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Abstract
The maximum of the shortest cycle length of Eulerian circuits of an Eulerian

graph is called the Eulerian recurrent length of the graph. Let $n$ be a positive odd
integer, and let ERL$(n)$ denote the Eulerian recurrent length of the complete graph
$K_{n}$ with $n$ vertices. Previously, the following conjecture has been proposed by the
author et al: For any odd integer $n\geqq 7$ , ERL$(n)<n-2$ holds. In this paper,
improvements of the algorithm to seek evidence for the conjecture are described.
With the algorithm improved, ERL(21) $<19$ has been proved. Furthermore, a new
conjecture on Eulerian recurrent lengths of complete graphs is proposed. The aim
of the new conjecture is to help solve the previous one.

KEYWORDS. Eulerian circuit, complete graph, shortest cycle length, computational
experiment.

1 Introduction
It is well known that finding an Eulerian circuit of a graph is a fundamental problem since
the dawn of graph theory. It is easy to determine whether a graph given has an Eulerian
circuit, that is, the graph is Eulerian, or not. Methods for finding an Eulerian circuit of
an Eulerian graph given is also known and easy. We call the length of a shortest subcycle
in the Eulerian circuit the shortest cycle length of the Eulerian circuit. We also define
the Eulerian recurrent length of a graph as the maximum of the shortest cycle length of
Eulerian circuits of the graph.

Finding the Eulerian recurrent length of graphs is useful to the following situation.
Assume that there is a set of samples and that it is necessary to test a number of pairs
of those samples with some inspection device. Furthermore, assume the following: there
is some cost to input a sample to the device; a sample is effected by the device, where,
the larger the effect is, the worse the accuracy of the test is, and the effects decrease as
time passes. We consider the whole test a graph. Each sample corresponds to a vertex,
and each pair of samples to test with the device corresponds to an edge. If cutting down
the cost takes precedence over everything else, and the graph is an Eulerian graph, then
the process of the whole test should make an Eulerian circuit. Furthermore, since it
is desirable for inaccuracy of the result to decrease as small as possible, the Eulerian
recurrent length of the graph should be found.

In this paper, we investigate the Eulerian recurrent length of complete graphs with
odd numbers of vertices. Previously, we proposed the following conjecture.
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Conjecture 1 The Eulerian recurrent length of a complete graph with $n$ vertices, $K_{n}$ , is
at most $n-3$ , where $n$ is a positive odd integer with $n\geqq 7.$

The conjecture has not been proved yet as far as we know. We, therefore, have verified the
conjecture by computational experiments. In current experiments, we have succeeded in
verifying that Conjecture 1 holds for $n=21$ . Furthermore, we propose a new conjecture
to approach the proof of Conjecture 1. In this paper, we describe the mechanisms of the
algorithm used in the computational experiments for verifying Conjecture 1 and the new
conjecture.

In the next section, we shall define several notions necessary for the arguments that
follow. In Section 3, we shall describe known results and conjectures on the Eulerian re-
current length of complete graphs. In Section 4, we shall describe the improved algorithm
to verify the conjectures made in our previous work, and present a new conjecture based
on the results of computational experiments with the improved algorithm. The aim of
the new conjecture is to help solve one of the previous conjectures. In the last section,
we provide a suggestion to further improve the computational experiments,

2 Definitions
The order and size of a graph are the number of vertices and edges of the graph, respec-
tively. $A$ walk is an alternating sequence of vertices and edges such that the end vertices
of each edge are the vertices next to the edge on the walk. $A$ trail is a walk such that all its
edges are distinct. Every graph that appears in this paper is a simple undirected graph.
We may, therefore, express a walk $W$ with only its vertices as $v_{0}arrow v_{1}arrow\cdotsarrow v_{m},$

where $v_{0}$ is the initial vertex and $v_{m}$ the terminal vertex. The walk $W$ is said to be a
$v_{0^{-}}v_{m}$ walk, or a walk from $v_{0}$ to $v_{m}$ . The length of a walk is the number of edges on
the walk, even if the walk is closed. If a walk is closed, then the walk is expressed as
$W=v_{0}arrow v_{1}arrow\cdotsarrow v_{m}arrow v_{0}.$ $A$ closed trail is said to be a circuit. $A$ path is a walk
such that all its vertices are distinct except that the initial and terminal vertices may be
identical. $A$ closed path of positive length is said to be a cycle. $A$ circuit in a graph $G$

containing all the edges is said to be an Eulerian circuit of $G.$ $A$ graph is Eulerian if it
has an Eulerian circuit. It is a well known fact that a graph is Eulerian if and only if
each vertex of the graph has even degree. Let $G$ be a graph, and $W_{1}$ and $W_{2}$ walks in
$G$ . If $W_{1}$ is a subsequence of $W_{2}$ , then $W_{1}$ is said to be a subwalk of $W_{2}$ . Terms subtrail,
subcircuit, subpath, and subcycle are defined as the same manner.

We call the length of a shortest subcycle in a trail the shortest cycle length of the trail.
Here, the trail may be non-closed. However, if the trail is a path and is not closed, then
the shortest cycle length of the trail cannot be defined. Clearly, the shortest cycle length
of an Eulerian circuit is always defined. We call the maximum of the shortest cycle length
of the Eulerian circuits in an Eulerian graph $G$ the Eulerian recurrent length (ERL) of $G.$

The Eulerian recurrent length of $G$ is denoted by ERL $(G)$ . Note that, since the length of
any cycle in $G$ is not greater than the order of $G$ , the order of $G$ is an upper bound on
the Eulerian recurrent length of $G.$

The number of elements in a finite set $S$ is denoted by $|S|$ . The vertex set and edge
set of a graph $G$ are denoted by $V(G)$ and $E(G)$ , respectively. The order and size of a
graph $G$ are, therefore, denoted by $|V(G)|$ and $|E(G)|$ , respectively. For simplicity, we
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usually assume that the vertex set of a graph $G$ consists of consecutive integers that stars
from $0$ , that is, the vertex set is $\{0,1, \ldots, |V(G)|-1\}.$

Let $S$ be a set of vertices of $G,$ $T$ a set of edges of $G$ . The subgraph of $G$ obtained by
deleting all vertices in $S$ is denoted by $G-S$ . The subgraph of $G$ obtained by deleting
all edges in $T$ is also denoted by $G-T$ . Furthermore, if $v$ and $e$ denote a vertex and an
edge of $G$ , then $G-v$ and $G-e$ denote $G-\{v\}$ and $G-\{e\}$ , respectively.

3 Conjectures on the Eulerian recurrent lengths of
complete graphs

It is clear that if a complete graph is Eulerian then the order is odd. As the following
theorem states, the Eulerian recurrent length of a complete graph is very close to its
order[3].

Theorem 1 Let $n$ be an odd integer with $n\geqq 11$ . Then, there is an Eulerian circuit $C$

of $K_{n}$ such that the shortest cycle length of $C$ is exactly $n-4$ if there is an integer $m$

with $n=4m+3$, and exactly $n-6$ otherwise.

Theorem 1 is proved by decomposition of the edge set of $K_{n}$ into Hamiltonian cycles
$H_{k}arrow n-1$ , where $H_{k}$ is a Hamiltonian path for $k=0,1,2,$ $\ldots,$ $n-2$ described as in
Figure 1. To construct the Eulerian circuit in Theorem 1, if $(n-1)/2$ is odd then $(n-$

$1)/2$ Hamiltonian cycles $H_{0},$ $H_{2},$ $H_{4},$
$\ldots,$

$H_{n-3}$ are used, else $H_{0},$ $H_{2},$ $H_{4)}\ldots,$ $H_{((n-1)/2)-2},$

$H_{((n-1)/2)+1},$ $H_{((n-1)/2)+3},$ $\ldots,$
$H_{n-2}$ used. The decomposition above is described by

Bollob\’as [1].

Figure 1: Structure of Hamiltonian path $H_{k}.$

The following theorem slightly improves the trivial upper bound on ERL $(K_{n})[3].$

Theorem 2 Let $n$ be an odd integer with $n\geqq 5$ . Then, every Eulerian circuit of $K_{n}$ has
a subcycle of length at most $n-2.$

You could expect that the upper bound on ERL $(K_{n})$ in Theorem 2 will be improved by
using similar techniques in the known proof more elaborately. However, we are pessimistic
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about the achievement of such an improvement because of the following facts. Let $H$

denote the trail of $K_{n}$ with length $|E(K_{n})|-1$ defined by

$H=H_{0}arrow H_{1}arrow\cdotsarrow H_{((n-1)/2)-1},$

where $H_{j}$ ’s are defined above. Then, the shortest cycle length of $H$ is $n-2$ . However,
the Eulerian circuit $Harrow n-1$ contains a triangle $n-2arrow n-1arrow 0arrow n-2.$

We have obtained that ERL$(K_{5})=$ ERL$(K_{3})=3$ , and ERL$(K_{n})=n-3$ for every
$n\in\{7,9,11,13\}$ , by computational experiments. The following are examples of Eulerian
circuits of $K_{7},$ $K_{9},$ $K_{11}$ , and $K_{13}$ such that, for each example, the shortest cycle length of
the Eulerian circuit is equal to the Eulerian recurrent length of the complete graph.

An example of Eulerian circuit of $K_{7}$ with the shortest cycle length 4:

$0arrow 1arrow 2arrow 3arrow 4arrow 5arrow 6arrow 0arrow 2arrow 4arrow 1arrow 3arrow 5arrow 2arrow$

$6arrow 4arrow 0arrow 5arrow 1arrow 6arrow 3arrow 0.$

An example of Eulerian circuit of $K_{9}$ with the shortest cycle length 6:
$0arrow 1arrow 2arrow 3arrow 4arrow 5arrow 0arrow 6arrow 1arrow$

$3arrow 7arrow 2arrow 0arrow 4arrow 1arrow 8arrow 5arrow 6arrow$

$7arrow 4arrow 2arrow 8arrow 3arrow 0arrow 7arrow 5arrow 2arrow$

$6arrow 4arrow 8arrow 7arrow 1arrow 5arrow 3arrow 6arrow 8arrow 0.$

An example of Eulerian circuit of $K_{11}$ with the shortest cycle length 8:
$0arrow 1arrow 2arrow 3arrow 4arrow 5arrow 6arrow 7arrow 0arrow 8arrow 1arrow$

$3arrow 9arrow 2arrow 4arrow 6arrow 0arrow 5arrow 1arrow 7arrow 8arrow 10arrow$

$9arrow 4arrow 0arrow 2arrow 5arrow 3arrow 6arrow 10arrow 1arrow 4arrow 8arrow$

$9arrow 0arrow 3arrow 7arrow 2arrow 10arrow 5arrow 8arrow 6arrow 1arrow 9arrow$

$7arrow 4arrow 10arrow 3arrow 8arrow 2arrow 6arrow 9arrow 5arrow 7arrow 10arrow 0.$

An example of Eulerian circuit of $K_{13}$ with the shortest cycle length 10:
$0arrow 1arrow 2arrow 3arrow 4arrow 5arrow 6arrow 7arrow 8arrow 9arrow 0arrow 10arrow 1arrow$

$3arrow 11arrow 2arrow 4arrow 6arrow 8arrow 5arrow 0arrow 7arrow 1arrow 12arrow10arrow 2arrow$

$9arrow 6arrow 11arrow 8arrow 0arrow 3arrow 5arrow 12arrow 7arrow 10arrow 4arrow 9arrow 11arrow$

$1arrow 6arrow 0arrow 2arrow 8arrow 12arrow 3arrow 7arrow 4arrow 11arrow 10arrow 9arrow 1arrow$

$5arrow 2arrow 6arrow 12arrow 0arrow 4arrow 8arrow 10arrow 3arrow 9arrow 5arrow11arrow 7arrow$

$2arrow 12arrow 4arrow 1arrow 8arrow 3arrow 6arrow 10arrow 5arrow 7arrow 9arrow 12arrow 11arrow 0.$

On the basis of the experiments above, we currently have the following conjecture
stronger than Conjecture 1.

Conjecture 2 For any odd integer $n$ with $n\geqq 7$ , ERL$(K_{n})=n-3$ holds, that is to say
the Euleman recurrent length of a complete graph with $n$ vertices is $n-3.$

4 Computational experiments to verify the conjec-
tures

In this section, we describe the mechanism of our algorithm for the computational ex-
periments to verify Conjectures 1 and 2. We use the programming language $C$ in the
computational experiments for simplicity of coding and efficiency of execution.
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In what follows, for every positive integer $n$ , we regard $\{0,1,2, \ldots, n-1\}$ as the
vertex set of $K_{n}$ . The name of only one core function in the program for the experiments
is srceuler. The behavior of srceuler is viewed as searching a tree consisting of growing
trails in $K_{n}$ by backtracking.

Suppose that there is an Eulerian circuit $C$ whose shortest cycle length is $n-2.$
Without loss of generality, we describe a shortest subcycle of $C$ as

$1arrow 2arrow\cdotsarrow n-2arrow 1.$

Furthermore, since the shortest cycle length of $C$ is $n-2$ , and since any edge of $K_{n}$ must
not appear more than once in $C$ , we may describe $C$ as

$C=0arrow 1arrow 2arrow\cdotsarrow n-3arrow n-2arrow 1arrow n-1arrow\cdotsarrow 0.$

We therefore set the root node of the search tree the following trail of length $n$ :

$T_{0}=0arrow 1arrow 2arrow\cdotsarrow n-3arrow n-2arrow 1arrow n-1.$

Let $T=v_{0}arrow v_{1}arrow\cdotsarrow v_{k}$ be a trail of $K_{n}$ such that $K_{n}-E(T)$ is connected.
Note that there is an Eulerian circuit $C$ such that $T$ is a subtrail of $C$ , if $K_{n}-E(T)$ is
connected. Furthermore, let $T’=Tarrow v_{k+1}arrow v_{k+2}arrow\cdotsarrow v_{k+l-1}arrow v_{k+l}=v_{k}$ be a
trail of $K_{n}$ such that $T$ is a prefix subtrail of $T’$ , the terminal vertex of $T’$ is the same as
that of $T$ , and the vertex $v_{k}$ , the terminal vertex of $T$ and $T’$ , does not appear in subtrail
$v_{k+1}arrow v_{k+2}arrow\cdotsarrow v_{k+l-1}$ . By the following theorem, if $T$‘ is a subtrail of an Eulerian
circuit of $K_{n}$ , then $n-2\leqq l\leqq n+3$ must hold.

Theorem 3 $[2J$ Let $m,$ $n$ be integers with $4\leqq n\leqq m-1$ . Let $C=yarrow x_{1}arrow x_{2}arrow$

. . . $arrow x_{m+n+1}arrow y$ be a circuit of $K_{m+2}$ whose $len9^{th}$ is $m+n+2$ . Then, if $y$ does not
appear in the subcircuit $C’=x_{1}arrow x_{2}arrow\cdotsarrow x_{m+n+1}$ of $C$ then $C’$ has a subcycle of
length less than $m.$

From the arguments above, we make srceuler set $T_{0}$ as the initial trail, that is the
root node, then look at each vertex on the growing trail in turn from the initial vertex $0.$

Let srceuler look at the k-th vertex $v=v_{k}$ on the growing trail. Then, it determines
interval $l$ with $n-2\leqq l\leqq n+3$ between the current occurrence of $v$ and the next
one such that the $(k+l)$ -th vertex $v_{k+l}$ on the growing trail is undetermined, and sets
$v_{k+l}$ as $v$ . In this way, srceuler tries to extend the growing trail so that an Eulerian
circuit may be obtained. Notice that the growing trail may have undetermined vertices.
For example, if srceuler determines $n+2$ as the interval between the initial vertex $0$

and the next occurrence of $0$ just after it starts, and extends the growing trail, then the
$n+2$-th vertex $v_{n+2}$ is the terminal vertex of the growing trail and the $n+1$-th vertex
$v_{n+1}$ is undetermined. Since srceuler tries to make an Eulerian circuit whose shortest
cycle length is $n-2$ , if it looks at the k-th vertex $v_{k}=v$ on the growing trail and the
$k+n-2$-th vertex $v_{k+n-2}$ is undetermined, then it must determine $n-2$ as the interval
between the current occurrence of $v$ and the next one so that $v_{k+n-2}=v$ . When srceuler
cannot extend the trail, it backtracks.

The length of each Eulerian circuit $C$ of $K_{n}$ is $|E(K_{n})|=n(n-1)/2$ , and each vertex
$v$ of $K_{n}$ occurs exactly $(n-1)/2$ times on $C$ . Furthermore, if the shortest cycle length of
$C$ is $n-2$ , then any interval between an occurrence of a vertex $v$ and the next one of $v$

on $C$ lies in $\{n-2, n-1, n, n+1, n+2, n+3\}$ by Theorem 3. The following Theorem 4
follows from those facts.
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Theorem 4 Let $n$ be an integer with $n\geqq 7$ , Let $L$ be an Eulerian circuit of $K_{n}$ whose
shortest cycle length is $n-2$ represented by

$L=v_{0}arrow v_{1}arrow v_{2}arrow\cdotsarrow v_{(n(n-1)/2)-1}arrow v_{0},$

and $C$ a subcircuit of $L$ expressed as:

$C=v_{m}arrow v_{m+1}arrow\cdotsarrow v_{m+l},$

where $v_{m}=v_{m+l}$ . Let $k$ denote

$|\{i\in\{m, m+1, m+2, \ldots, m+l-1\}|v_{i}=v_{m}\}|.$

Then, $l$ , the length of $C$ , must satisfy the following inequalities:

$kn-3( \frac{n-1}{2}-k)\leqq l\leqq kn+2(\frac{n-1}{2}-k)$

In our current computational experiments, the backtracking condition derived from
Theorem 4 causes a reduction of the search tree that srceuler builds. By computational
experiments with srceuler improved by Theorem 4, we have verified that Conjecture 1
holds for $n=21$ . Table 1 shows the number of times that recurrent procedure srceuler
is invoked, where $N_{1}(n)$ is the number for the improved srceuler, and $N_{2}(n)$ the one for
the previous srceuler. We expect that the execution time of one trial of the experiment
is approximately in proportion to the number of times that srceuler is invoked. As
Table 1 shows, the truth of Conjecture 1 for $n=21$ is also verified with the previous
srceuler. The reason for that is chiefly the computers used in the current experiments
being more powerful than the previous srceuler. For $n=21$ , the improved srceuler is
about three times faster than the previous one. Currently, we intend to verify Conjecture 1
for $n\in\{23,25,27\}$ by large-scale computation.

Table 1: Results of the verification experiments for Conjecture 1.

Variation in the intervals between two successive identical vertices on the growing
trail that srceuler extends leads us to the following new conjecture that can prove
Conjecture 1.

Conjecture 3 Let $n$ be an integer with $n\geqq 7$ , and $L=v_{0}arrow v_{1}arrow v_{2}arrow$ . . . $arrow$

$v_{((n-1)/2)-1}$ a non-closed tmil with length $((n-1)/2)-1$ of a complete graph with $n$ vertices,
$K_{n}$ . For each vertex $v\in V(K_{n})$ and each integer $i\in\{1,2, \ldots, (n-1)/2\}$ , let $p(v, i)$ denote
the length from the initial vertex $v_{0}$ of $L$ to the i-th occurrence of $v$ , where $p(v_{0},1)=0.$

Furthermore, let sequence $\{\triangle(i)\}_{i=1}^{(n-1)/2}$ be defined as $\triangle(i)=|p(v, i)-p(v, 1)-(i-1)n|$

for $i\in\{1,2, \ldots, (n-1)/2\}.$

Then, $\{\triangle(i)\}_{i=1}^{(n-1)/2}$ is monotone increasing.
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5 Remarks
We hope that the algorithm for verifying Conjecture 1 and 2 improved by exploiting an
idea derived from the following proposition are orders of magnitude faster than the current
one.
Proposition 1 Let $n$ be an integer with $n\geqq 7$ , and $\varphi$ : $\{0,1,2, \ldots, n-1\}arrow\{0,1,2,$ $\ldots,$

$n-1\}$ denote the one-to-one and onto mapping defined as

$\varphi(i)=\{\begin{array}{ll}n-1 if i=0,1 if i=1,0 ifi=n-1,n-i otherwise.\end{array}$

Suppose that $\{0,1,2, \ldots, n-1\}$ is $V(K_{n})$ , the vertex set of complete graph $K_{n}$ with $n$

vertices. For a trail $T=t_{0}arrow t_{1}arrow t_{2}arrow\cdotsarrow t_{s}$ of $K_{n}$ , let $r(T)$ be defined as
$r(T)=\varphi(t_{s})arrow\varphi(t_{s-1})arrow\varphi(t_{s-2})arrow\cdotsarrow\varphi(t_{1})arrow\varphi(t_{0})$ .

Let $k$ and $l$ be positive integers such that $l\geqq n-2$ and $2k+l+1-n=|E(K_{n})|=n(n-1)/2.$

Then, the following is a necessary and sufficient condition for existence of an Eulerian
circuit of $K_{n}$ whose shortest cycle length is $n-2$ : There are two tmils of length $k+l,$

$S=s_{0}arrow s_{1}arrow s_{2}arrow\cdotsarrow s_{k+l}$ and $T=t_{0}arrow t_{1}arrow t_{2}arrow\cdotsarrow t_{k+l},$

such that
1. the shortest cycle lengths of $S$ and $T$ are both $n-2,$

2. $s_{0}=t_{0}=0,$ $s_{1}=t_{1}=1,$ $s_{2}=t_{2}=2,$ $\ldots,$ $s_{n-2}=t_{n-2}=n-2,$ $s_{n-1}=t_{n-1}=1,$

and $s_{n}=t_{n}=n-1,$

3. $s_{k+1}=\varphi(t_{k+l}),$ $s_{k+2}=\varphi(t_{k+l-1}),$ $s_{k+3}=\varphi(t_{k+l}-2),$
$\ldots,$

$s_{k+l}=\varphi(t_{k+1})$ , and

4. $E(S)\cup E(T)=E(K_{n})$ .
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