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The main purpose of this article is to show that the sym-
metry breaking actually occurs in the CKN-type inequal-
ities provided that the parameter |v| is large enough. In
the argument we employ the so-called linearization method
for the variational problems of the CKN type inequalities.
First we shall explain recent results on the CKN-type in-
equalities for all v € R in the fore-coming paper [HK3] as
a necessary back-ground for this research and we shall give
a sketch of proof of the main result.
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1 Introduction

We start with introducing the CKN-type inequalities according to
the paper [HK3]. In the CKN-type inequalities, we work with pa-
rameters p, q and v whose ranges consist of

~2<=, yeR\{0} (L1)

S| =

N
Q| =

From these conditions we obtain for a fixed p

p<g<p = ’ f1<p<n; p<g<p =00 ifn<p<oo
" — ,
(1.2)
Here . np
/ *
pP=——0 pP=—"—F forl <p<oo. 1.3
p—1 (n —p)+ ' (13)

Here we set t, = max{0,t} and 1/0 = oo.

The ranges v > 0 and v < 0 are said to be subcritical and
supercritical respectively. The case of v = 0 is called critical, and
we do not treat it in the present article

Definition 1.1. Fora € R and R > 1 we set
1

Ia(x) = Ia(|x|) = l——

e frreRN{0) (149

When 0 < a < n holds, I, is called a Riesz kernel of order c.
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Under these notations the CKN-type inequality in the non-critical
case (y # 0) has the following form with S?%" being the best con-
stant: For any u € CX(R"™\ {0}),

) p/q
[ V@)L @de = 570 ([ @iy (e)e) . (19

We note that if v = n/p — 1 = n/q holds, then this is called the
Sobolev inequality, and if p = ¢, = n/p — 1, then this is called
the Hardy inequality. Here the best constant S?%7 is given by the
variational problem;

> fRnIVu(a:)PI 1ﬂ( z)dx
ueC (R {0})\{0 p/a’
SRV (fR" ‘q]qv(x)dx)

By S2%7 we denote the best constant in the radially symmetric
functlon space Ce°(R")raq instead of C°(R™). For the precise defi-
nition, see §1.1. In [HK3] we established the symmetry of the best
constants in v € R and the radial symmetry of the extremals for
small v among many results. As a necessary back-ground let us pick
out them from [HK3] below.

(1.6)

Proposition 1.1. ( The symmetry ) Assume thatn > 1, 1 <
p<g<ooandT,, <1/n. Then it holds that:

1. Sp,qw — SP7Q§ '7 Sggv'y Sﬁ;g’ fOT‘ y # 0.
2. 5P =8, |y P for v # 0.
Sp7q;'-y — Spaq 'Y p’ql,ylp(l—-’l'p,q) for O < ‘,yl S ,}/p’q
4 1 Sp) ,’Yp}—}* < Sp: 7’Y < Spvp ’Vp’p?" j— Sp7 ”‘/p’pﬁ‘
(2 =Yg/

fOT' |’Y| .—>-'7p,p :T pr<ln’

2257 _ a22%v, .. 2,257, ox _n-
5.5 =9 20 = Spa e for |y| > Yoo =

Here vy, , and Sy, are defined in Definition 3.2.

3

if p=2<n.
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The assertion 3 means that the best constant SP%7 is attained
by radially symmetric functions if |7y| is small. Now we state our
main result below which will cover the case that || is large. See
also Corollary 5.1 in §4.

Theorem 1.1. ( The symmetry breaking ) Assume that 1 <
p < n. Assume that q is fized such as p < q < p*. Then for
sufficiently large ||, the best constant SP%7 is not attained in the
radial function space Wé:g(R")rad. Here the space Wj:g(R")rad is
defined in Definition 2.1.

Remark 1.1. Since it was shown that in [HKS3] the best constant
SP%Y 4s attained in Wé:g (R™) for p < q < p*, we can conclude by
this result that the symmetry breaking actually occurs if |7y| is large.

For p = 2 and 4 > 0 it was shown in [CW1] that the symmetry
breaking occurs by a method of perturbation using eigenfunctions of
the linearized operator. When p # 2 and v > 0, this phenomenon
was also shown in [BW] by constructing a clever non-symmetric
perturbation to the radial extremal function which is supposed to
attain the best constant. Our method in the present paper is mak-
ing effective use of the linearization of quasilinear elliptic operator
at a radial extremal. For the semilinear operator, this method was
employed in [CW1]. Since in our case the operator is quasilinear, the
linearized operator at a radial extremal is degenerated at the origin.
We shall overcome this difficulty by using weighted Hardy’s inequal-
ities and effective changes of variables. We note that by virtue of
this method, a lower estimate of || for the symmetry breaking is
also given in terms of the first eigenvalues of the linearized opera-
tors. ’

2 The non-critical CKN-type inequalities

In this subsection we shall prepare a general setting for the pre-
cise description of the CKN-type inequalities. First we introduce
function spaces and relating norms.
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Definition 2.1. Let 1 <p < g< oo andy € R. Let 12 be a domain
of R" and let u: 2 —- R.

1. For 6 : 2 — R satisfying 6 >0 a.e. on 2, we set

Il = ([ [u@1r6()da) 2.1)
2. Under the above notation we set
HUHL"(Q) ”U”L‘I(rz I,) ||VU“L” L(2) = ”IVU’“IL” () (2.2)
and
Li(02) ={u: 2> R |Jull g5 < 0}. (2.3)

3. By I/Kyl,’op (£2) we denote the completion of CX(02\{0}) with re-
spect to the norm

U ||VuHL;17+7 @)

4. Let (2 be a radially symmetric domain. For any function space
V(£2) on 2, we set

V(2)q ={u € V()| u is radial}. (2.4)

Then the noncritical CKN-type inequalities are simply repre-
sented as follows:

For v # 0,
IVullfy, w n 2 S lul|fy ey for u € WE(RY). (2.5)
Remark 2.1. 1. For1<p<oo andy >0, C®R") C W ¥ (RY
and C°(R") is densely contained in I/VVIOP(R”) When v < 0
holds, C°(R™) ¢ W, #(R").
2. When p = q holds, this inequality is called the Hardy-Sobolev
inequalitiy. It is known that the best constant SPPY of (2.5)

coincides with the one restricted in the radial functional space
W'vl’g’ (R™),a4, and hence we have

SPPY — 4P, (2.6)

5

117



3. It follows from the Hardy-Sobolev inequalities that if v # 0, then
the space I/Vvl’bp (R") coincides with the completion of C°(R™\ {0})
with respect to the norm

lellyomey = 1Vl @y + 12l 2 gry- (2.7)
4. The classical CKN-type inequalities are often represented in the
following way:

4
|VulP|z|*? dz > C ( |u|?|x|P? da:) ’ for any u € CF(R"),

Rn
where 1 < p < q<+400,0<1/p—-1/g=(1—-a+pF)/n and
—n/q < f < a. If we set

RTL

n n
’Y—_—a—l‘i’_:ﬂ'f"—,
p q

then we have the representations (1.5) and (2.5).

3 Some known results on the noncritical CKN-type in-
equalities
In this section we describe the results when v # 0.
Definition 3.1. Let 1 <p< g < oo and v #0.
1.

“VUHLQ’H(R"

EPEy] = ( )) foru e W;ly’g’(R”)\{O}. (3.1)

“u”Lg(R")

SPY = inf{ E*[u] | u € W, 7' (R")\{0}} (3-2)
= inf{ EP"[u] | u € CF(R*\{0})\{0}},

Sha” = inf{ BP9 u] | u € W3 (R);00\{0}} (3-3)
= inf{ EP*7[u] [ u € CP(R"\{0})raq\{0}}-

6
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First of all we state the CKN-type inequalities in the noncritical
case.

Theorem 3.1. Assume that 1 < p<qg<oo, 7, <1/nandy#0.
Then, we have SLEY > SPEY > 0 and the follwing inequalities.

IVulfy, gy > S ullfogey for ue Wyg®Y),  (34)

IVullfy_ ey > St ull fagey Jor w € Wy (R oa. (35)

This follows from the assertions 1-4 of Theorem 3.2. Let us in-
troduce more notations.

Definition 3.2. For 1 < p < g < o0, we set
-1

3.6
7p7 1 + q/p/’ ( )
_ w 1 1 1-p/q '
g ) @) Frplaghla (—”B (——— , )) if p<gq,
ng Tog  \PTpgq PTpg
1 ifp=gq
Here B(-, -) is the beta function.
Remark 3.1. 1. It holds that
1 1Y\ 1
B (177:, p’_’r) — W as T — 0 (37)

In fact for 0 < 7 < min{1/p,1/p'}, we see that

y 1! 1 1 1/p—7 1 1/p'=7
/P (1 t) p— < (1 27_)1 o (E — 7') <Z7 - 7') fOT 0 S t < 1,
(3.8)

hence we have

1

B 1/p—7 1—t¢ 1/p' =7 1/Tdt

(PT PT> (/ (t ( ) )
1 1 1/17 T 1 1/10 -7 1

< ——*—(1 oy (—’5 - 7‘) (;, — 7‘) — p———l/p(p,)l/p, as T — 0,
1 1Y ! , !

B(—,—] > tYP(1 — )P\ gt
T’w>‘</o( 4= )dl

p(1 _ /P —
— e t(1-1) gy BT 0
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2. Since 1,, — 0 as q— p, it follows from the argument of 1. that we have

(p')p—l—p'rp,q w 1 1 PTpq
= —-EB 1 = .
Spa 1/p — Tp,q)l—p‘rp,q - T — S,p aSq—D
(3.9)

pq

Under these preparation we can compute the best constant S22
of the CKN-type inequality in the radial function space to obtain the
exact representation. In the next we describe important relations
among the best constants S?%”7 and SP97.

Theorem 3.2. Assume that 1 <p < qg<g<oo and 7,, < 1/n.
Then it holds that:

1. §PY = GPET, GPGY — GPG=T for v #0.
2. PO = pqmp Ta) for~v #0.
3. §P4Y = GPEY — Sp,q|»y|1’(1‘fm) for 0 < |v| < v,

p(l-7p) o , Y |P7 5
4R s < gran < [T for 0 <y < P31

5 1
. (2 - ’Yp,p*/f)/)p

n_
for |v| > vy =

PP Yo < SPP5Y < SPP Yo — Sr:nég";vmf-

if p<n.

2259 _ 022 Yoor — Q22570 on _n-
6. S =38 22 = Sra.d 22 fOT' I’Y| Z ’)’2’2* == 5

if p=2<n.
7. SPGY > (l,ylPTq,E(SP,ﬁ;’Y)Tp,q)l/Tp,a for v # 0.
In particular,

SPEY > |,y|p(1 Mg (Sp,p,v) v fory#£0 if p<n.
Remark 3.2. 1. It follows from Remark 2.1 and Theorem 3.2,1 that we have

SPPY = SPBY — |y|P for v # 0. (3.10)

rad

2. For 1 < p < n, the number;

o\ P-1 p/n
SPP M = SEE e =y (n p) (&B (ﬁ,ﬁ)) 3.11
p—1 Y \pp (3.11)

8
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coincides with the classical best constant of the Sobolev inequality;

IVl ey = [Vl ey 2 SVl = STl for u € W2 o(RD).

In particular for n > 3, p = 2, we see that

2/n
2250 — Q2250 _ _ Wpn (P 1 2 _ ['(n/2)
S =S5 =n(n 2)(2B<2,2>) =n(n 2)(F(n) T
(3.12)

Here, T'(-) is the gamma function.

Moreover the best constant S?%7 is a continuous function of the
parameters q and . Namely we have the following.

Theorem 3.3. For 1 < p < oo, the maps
([, P'I\{oo)x(R\{0}) > (g;7) — SP47, SEF7 € R (3.13)

rad

are continuous. In particular, it holds that

SPET — SPPY = |yP s q — p. (3.14)

In the next we describe results on the existence and non-existence
of extremal functions which attain the best constants of the CKN-
type inequalities. Shortly speaking, the best constant SP%7 is at-
tained by some element in W;l,g’(R") \ {0} provided that p < ¢ < p*
is satisfied. On the other hand if ¢ = p, then the corresponding
CKN-type inequalities are reduced to the Hardy-Sobolev inequali-
ties and therefore no extremal function exists. When g = p* holds,
then SPP%7 is attained provided that 0 < |y| < (n—p)/p = Y,
but in the case that |y| > (n — p)/p, it is unkown in general except
for the case p = 2, whether SPP5” is achieved by some element or
not. If p = 2 is assumed, then it is shown that no extremal exists

provided that |y| > (n — 2)/2 holds.

Theorem 3.4. Assum that 1 < p < g < ©
Then we have the followings.

1. If p < q, then SP%7 is achieved in W1 (R™),.a\{0}.
2. If p<q<p", then SP¥7 is achieved in VVJS’(R")\{O}

) Tyg S 1/nand v # 0.

9



8. Ifp<mn,qg=p and |y| < (n—=p)/p = 7, then GPPSY —
SPPY s achieved in W&ibp(R")rad\{o}_

rad

4. Ifp=2<mn,qg=2"=2n/(n—-2) and |7| > (n—-2)/2 =
Yo,9-» then S22 = §2FNa holds and S35 is not achieved in

WA R\ {0}.
Proposition 3.1. Ifl <p=q<o0, 74 0, then SPP and SLE7
are not achieved in W T(RY)\{0} and W. ’p (R")rad\{O} respectwely

Lastly let us explain the radial case more precisely which is rather
fundamental in this work.

Theorem 3.5. (The radial case ) Assume that 1 <p < g < +00
and v > 0. Then we have the followings:

1. S5 is achieved by the function u below

u(r) = AFTF[L+r73]75 (r=lz]),  (3.15)
h = g, >O,

S\t (3.16)
=) e

Moreover u satisfies the Fuler-Lagrange equation:

~div (Iy14)(2)| VUl 2 Vu) = I (z)|ul? %u. (3.17)

4 A linearization method

From Proposition 1.1 we see that the best constants SP%:7 are sym-
metric with respect to . Therefore, in the subsequent argument it
suffices to consider the subcritical case that v > 0.

Definition 4.1. For v > 0 we set for r = |z

Ly, (u) = —div (I, ,y+1)( r)|VulP~ 2Vu) (4.1)
My (u) = Ly, (u) — Loy ()| u “u.

10

122



We will study a linearization of these operator in a precise way.
First, by a linearization at u we formally have

! = —di p—2 _ Ve, Vy) U
Lp’,y(u)go = —div (Ip(7+1)(r)|Vu[ (Vgo + (p—2) VP Vv ))
(4.3)
M, (w)p = Ly () — (g — Dy ()% (4.4)

for any ¢ € C(R™\ {0}).
Definition 4.2. For v > 0, r = |z| and u is defined by (8.15) in
Theorem 3.5 we set

(U(T‘) - W(T'; p:q, ’7) = Ip('y+1)(7')|aru'p_2- (45)

By a polar coordinate system z = (r,w),r > 0,w € S"1, the
Laplacian A is represented by r'™"8,(r"19,-) + Agn-1/r%. Here
Agn-1 is the Laplace Beltrami operator on the unit sphere. Then
we have

Lemma 4.1. We assume that u is a spherically symmetric function
on R"™. Then

L;,,Y(u)cp = —(p— 1", (r"_lw(r)(?rgo) — 1 2w(r)Agr-10. (4.6)

Proof: Let u be a radial smooth function. Then we have

L) = i (w (W +(p— 2)%%))

= —wAp — Owdrp — (p —2) (&w@wp + wdiv (%—&gp))
— —(p— 1)r' "8, (" wd,p) — :)—QASn—up.

Here we used

T n—1

div ( a.g;) = 0%+ 23, (4.7)

"
Il

For w(r) = w(r;p,q,7) (v > 0) we employ the spaces L*(R";w)
and L*(R™r %) according to Definition 2.1. In a similar way,

11

123



by L?(R,;wr™3) we denote the space of all Lebesgue measurable
functions on R, = (0, 00) for which

= %
||¢||L2(R+;wrn-3)=( / |so<r>|2w<r)r"-3dr) <too.  (48)

To study the eigenvalue problem for the operator M, (u), we need
more preparations. Let us define the following Hilbert spaces.

Definition 4.3. By WY2(R"™;w) we denote the completion of
C*(R™\ {0}) with respect to the norm

1

’ 2
$ = HLP,|W1’2(R";QJ) - (HVSOH%%Rn,w) + ||¢|,%2(Rn;r"2w)) . (49)

In a similar way, by W12(R,;wr™1) we denote the completion of
C*(R) with respect to the norm

2
p — H‘10||W1’2(R+;r"“1w) = (||¢’|‘%2(R+;wr"—1) + ||(P||i2(R+;wrn—3)) .
| (4.10)

Then we see

Lemma 4.2. L*(R";r%w), W (R™w), L2(Ry;wr™3)
and W32(R;wr™1) become Hilbert spaces with the canonical in-
ner products.

By separation of variables, the linearization of (4.2) at the ra-
dial solution u decomposes into infinitely many ordinary differential
operators. Denote by

w=k(n—2+k), (k=0,1,2,..)) (4.11)

the k" eigenvalue of the Laplace Beltrami operator Agn-1 on S™1.
We denote by ux and fi the first eigenvalue and the corresponding

positive eigenfunction in the k*® eigenvalue problem of y, defined by

—(p = Dri"0: (r"'wd, f) + % f — (¢ — DIgyui™f = p5f in Ry = (0,00),

f e WH(Ry;wrm 1)\ {0},
(4.12)

12
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where differentiations are taken in the distribution sense. If there
exists the first eigenfunction f, € WDH2(Ry;wr™!) with the first
eigenvalue u, then fi, becomes a solution to the variational problem

(Ek):

(Ex) Pk E(f),

= inf
FEWL2(R, jwrn=1), f#0
(4.13)

where

Ex(f) = Eo(f) + w

(4.14)

Ey(f) = D4 |3rf|2w(T)T};:Jirw_(i‘i;nl_)sfg: r" 1o (r)ud2 f2 dr.

By the definition we clearly see that
ur=vr+uy and fr=/fy fork=0,1,2,....

Remark 4.1. It is easy to see that puy < 0. Moreover it will be shown that for
any k > 0 the eigenvalue uy is negative provided that «y is sufficiently large. In
fact, the negativity of ux for a large v > 0 readily follows from the elementary
argument below, provided that p > q%% and q > p hold. Using the solution u as a
test function, py should satisfy

fo |00V b _ o a(pla + 1) = 20)
Jrn U2$ dz (1 = Tpg)(1 = 2734)

e =Ex(fo) <ve+ (p—q)

Noting that 0 < 7,4, < 1/2 and vy = 0, po < 0 immediately follows. Further we
see that

Lk — —00, as y — oo (k=0,1,2,...). (4.15)
Here we note that the condition p > q—Q_i-_q—l s automatically satisfied if p > 2.

In the rest of this subsection we shall establish the Hardy type
inequalities. By virtue of them and the fact u? 2, (z) — 0 as
r — oo we shall see that the variational problem (Ej) or equivalently
the eigenvalue problem (4.12) is well-posed.

Let us recall a fundamental lemma. For the proof one can employ

an obvious modification of Theorem 2 in [Ma; §1.3.1].

Lemma 4.3. Lety > 0 and let u be the function defined in Theorem
8.5 and let w(r) = Lyy+1)(r)|0:ulP~2. In order that there ezists a

13
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constant C, independent of each ¢ € C((0,00)) such that

/ o(r)2u(r) 2" L, (r) dr < C/ ¢ (r)2w(r)r"tdr, (4.16)
0 0
it is necessary and sufficient that

B= sup B(r)<+oo, (4.17)
r€(0,4+00)

B(r) = /0 ()AL (1) dr / N (w(r)r"‘l)_l g (418)

In order to check the condition (4.17), we prepare fundamen-
tal lemmas that are given by direct calculations. By the notation
u(r) = O(r*¥) as 7 — oo (r — 0), we mean that there are some
positive numbers Cy and C, such that

C; < |u7§:)| < Oy, as r — oo (r — 0).

On the other hand by the notation u(r) = o(r*) as r — oo (r — 0),
we mean that u(r)/r* — 0 as r — oo (r — 0).

Lemma 4.4. Let v > 0 and let u be the function defined in Theorem
3.5.Then we have

0] (r‘pl'y) as r — 400,
u(r) =

O (1) as  — +0.
W (r) = O (r_/p'”f_l) as r — +00,

O (r7*1) as r — +0.

Lemma 4.5. Let v > 0 and let u be the function defined in Theorem 3.5.Then
we have

0 (r”'"’(z_%)) (ifp>1%) as r— 4oo,

/ "y ) dr = 4 O (log?) (ifp=19) as r— +o0,
0 o(1) (fp<i) as r— +oo,
O (r7) as r — +0.

14
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O (r#7) as 1 — +00,
*© —p'y(g+1-22 _
/ (w(’r‘)rn_l) -1 g — 0] <7~ P’ v(g+ p)) ( pr > q_i%) s T — 40,
' O (log ;) (Z'fpzﬁ—fi) as T — +0.

Then we have the following.

Lemma 4.6. ( Hardy type inequality in Ry ) The inequality 4.16
holds for any ¢ € C((0,00)).

Proof: It suffices to check the condition (4.17). Then we see as
T — 00

O (r"pIV(%"l)) , ifp>1
B(r) = O (r?logr), ifp=14% (4.19)
O (r=?"), ifp<i.
Thus we see B(r) is finite as 7 — 0o0. On the other hand, we see as
r—0

0 (rp'wg—l)) Cifp> 2

q+1’
B(T) = O (TQ7 log %) , ifp — Ezfi’ (4.20)
O (r1), if1<p<g
Therefore the assertion is now clear. O

Then we immediately have

Lemma 4.7. ( Hardy type inequality in R™ ) Let v > 0 and let u
be the function defined in Theorem 8.5. Then, there is a positive
number C independent of each p € CP(R™\ {0}) such that we have

forr = |z|

| e@pury g <C [ Ve@)urde, @21

w(r) = |u'(r) P2 Iy (7).

Remark 4.2. 1. The left-hand side is always finite for any ¢ €
C*eR™). Ifp > %, then for any v > 0 the weight function w
is locally integrable as well. In fact we see that

w=0(r" q:i)fz%”_n), asr — 0.

15
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2. In a similar way, if p > q+—1, then we are able to show that

/ Q*wr"3dr < C / | |Pwr™ ™ dr (4.22)
0 0

for any ¢ € C([0,00)). Here C is apositive number indepen-
dent of each . As a result, the norm ||p||w12®, ;m-10) equw~
atent to the single norm ||V|| 12w, wr-3) provided that p > =& . +1

5 Main Theorem

Let us restate our main result, which is equivalent to Theorem 1.1.

Theorem 5.1. ( The symmetry breaking ) Assume that 1 <
p < n. Assume that q is fired such as p < q < p*. Then for
sufficiently large ||, the best constant SP%7 is not attained in the
radial function space W1 o (R™)rad

From this theorem and Proposmon 1.1 together with the conti-
nuity of the best constants on parameters, we immediately have the
following;:

Corollary 5.1. Assume that 1 < p < n. Then there exists a
symmetry-breaking function Sy(7y) for |y| > vpp+ satisfying Sp(Vpp+) =
p*, Sp(v) € (p,p*) fqr V] > Yppr and limjyo Sp(7y) = p such that
we have SP%Y < SPEY for any q € (Sp(v), p*) with || > Yppr-

Proof of Corollary: From Theorem 5.1 the existence of a symmetry-
breaking function Sy(7) is clear if 7y is sufficiently large. On the other
hand, for each v with |y| > 7+, SP%7 < SP%7 holds provided that
q is sufficiently close to p*. In fact, it follows from the assertions 2
and 5 of Proposition 1.1 that we have SPP < Sf;g et ShH P
for |v| > 4+ Here we note that S?% 7 is strictly increasing in Ify|
Since the best constants are continuously dependent on parameters,
if ¢ is sufficiently close to p*, then P47 < SP%7 holds for each v
with |y] > v, pr O

In order to prove Theorem 5.1 we need to employ the followings
which are of interest by themselves, and we shall sketch the proofs
in the last section.
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Theorem 5.2. The eigenvalue problem (4.12) is well-posed. For
an arbitrary number k € N, there is a positive number M such
that if |y| > M, then the k' eigenvalue problem (4.12) (or equiva-
lently the variational problem (Ey) ) has a negative first eigenvalue
Uk = Vg + to and a corresponding first eigenfunction fr = fo in
W12(Ry;wrt),

Proposition 5.1. Let fo > 0 be the first eigenfunction to (4.12)

with k = 0. Let ¢o(> 0),¢1 be the first and second spherical har-
monic functions. By o(x) we denote an arbitrary linear combination

of functions { fo(|z|)¢x(/|z]) }i—o on R", namely ¢ = cofo(r)do(6)+
c1fo(r)é1(8) with r = |z|, 6 = z/|z| and cy,c1 € R. Then, if v > 0
18 sufficiently large, then we have

s /R V(u() + 59(2) P2 V()P (r) de < oo.
se|l, T

In the rest of this section we shall establish the symmetric break-
ing result Theorem 5.1 admitting Theorem 5.2 and Proposition 4.1.
The argument below is similar to the one used in [CW1] when p = 2.

Proof of Theorem 5.1:

By the symmetry with respect to « it suffices to consider the
case when v > 0. We shall show the symmetry breaking actually
happens for a sufficiently large v > 0. To this end we assume that

SP4Y = inf{ EP[u] | uw € W, (R")\{0}} (5.1)

is attained by a radial function u defined by (3.15) and (3.16) in
Theorem 3.5. Now we set wi(z) = fo(|z|)pr(z/|x|) for £ = 0,1
which are defined in Proposition 5.1, and we set

G(n,s) = /n [u(r)+nwo(x)+swi (z)|1 4 (r) dz (r=|z|). (5.2)

Here we note that wy = fy¢o > 0 and ¢y is a constant function by
the definition. Then we shall show that EP%7[u] can be smaller by
replacing u by a suitable perturbation using wg and w;. Note that

G(0,0) = 1.
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By differentiating G we also have for small  and s
(

85 = q fg lu(r) +1wo(z) + swi(z) " wo(z) Iy () da,
% (0 0) = q fgn [u(r)|? " wo(2)1gy(r) dz < 00,
| 00 —qun [u(r)|7 wn (@) Iy () do =
5#(0,0) = (g — 1) Jga lu(r)* Pun (z )2Iq7(7') dz >0,
\ 37788(0 0) =qg(g—1) fR" |u(r) |9 2wo(x)w: (2 M gy(r) dz = 0.
(5.3)

We remark the following fact. The eigenfunction fr. satisfies

=1 [ A et [ i et

=(g—1) / fo(7) |u |21 (2) dr—}-uk/ fo(r)2w(r)r"_3dr
0 0

Hence we see that

|u(r) ]q—zwk(x)zrn_llq’y(r) dz
Rn
= C’onst./ lu(r) |92 fo(r)?r" L, (r) dz < oco.
0
Since

oG

—(0,0) =g¢q lu(r)|9 wo(z) I (7) dz > 0,

67] R»
it follows from the implicit function theorem that there are § > 0
and 7(s) such that for |s| < ¢

(

G(n(s),s) =1, n(0) =0,

J %2%(77(8),8)77'(8) + 52 (n(s),8) =0,

G (n(s), 8)n'(s) + anas( (), )77'( )
L+ 5 (n(s), )" (s) + G (n(s), 5) =
Since 22(n(0),0) = $2(0,0) > 0 and §Z(n(0),0) = 0, we have
n'(0) = 0. Moreover from %%—0, 0)7”(0) + 2$(0,0) = 0, we have

852

77//(0) — _(q _;RnfR" - 1,w_0 )E )( I)Q’Zi(::) dz <0 (5.5)

18
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and then )
n(s) = 5"(0) + ofs?). (5.6)
Now we put
&) = | 1V(ulr) + to(2)) P L 1(r) da.

Rn
By Taylor’s expansion formula, we have

1
£0) = £0) + SO+ 508 + ¢ [ (1= 2) (f'(t2) = 1(0)) a
By a direct calculation we have

([ £(0) = fon V()P Loty (1) 42 = [ u(r) Ly (1) da,
F/(#) = p Jon [V (u(r) + t0(2)) P (V (u(r) + t0(2)), Vip(2)) 41 (1) dz,
) £ =p o VU2 (Tulr), V(@) Dy s1(r) da,
f1(t) = P2 = 2) fn [V (u(r) + tp(@))P4(V (u(r) + t0(2), Vo (2)) Tyt (r) e
D fpn [V (0(r) + 0(2) P Vip(2) P Ly4(r) di,
£1(0) = p o VU (1960(@)[? + (p — 2)TETHD) Ly 1(r) do

\

(5.7)
Using a dual form, we can rewrite f”(0) to have
f”(O) = p(L;(u)go, (10>(W1’2)’XW1’2‘
Putting t = 1 we get
N V(u(r) + o(@)) [P Lpy41)(r) do (5.8)

b
= [ 19ur)P by 1) do + By )i, o)y samna

\ +p/Rn ]Vu(fr)|p“2(Vu(T'), Vg&(m))lp(%l)(r) dx + Al(l — 2)R.(u, ¢) dz,
where

R.(u,) = f"(z) — f"(0) (5.9)
—p [ (9t ) = 19uP) [Vl () do

+(0=2) [ (V@ 20)P (Tt 29), Vo)? = [VuP4(Vu, Vi)
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X Ip(,y_}_l) (7‘) dzx.

Now we put
p(z) = n(s)wo(x) + swy(z).
Then it follows from Proposition 5.1 that we have

|R(u,¢)| < 00 and liné R.(u,p) = 0.
z—

Here we note that (6.10), (6.14) and ¢ = O(s) as s — 0. Then from
the dominated convergence theorem we have

1
/0 R.(u, p)dz = o(s?).

Now we look at the each terms in (5.9) precisely. First we see
p [ 196(0) P (Tu(r), V(o)) () s =
[ Lonlulr))a(s)unla) + sws () do
=p /R Lys(ulr))n(s)wo(x) dz = pn(s) / u(r)? ™ wy () I, (r) dz.

n

Noting that L7, (w)wi = (g — 1)IL w1 + p1|VulP 2Ly 1yr 2wy, we
have

S{L (W), 0) = 2 (L, (W) (nls)wo + swr), n(s)wo + swy)
= g [n(s)?(Ls, . (u)wo, wo) + 2sn(s)(L, ., (wywo, wy) + $*(L1, (u)wy, wr)]

2
ps
-2

5 L, . (wywy, wi) + o(s?)

132

=g§f[<q—1) [ @ L) de [ (VU @ () de| +ofs?)

Rﬂ
Using (4.5) and (5.6), we have

/ IV (u(r) + n(s)wo(2) + 511 (2)) P Lyysny (r) dv = / [Vu(r) P Iy (r) dz + o(s?)
R" R

(5.10)

+0(e) [ ) (o)) do

+L [<q—1> [ ) (o) () o+ [ 1962 () do|
n Rﬂ

20



2

s _ _

=/R |Vulr) P Iy 11)(r) de + %—,ul IVu(r) P~ w1 (2)*r 2 Ly 41)(r) dz + 0(?)
n Rﬂ

< /R" |Vu(r)|P Lyiy41)(r) dz for small s.

Thus the assertion is proved. O

6 Sketch of proofs of Theorem 5.2 and Proposition 5.1

Proof of Theorem 5.2: Since Ei(f) = v, + Eo(f), it suffices to
consider the variational problem (Fy);

Eo(f) =

(p—1) fooo 10, f(r) 2w (r)r™"tdr — (¢ — 1) fooo " (r)u(r)? 2 f (r)? dr-

Jo” f(r)2w(r)r=3dr
Now we put
g(r) = w(r)r™=? = [W/(r)[P~2r" 2 Lyy1)(7),
£(r) = g(r)74, (6.1)
| S0) = w(r)E().
Then we have the equivalent functional as follows:

Lemma 6.1. Assume that v > 0. Then we have
(p—1) (3" 10-v(r)|*rdr + [;° v(r)?G(r) dr)

Eo(f) = Eo(v€) =

I v(r)z% dr ’
(6.2)
where
_ pgYt 1fp p
-2 -2
_ é B Cc 1
B (R PR (e ok
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where p = reih yh =qyrpq and

P PeY (-1 +1)

-1 2w-17 0 Y
o PP —2)(1 - 27,
4(p - 1) '

Now we change a variable using 7 = e, (¢t = log %) Then we

have for 9(t) = v(e™?) and G(t) = G(e™*)e™?

-1 J7 ((&ﬁ(t))2 + é(t)f)(t)2) dt
J2o ()2 dt |

(Y
—00

Eo(f) = Eo(vg) =

Here ¥ satisfies ¥(+00) = 0 for any v = f,/g with any
f € WL2(R,,wr™ ). For the sake of simplicity we set

-1 2 ((8t80(t))2 + é(t)cp(t)2) dt

& = :

o() O (6.5)

Then we have
po =inf E () : p € HY(R)}, (6.6)
where H'(R) ={p € L*(R): ¢ € L*(R)}.

The potential function G(t) is simply given by

G(t) =Gletet=A—B-Q(t)+ C- R(t),

QW) = —Z2 R = —Le 67)

Under the condition ¢ € H'(R) and [; ¢* dt = 1 we shall minimize
the functional &y(y).

In the next we shall show the negativity of the first eigenvalue to
this problem.

Lemma 6.2. For an arbitrary number [ > 0, there is a positive
number M such that if v > M, then the eigenvalue problem (6.6) has
the negative first eigenvalue p such as p < —l and the corresponding
first eigenfunction in H'(R).
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Proof: First we show that G(t) has a negative minimum provided
that + is large enough. Setting ¢ = —Z—’% logs (0 < s < 00) in G(t)
we have

- _p~1 _ _ _ S 1 _ qy 2_
G( oh logs>—-A B-——+C —-( 1)> S(s).

1+ 2 1482 2n(p —
Here
S(s) = pr i n’p(p — 2)(1 — 27) n 2n’p(=1 = 27p4(p — 1))s
q (1+s)? (1+s)2 '

Now we study the minimum of S(s) in (0,00). By differentiating
S(s) we have

_ 2n°p(s(1 + 27,p — 27pg) + 1 —p — 27)

S’ .
(s) (1+s)3
Therefore S(s) takes its minimum when
—1+2
So p * “Trg > 0.

1 +27p4(p — 1)
We note that sg is independent of v and that the minimum is given
by

_nsz,q(?’ —27,0)(2(p — 1) + P°1p )

S = .
(s0) 1+27,, <0
After all we see that @(t) takes its minimum at tg = —Z;%hllog S0,
and the value is given by
G(to) = C(p, 97,
with
2 -2 2(p—1 2

4(p—1)2(1 +2754)

Clearly this minumum G(ty) goes to —co as y — co. Then it is not
difficult to show the assertion holds provided that « is large enough.
The existence of the first eigenfunction is also proved by a standard
argument. O
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Let w be the first eigenfunction of (6.6) with ||w||;z = 1. Let
us set vo(r) = w(—logr) and fo(r) = vo(r)&(r). If we check fo in
WLHE(R,;wr™ 1), then fy is the first eigenfunction to the problem
(4.12). To this end we prepare the next lemma which finishes the
proof of Theorem 5.2. (The proof is omitted.)

Lemma 6.3. Let fo = vo(r)€(r) with v(r) = w(—logr). Then we
have fo € WH2(Ry;wr™™1). Further we have fo(|z|) € WA},’(’,’(R").

Proof of Proposition 5.1: Let us set

¢ = cofo(¢o + c161)

with cg, ¢; and ¢y > 0 being constants. Since fy € W3R, wr™1)
and fo(|z|) € W 3(R"), we have

p € WH(R",w) NW,H(R™). (6.9)

Now we establish Proposition 4.1. By the definition of uj we see
Bk = Uk + po with £ = 1,2 and for a sufficiently large v > 0 we
can assume that y; < 0 with £ = 1,2. If p > 2, then by Horder’s
inequality and (6.9) we have the next estimate which clearly verifies
the assertion.

- |V (u(r) + sp(@))P~*|V (@) * Ly (r) da < (6.10)

o ([ P 0e@ P hosn(r) o+ [ 900 P hiyen(r) de ) < oo

Now we proceed to the case that 1 < p < 2. By A we denote a
spherical gradient operator on a unit sphere S"~! satisfying A*A =
Agn-1. Then we immediately have for co > 0

1/2
|V < |f0|2 112 / 611
ol < co 7+|fo| ; (6.11)
and

IV(u+ sp)|* = (v + s(cofydo + c1fod1))? + (scrfolér)*r™2 (6.12)
> max{(u' + s(cofypo + c1fg61))?, (se1foher)*r 2},

Since fo(|z|) € W;”g (R"), we have [g. for7PI,,4+1) dz < oo by the
Hardy inequality. Moreover we note that the term f62 foP2r?7P has
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the same asymptotic behavior as f{’ as r — oo and as r — 0,
respectively. Then we have for c3 > 0

/n ((fo(r)Agy(z))*r?
[ nentar-2as [~ (g0 + f°£§> ) 2P )

< oQ.

p—2
)2

V(@) 2Ly (r)de < Csx  (6.13)

Combining (6.13) with (6.12) we immediately have for any s > 0

/ |V (u(r) + se(a) V(@) Iy (r) dz < +o0. (6.14)

We shall see that (6.14) is valid for all s € [0,1] and |V(u +
59) [P~V |2 L,(,41) converges to |[VulP2|V[2L,,.q) in L*(R") as
s — +0. Noting that ¢ € WH3(R",w), (6.14) remains valid for
s = 0. By B,(0) we denote a ball centered at the origin with a
radius p > 0. Let us set for e > 0

R" = B.(0)U(B.2(0)° UK., K.=R"\(B.(0)U (B1(0))°).

Since Vu(z) # 0 on a compact set K, for any ¢ > 0, we see
that |V (u + s@)[P~2| Vo[ I,(y11) converges to |VulP~2| V| [y,41) in
LY K.) as s — +0. In B.(0), fo have a regular singularity only at the
origin by the theory of ordinary differential equations of the Bessel
type. Since —1 < p—2 < 0 and ¢ € W2(R", )ﬂWl’p(R”) we see
that the family of functions |V (u+s¢)[P~2|V|?L,,+1) are integrable
on B, (0) uniformly in s € [0, 1] for a sufficiently small € > 0. There-
fore [V (u + s¢)|P~2|Vp[* I (y41) converges to |VuP~2|V|?*I,11 in
L'(B(0)) as s — +0. In a similar way, from the asymptotic esti-
mate of u and fy as 1 — 0o we see that |V (u + s¢)[P2[Vy|*Ly41)
converges to |Vu[P~2|V[?Iy(,41) in L' (R™\ Be-1(0)) for a sufficiently
small € > 0 as s — +0. This proves the assertion.

O
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