmod{p}$ and the congruence $y^2 \equiv a \pmod{p}$ has a solution y where nonnegative y is less than n. It is well-known that a quadratic residue is adopted to public key cryptosystems. For example, we show Rabin Cryptosystem [5]. Let $n = pq$, where p and q are primes, and $p, q \equiv 3 \pmod{4}$. The value n is the public key, while p and q are the private key. For a plaintext $m < n$, we define the ciphertext $c = m^2 \pmod{n}$. Quadratic residue is adopted in a trapdoor mechanism of this public key cryptosystem. As well, the public key cryptosystem by Kurosawa et. al. [2] also utilized a quadratic residue. Moreover, the public key cryptosystem by Naccache and Stern [3] utilized a higher residue. Further, the public key cryptosystem by Paillier [4] utilized a composite residue. In this paper, we describe a composite residue and its application to cryptography.

2. Composite residue
In this section, we describe a definition of a composite residue. A composite residue, that is, an n-th residue is introduced by Benaloh [1].

We set $n = pq$ where p and q are large primes. In this case, we denote by $\phi(n) = (p - 1)(q - 1)$ the Euler’s function. And we denote by $\lambda(n) = \text{lcm}(p - 1, q - 1)$ the least common multiple of $p - 1$ and $q - 1$. We adopt λ instead of $\lambda(n)$ for visual comfort.
We denote by Z_{n^2} a residue class ring modulo n^2. And we denote by $Z_{n^2}^*$ its invertible element set. The set $Z_{n^2}^*$ is a multiplicative subgroup of Z_{n^2} of order $\phi(n^2) = n\phi(n) = pq(p - 1)(q - 1)$.

For any $w \in Z_{n^2}^*$, the following equations hold,

$$w^\lambda = 1 \pmod{n},$$

$$w^{n\lambda} = 1 \pmod{n^2}.$$

Definition 2.1. A number z is said to be an n-th residue modulo n^2 if there exists a number $y \in Z_{n^2}^*$, such that

$$z = y^n \pmod{n^2}.$$

For example, we suppose $p = 3$, $q = 5$, that is, $n = 15$. Then we obtain $\phi(n) = 8$, $\lambda = 4$, $\phi(n^2) = 120$, and that every element of the set $\{1, 26, 82, 107, 118, 143, 199, 224\}$ an n-th residue modulo n^2.

3. Property of Composite residue

In this section, we describe some properties of an n-th residue. We set $n = pq$ where p and q are large primes.

The set of n-th residues is a multiplicative subgroup of $Z_{n^2}^*$ of order $\phi(n)$. The problem of deciding n-th residuosity, that is, distinguishing n-th residues from non n-th residues will be denoted by CR[n]. As for prime residuosity, deciding n-th residuosity, is believed to be computationally hard.

Let g be some element of $Z_{n^2}^*$ and denote by ε_g the integer-valued function defined by

$$Z_n \times Z_n^* \rightarrow Z_{n^2}^* \quad (x, y) \mapsto g^x y^n \pmod{n^2}.$$

Here, depending on g, ε_g may feature an interesting property such as the following lemma.

Lemma 3.1. If the order of g is a nonzero multiple of n then ε_g is bijection.
We denote by $\mathcal{B}_\alpha \subset Z_{n^2}^*$ the set of elements of order $n\alpha$ and by \mathcal{B} their disjoint union for $\alpha = 1, \cdots, \lambda$.

In the case of $n = 15$, we obtain the following sets as \mathcal{B}_α and \mathcal{B}:

- $\mathcal{B}_1 = \{16, 31, 46, 61, 76, 91, 106, 121, 136, 151, 166, 181, 196, 211\}$,
- $\mathcal{B}_2 = \{14, 29, 44, 59, 74, 89, 104, 119, 134, 149, 164, 179, 194, 209\}$,
- $\mathcal{B}_4 = \{2, 4, 7, 8, 11, 13, 17, 19, 22, 23, 26, 28, 32, 34, 37, 38, 41, 43, 47,$
 $49, 52, 53, 56, 58, 62, 64, 67, 68, 71, 73, 77, 79, 82, 83, 86, 88, 92,$
 $94, 97, 98, 101, 103, 107, 109, 112, 113, 116, 118, 122, 124, 127,$
 $128, 131, 133, 137, 139, 142, 143, 146, 148, 152, 154, 157, 158,$
 $161, 163, 167, 169, 172, 173, 176, 178, 182, 184, 187, 188, 191,$
 $193, 197, 199, 202, 203, 206, 208, 212, 214, 217, 218, 221, 223\}$,

$\mathcal{B} = \mathcal{B}_1 \cup \mathcal{B}_2 \cup \mathcal{B}_4$.

Here, we verify that $\mathcal{B}_i \cap \mathcal{B}_j = \emptyset$ for $i, j (i \neq j)$.

Definition 3.2. Assume that $g \in \mathcal{B}$. For $w \in Z_{n^2}^*$, we call n-th residuosity class of w with respect to g the unique integer $x \in Z_n$ for which there exists $y \in Z_{n^*}$, such that

$$\varepsilon_g(x, y) = w.$$

Adopting Benaloh's notations [1], the class of w is denoted $[[w]]_g$. It is worthwhile noticing the following property.

Lemma 3.2. $[[w]]_g = 0$ if and only if w is an n-th residue modulo n^2. Furthermore,

$$\forall w_1, w_2 \in Z_{n^2}^* \quad [[w_1 w_2]]_g = [[w_1]]_g + [[w_2]]_g \pmod{n}$$

that is, the class function $w \mapsto [[w]]_g$ is a homomorphism from $(Z_{n^2}^*, \times)$ to $(Z_n, +)$ for any $g \in \mathcal{B}$.

By Lemma 3.2, it can easily be shown that, for any $w \in Z_{n^2}^*$ and $g_1, g_2 \in \mathcal{B}$, we have

$$[[w]]_{g_1} = [[w]]_{g_2} [[g_2]]_{g_1} \pmod{n}, \quad (3.1)$$

which yields $[[g_1]]_{g_2} = [[g_2]]_{g_1}^{-1} \pmod{n}$ and thus $[[g_2]]_{g_1}$ is invertible modulo n.

The set

$$S_n = \{u < n^2 \mid u = 1 \pmod{n}\}$$

is a multiplicative subgroup of integers modulo n^2 over which the function L such that

$$\forall u \in S_n \quad L(u) = \frac{u - 1}{n}$$
Lemma 3.3. For any \(w \in \mathbb{Z}_{n^2}^* \), there holds as follows,
\[
L(w^\lambda \pmod{n^2}) = \lambda[[w]]_{1+n} \pmod{n}.
\]

By Lemma 3.3, for any \(g \in B \) and \(w \in \mathbb{Z}_{n^2}^* \), we can compute
\[
\frac{L(w^\lambda \pmod{n^2})}{L(g^\lambda \pmod{n^2})} = \frac{\lambda[[w]]_{1+n}}{\lambda[[g]]_{1+n}} = \frac{[[w]]_{1+n}}{[[g]]_{1+n}} \pmod{n}.
\]

By virtue of Equation 3.1, for any \(g \in B \) and \(w \in \mathbb{Z}_{n^2}^* \), we can compute
\[
\frac{[[w]]_{1+n}}{[[g]]_{1+n}} = [[w]]_g \pmod{n}.
\]
Therefore, for any \(g \in B \) and \(w \in \mathbb{Z}_{n^2}^* \), we can compute
\[
\frac{L(w^\lambda \pmod{n^2})}{L(g^\lambda \pmod{n^2})} = [[w]]_g \pmod{n}. \tag{3.2}
\]

4. Application to cryptography

Now, we describe the public key cryptosystem based on the \(n \)-th residuosity class problem.

Set \(n = pq \) and randomly select a base \(g \in B \). We review that \(\epsilon_g \) be the function defined by
\[
\mathbb{Z}_n \times \mathbb{Z}_n^* \rightarrow \mathbb{Z}_{n^2}^*
\]
\[
(x, y) \mapsto \epsilon_g(x, y) = g^x y^n \pmod{n^2}. \tag{4.1}
\]

For the plaintext \(x \), we employ this function \(\epsilon_g \) as an encryption function.

Moreover, we review that we define the function \(L \) as follows:
\[
S_n = \{ u < n^2 \mid u = 1 \pmod{n} \} \rightarrow \mathbb{Z}_n
\]
\[
u \mapsto L(u) = \frac{u-1}{n}. \tag{4.2}
\]

For the ciphertext \(c = \epsilon_g(x, y) \), we employ the rate of these two functions \(L(c^\lambda) \) and \(L(g^\lambda) \) as an decryption function.

Theorem 4.1. We set \(n = pq \) and \(\lambda = \text{lcm}(p-1, q-1) \). For any \(g \in B \), we obtain public-key cryptosystem as public keys \((n, g)\) and private keys \((p, q)\). For a plaintext \(m < n \), we select a random \(r < n \), and compute
the ciphertext \(c \) by Equation 4.3. For a ciphertext \(c < n^2 \), we compute the plaintext \(m \) by Equation 4.4.

\[
c = g^m r^n \pmod{n^2},
\]

\[
m = \frac{L(c^\lambda \pmod{n^2})}{L(g^\lambda \pmod{n^2})} \pmod{n}.
\]

For example, we suppose \(n = 15 \) and \(g = 14 \). Then, for a plaintext \(m = 3 \) and a random \(r = 4 \), we compute the ciphertext \(c = 206 \) by Equation 4.3. For a ciphertext \(c = 206 \), we compute the plaintext

\[
m = \frac{L(206^4 \pmod{n^2})}{L(14^4 \pmod{n^2})} = \frac{L(46)}{L(166)} \pmod{n}
\]

by Equation 4.4. Here, we compute

\[
L(46) = \frac{46-1}{15} = 3 \pmod{n}
\]

\[
L(166) = \frac{166-1}{15} = 11 \pmod{n}
\]

by Equation 4.2. Therefore, we can obtain

\[
m = \frac{L(46)}{L(166)} = \frac{3}{11} = 3 \pmod{n}
\]

For \(n = pq \), we obtain the public key cryptosystem based on the \(n \)-th residuosity class problem.

References

