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Stochastic Power Law Fluid Equations !

Yutaka Terasawa?

Abstract

We consider a SPDE (stochastic partial differential equation) which describes the
motion of a viscous, incompressible non-Newtonian fluid subject to a random force. Here,
the extra stress tensor of the fluid is given by a polynomial of degree p — 1 of the rate
of strain tensor, while the colored noise is considered as a random force. We investigate
the existence and the uniqueness of weak solutions to this SPDE.

1 Introduction

This article is based on a joint work with Professor Nobuo Yoshida from
Kyoto University ([10]).

A lot of researches on the Navier-Stokes equations which describes the mo-
tion of Newtonian incompressible fluids have been done since a famous work
of Jean Leray ([6]) in the mid 30’s in the last century. As a model of the
turbulent motion of viscous Newtonian fluids, the Stochastic Navier-Stokes
equations, which is the Navier-Stokes equations with random force, has been
extensively studied in recent years (cf. [3]).

Concerning the motion of Non-Newtonian fluids, several models were pro-
posed. One such model is power law fluids, where the viscosity depends poly-
nomially on the symmetric gradient of the velocity of fluids. The equations
describing such motions are called the power law fluid equations. The stud-
ies of such equations have extensively been done by the group around Necas
and recently by Bothe-Priiss ([1]). For the references on it, see the references
in Bothe-Priiss ([1]), for example. Concerning the turbulent flow for power
law fluids, no study is done in the mathematical community, to the best our
knowledge. We will consider here the stochastic power law fluid equations for
studying the turbulent model of power law fluid. We present the existence and
uniqueness result for the stochastic power law fluid equations.

Let us be more precise to state the main result. We consider a viscous,
incompressible fluid whose motion is subject to a random force. The container
of the fluid is supposed to be the torus T¢ = (R/Z)? =2 [0,1)¢ as a part of
idealization. For a differentiable vector field v : T¢ — R¢, which is interpreted
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as the velocity field of the fluid, we denote the rate of strain tensor by:

e(v) = (@3’3—-{2'—‘2’—”3) . T¢ - R @ RY. (1.1)

We assume that the extra stress tensor
7(v) : T¢ 5 R? @ R

depends on e(v) polynomially. More precisely, for v > 0 (the kinematic viscos-
ity) and p > 1,
7(v) = 2v(1 + |e(v)2)*7 e(v). (1.2)

The linearly dependent case p = 2 is the Newtonian fluid, which is described
by the Navier-Stokes equations, the special case of (1.3)-(1.4) below. On the
other hand, both the shear thinning (p < 2) and the shear thickening (p > 2)
cases are considered in many fields in science and engineering. For example,
shear thinning fluids are used for automobile engine oil and pipeline for crude
oil transportation, while applications of shear thickening fluids can be found
in modeling of body armors and automobile four wheels driving systems.

Given an initial velocity ug : T¢ — R¢, the dynamics of the fluid is described
by the following SPDE:

divu =0, (1.3)
O+ (u - V)u = —VII + div 7(u) + W, (1.4)

where

u-V= ZUJO and div 7(u (28 Tij u)) . (1.5)

Jj=1 =1

The unknown process in the SPDE are the velocity field u = u(t, z) = (u;(t, z))%,
and the pressure II = II(¢, #). The Brownian motion W = W (¢, z) = (Wi(t, z))4;
with values in Ly(T¢ — RY) (the set of vector fields on T¢ with L, components)
is added as the random force. Physical interpretation of (1.3) and (1.4) are the
mass conservation, and the motion equation, respectively. We note that the
SPDE (1.3)—(1.4) for the case p = 2 is the stochastic Navier-Stokes equations
3, 4].

Our motivation comes from works by J. Malek, J. Necas, M. Rokyta, and
M. Ru#idka [7], where the deterministic equation (the colored noise 0;W in
(1.3)—(1.4) is replaced by a non-random external force) is investigated. Let:

3d 3d—4 { 34 for d < 4,

d+2
irz’ d 33;4 for d > 4.’

p(d) =

(1.6)



2d 3d — 8+ v9d? + 64
T ——— = 1-
and
(p1(d), 00) | if2<d<s,
pE S (P1(9) p2(9)) U(ps(9), 0o) if d=09, (1.8)
p3(d), 00) if d > 10,
For example, p;(d) = %, %, 2, 1? for d = 2,3,4,5. A basic existence theorem [7,

p.222, Theorem 3.4] states that the deterministic equation has a weak solution
if (1.8) is satisfied, while a weak solution is unique if p > 1+ % (7, p.254,
Theorem 4.29).

The results in the present paper (Theorem 2.1.3 and Theorem 2.2.1 below)
confirm that the above mentioned deterministic results are stable under the
random perturbtation we consider.

Let us briefly sketch the outline of the proof of our existence result:

Step 1. Set up a finite dimensional subspace of a smooth, divergence-free vector
fields, say Vy,, and an approximating equation to the SPDE (1.3)—(1.4) in V,.
A good news here is that the approximating equation is a well posed SDE,
admitting a unique strong solution u" € V,. See Theorem 3.1.1 below for
detail.

Step 2: Establish some a priori bounds for the solution u™ € V), of the ap-
proximating SDE (e.g.,(3.10), (3.13), (3.14), (3.15) below). The point here is
that the bounds should be uniform in n for them to be useful. Martingale
inequalities (e.g., the Burkholder-Davis-Gundy inequality) are effectively used
here, working in team with the Sobolev imbedding theorem. See for example
the proof of (3.10) below for details.

Step 3: Show that the solutions u™ € V), to the approximating SDE are tight
as n — oo. This is where the a priori bounds in Step 2 play their roles as the
moment estimates to ensure that the tails of the solutions are thin enough in
certain Sobolev norms. This tightness argument is implemented in section 3.4.

Step 4. By Step 3, u™ (n — o0) converges in law along a subsequence to a
limit. We verify that the limit is a weak solution to the SPDE (1.3)—(1.4).
These will be the subjects of section 4.1.

Here are some comments concerning the technical difference between the
Navier-Stokes equations (p = 2) and the power law fluid equations. For the
Navier-Stokes equations (both stochastic [3, 4] and deterministic [9]), it is
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reasonable to discuss solutions in the Lo-space. On the other hand, for the
power law fluids given by (1.2), it is the L,-space and its dual space that
become relevant. Also, due to the extra non-linearity introduced by (1.2),
some of the arguments for p # 2 become considerably more involved than the
case of p = 2, especially for p < 2. (See for example, proof of Lemma 3.2.2
below.) We will overcome this difficulty by carrying the ideas in [7] over to the
framework of It6’s calculus.

1.1 A weak formulation

Let V be the set of Révalued divergence free, mean-zero trigonometric poly-
nomials, i.e., the set of v : T¢ = R? of the following form:

v(z) = Z b (x), €T, (1.9)

2€Z3\{0}

where 1,(z) = exp(2miz - ) and the coefficients ¥, € C¢, z € Z¢ satisfy

v, = 0 except for finitely many z, (1.10)
v, = U, forallz, (1.11)
z-v, = 0 forall z. (1.12)

Note that (1.12) implies that:
divv=0 forallveV.
For o € R and v € V we define
(1= A)*20 = (1 +47°|2]")**0,..

2€Z°

We equip the torus T¢ with the Lebesgue measure. For p € [1,00) and o € R,
we introduce:

Vp.e = the completion of V with respect to the norm || - |4 » (1.13)
where
Iollze = [ 11— A)2/20p. (114
’H‘d
Then,
Voarp C Voo, forl<p<oo,a€Rand >0 (1.15)

and the inclusion V, 445 — Vpq is compact if 1 < p < oo [8, p.23, (6.9)].



For v,w : T — R% with w supposed to be differentiable (for a moment),

we define a vector field:
(v-Vw= Z v;05w, (1.16)
J
which is bilinear in (v, w). Later on, we will generalize the definition of the
above vector field (cf. (1.30)).

Here are integration-by-parts formulae with which we reformulate (1.3)-
(1.4) into its weak formulation. We omit its proof. In what follows, the bracket
{(u,v) stands for the inner product of Ly(T? — RY), or its appropriate gen-
eralization, e.g., the pairing of u € V,, and u € Vy _, (p € (1,00), ¢’ = p—fT,
a > 0). We let C"(T% - R?) (r = 1,...,00) denote the set of vector fields on
T? with C™ components.

Lemma 1.1.1 Forv € V and w,p € C}(T¢ — R?),

(o, (v VIw) =—(w,(v-V)p), (1.17)

In particular,
(w,(v-V)w) =0, (1.18)

Furthermore,
(p.divr(v)) = —(7(v),e(p) ). (1.19)

Let us explain formally how the transformation of the problem (1.3)—(1.4)
into its weak formulation. Suppose that «,II and "8;W”in (1.3)—(1.4) are
regular enough. Then, for a test function ¢ € V,

%) (p,u) == {p,(u-Vu)+(p, div 7{u) )~ (& VL) +(aW, ¢).

e

1) 2 3)

0= = V)pu), @) ~(elp).7(w)), (3) = ~(div 1) =0.
Thus, *) becomes

0(p,u) = ((u-V)p,u) —(e(p), 7(u) ) + 8o, W).

By integration, we arrive at:

<90,ut>:<90,uO>+/0 (((us - V), us ) = (e), 7(us) ) ds+ (0, Wi). (1.20)

Here, u; = u(t, -) and Wy = W (¢, -). This is a standard weak formulation of
(1.3)—(1.4).
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1.2 Bounds on the non-linear terms

Let us prepare a couple of L,-bounds on the non-linear terms, some of whose
proofs we will omit.

Lemma 1.2.1 Let o; € [0,00), p; € [1,00), i = 1,2,3, be such that:
A > Bd, where A=Y, 0; and B = Z < —1. (1.21)

a) Suppose (1.21) and that %Ag < i for all i = 1,2,3. Then, there exists
C1 € (0,00) such that:

w, (v V))| < Cil[vllpy,alwllps 00l Pllps1+as- (1.22)
for v,w,p € C®(T? — RY).

b) Suppose (1.21), oy + ag > 0, and that B < — for alli=1,2,3. Then, for
any 6 € (0,1), there exists Cz € (0, 00) such that:

[{w, (v-V)p)| < Callolly, oo 10llpr o, lwlpe, [l 0l @llpg1+as-  (1.23)
Lemma 1.2.2 Let: a € (0,1] and p € (7,
a) Suppose that (d,p,a) # (2,2,1). Then, there ezists C; € (0,00) such that:

[(w, (v V)p)| < Cil|vllpallwllellellpsmae)- (1.24)
for v,w, p € C®(T¢ = R?), where

00).

1+(2—l)d-fa>1 zfp<
a) = p 2 d+2a’ 1.25

b) Suppose that d = 2. Then, for any 6 € (0,1), there exists Cy € (0,00) such
that:

(w, (v-V)p)| < Callwllg1llvllz™ lwllpz lwl3lela, (1.26)
for v, w,p € C°(T?¢ — R?).

Remark: We note that the following variant of (1.24) is also true:
[(w, (v-V)p)| < Cillvlizllwllpellellpsma- (1.27)

This can be seen by interchanging the role of (py, ;) and (p2, a2) in the above
proof.
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Lemma 1.2.3 For p € (1,00), there exists C1 € (0,00) such that:
[{e(@), 7(v) )| < Cr(1+le()[lp)* le(@)llp for allv € Vp1 and o € V. (1.28)

Proof: Since
[T(0)| < C(1+ |e(w)])P,

we have that
19

(elp), 7)) < € /Td(1+|e<v>|>p-11e<so>r "7+ I e,
<

C1+ lle@)llp)"~ lle(@)llp,
which proves (1.28). O

Let p € (d+2,oo) v,w € V1NV and u € V1. In view of Lemma 1.1.1, we
think of (v - V)w and div 7(u), respectively as the following linear functionals
on V:

def.
o= (o, (v-Vw) = —(w,(v-V)p),

def

p = (g, divr(u)) = —(e(p),7(u) ).
Then, by Lemma 1.2.2 and Lemma 1.2.3, they extend continuously, respectively
on V; 5(,1), and on V,1, where:

(%—%)d>1 1fp<d+2,
= 1-
ﬁ(pa]-) A { 17 lfp > défz, ( 29)
(cf. (1.25)). This way, we regard (v- V)w € Vy _gp1) (P = -57) with:
Cllvlg 1ol llwliz;’llwllf, if p=d =2
1C V)prI,_g(p,n - { Cllvllp1llwlle, if otherwise, (1.30)
and div 7(u) € Vy _; with:
| [div 7 ()l 1 < CA+ [le(w),)" - (131
Finally, for v € V,,1 N V3, we define:
b(v) = —(v- V)v+div 7(v) € Vyy _g0,1). (1.32)
With this notation, (1.20) takes the form:
t
() = (o) + [ (i b(ws) s+ (i, W)
lLe.,
t
U = Uy + / b(us)ds + Wy (1.33)
0

as linear functionals on V.
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2 The stochastic power law fluids

2.1 The existence theorem

We need the following definition.

Definition 2.1.1 Let H be a Hilbert space, and I' : H — H be a self-adjoint,
non-negative definite operator of trace class. A random variable (W});>o with
values in C([0,00) — H) is called a H-valued Brownian motion with the co-
variance operator I' (abbreviated by BM(H,T') below) if, for each ¢ € H and
0<s<t,

Elexp ({0, Wi — W )) |(Wauzs] = exp (—t (.1 >)  as.

To introduce the notion of weak solution (Definition 2.1.2 below), we agree
on the following standard notation and convention. For a Banach space X,
we let Ljjoc([0,00) = X) (1 < ¢ < o0) denote the set of locally L,-functions
u : [0,00) — X, with the Fréchet space metric induced by the semi-norms
llullz,qo11~x), 0 < T < oo, where |[ul|L,(o1)-x) stands for the standard L
norm for ulpr : [0,7) — X. We also regard C([0,00) — X), the set of
continuous functions u : [0,00) — X, as the Fréchet space induced by the
semi-norms supg<s<7 || u(t)|lx, 0 < T < oo.

We recall that the number p is from (1.2) and that b(v) € Vpy _gp,1y for
v € Vp1 N Vg is defined by (1.32).

Definition 2.1.2 Suppose that

» ' : Va9 = Vap is a bounded self-adjoint, non-negative definite operator of
trace class;

» L is a Borel probability measure on V5.
» (X,Y) = ((X3,Y:))>0 is a process defined on a probability space (2, F, P)
such that:

X € LP,IOC([O’ OO) - ‘/P,l)mLOO,IOC([OJ OO) - ‘/2,0)00([0’ OO) - %Aﬂr_ﬂ)v (21)

for some B > 0, and (Y;)>0 is @ BM(Vz,T") (cf. Definition 2.1.1).

Then, the process (X,Y) is said to be a weak solution to the SDE (stochastic
differential equation)

t
X, = Xo + / b(X.)ds + Y, (2.2)
0



with the initial law g if the following conditions are satisfied;
P(Xo € ) = po; (2.3)
Yio. = Yiand {(p, X, ) ; s <t,¢o € V} are independent for any ¢ > 0;(2.4)
t
(.X0) = (. Xo) + [ (0.b0X) s+ (. %),
for all o € V and t > 0. | (2.5)

We can now state our existence result.

Theorem 2.1.3 Let " and pg be as in Definition 2.1.2 and suppose addition-
ally that

» (1.8) holds;
» AI' =TA and both T, AT are of trace class;

» o is a probability measure on Va1 and
Mg = / 1113 at0(d€) < 00 for =0, 1. (2.6)

Then, there exists a weak solution to the SDE (2.2) with the initial law po (cf.
Definition 2.1.2) such that (2.1) holds with 8 = 3(p,1) (cf. (1.29)). Moreover,
forany T > 0,

T
Blsuplxi+ [ 1] <+ 700 < oo (27)
t<T 0

where C = C(d, p,I", mg) < oo0.

Remark: It would be worthwhile to mention that Theorem 2.1.3 with p = 2
is valid for all d, although it is not covered by the condition (1.8) if d > 4. In
fact, Lemma 3.2.2 below is the only place we need condition (1.8). For p = 2,
however, we can avoid the use of that lemma, cf. remarks at the end of section
3.4 and after Lemma 4.1.1.

2.2 The uniqueness theorem

As in the case of deterministic equation [7, p.254, Theorem 4.29], we have the
following uniqueness result:
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Theorem 2.2.1 Suppose that:

d
p2 1+§- (2.8)

Then, the weak solution to the SDE (2.2) subject to the a priori bound (2.7) is
pathwise unique in the following sense: if (X,Y) and (X,Y) are two solutions
on a common probability space (Q, F, P) with a common BM(V3,T) Y such
that Xy = )Z'o a.s., then,

P(X; = X; for allt >0) =1.

This can be proved as similarly as the deterministic case, and we omit its proof.
The above uniqueness theorem, together with the Yamada-Watanabe theorem
provides us with the so called strong solution in the stochastic sense to the
SDE (2.2). ‘

Corollary 2.2.2 Suppose (2.8) in addition to all the assumptions in Theorem
2.1.8, and let £ be a given Vs o-valued random variable with the law o, and Y be
a given BM(Vs,T), independent of §. Then, there exists a process X obtained
as a function of (€,Y), such that (X,Y) is weak solution to the SDE (2.2) with
Xo = € and with all the properties stated in Theorem 2.1.8. Moreover, the law
of the above process X is unique.

Proof: Corollary 2.2.2 is a direct consequence of Theorem 2.1.3 and Theo-
rem 2.2.1 via the Yamada-Watanabe theorem [2, p.163, Theorem 1.1]. The
Yamada-Watanabe theorem is usually stated for SDE’s in finite dimensions.
However, as is obvious from its proof, it applies to the present setting. a

Remark: For p € [1 + % , d2—_dz), an even stronger version of Corollary 2.2.2 is

shown in [11] as a consequence of strong convergence of the Galerkin approxi-
mation (cf. section 3 below).

3 The Galerkin approximation

3.1 The exsitence theorem for the approximations
For each z € Z%\{0}, let {ez,j};’;% be an orthonormal basis of the hyperplane:
{z € R?; z-z =0} and let:

[ V2e,jcos(2nz - z), j=1,..,d-1, p
¥ai(7) = { ﬂez’j_d+1 sin(2rz-z), j=4d,...,2d — 2, zeT (3.1)



Then,
{¢.; (2,5) € (ZN\{0}) x {1,...,2d — 2}}
is an orthonormal basis of V2. We also introduce:

Vo = the linear span of {¢,;; (2,7) with 2z € [-n,n]?},

Pn = the orthogonal projection : Vo9 — V. (3:2)

Using the orthonormal basis (3.1), we identify V, with RY, N = dimV, Let
po and T' : Vo9 — Voo be as in Theorem 2.1.3. Let also ¢ be a random
variable such that P({ € -) = po. Finally, let W; be a BM(V4,T") defined
on a probability space (QW,FW PW). Then, P,W, is identified with an N-
dimensional Brownian motion with covariance matrix I'P,. Then, we consider
the following approximation of (2.5)

t
Xp= X3+ [ PO+ P, 120, (3.3)
0
where X = P&, Let:

XP = (X ey ) (34)
be the (z, j)-coordinate of X*. Then, (3.3) reads:

. t . 5
Xp = Xp [ p K W (3:5)
0

where
b (XT) = (X7, (X7 Vg ) = (T(XD), e(thzg) )y Wi = (Wi ey ). (3.6)
Let W. and £ as above. We then define
Y = o(&We s<1), 0<t<oo, G =0 (Unedf"),
NeW = INcQ,;INegGy”, Nc N, P"(N)=0},

and
FoV — o ( &w UN‘&W) , 0<t < oo (3.7)

In what follows, expectation with respect to the measure P will be denoted
by EW[-].

Theorem 3.1.1 Let W, &, and J—'f’W be as above. Then, for eachn =1,2, ...
there exists a unique process X™ such that:
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a) X7 is F&'" -measurable for all t > 0;
b) (3.3) is satisfied;
c) Forany T >0,

1

T
W [IIX?II% +2 [ elxn, o e

= EW[IIXSII%] + tr(TPa) T, (3.8)
[HXTnz +1 / X715
<moy+ (C+tr(I'))T < oo, (3.9

where C = C(d,p) € (0,00).

Suppose in addition that p > d +2, where p is from (1.2). Then, for any T > 0,
BV [sup X713 + / Xl <1 +T)C <00, (310)
t<T

where C' = C'(d, p,T, my) € (0,00)

Proof: We fix the accuracy n of the approximation introduced above, and
suppress the superscript “n ” from the notation: X = X". We write the
summation over z € [-n,n]? and j = 1,..,2d — 2 simply by ) .. Since
v > Ppb(v) : Vi — V, is locally Lipschitz continuous (see (3.6)) and

1) (v,b(v)) = —(e(v), T <>><c-—nvnp1,

where we have used [7, (1.11) on p.196,and (1.20); on p.198] to see the second
inequality. This implies that there exists a unique process X. with the proper-
ties a)-b) above, as can be seen from standard existence and uniqueness results
for the SDE, e.g. [2, Theorem 2.4 on p.177, Theorem 3.1 on pp.178-179] (cf.
the remark after the proof). Note that for  =0,1,2, ...:

V203 = (v, (=A)* ) = Y (—4n?|2[)*(v, 92 )?, v € Va.

2,J

On the other hand, we have by Itd’s formula that:

. . t . . t . .
XPP = X5+ 2 [ Xe9aws 42 [ X )ds + (1 T
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Therefore,

IVEXel15 = VXI5 + 2M; + 2 /0t< (=A)*X5,b(X;) yds + tr(T(=A)*Pn)t,

(3.11)
where

t
M= / (=AY X2 qW . (3.12)
2,3 0

Here, we will use (3.11) only for & = 0. The case @ = 1 will be used in the
proof of Lemma 3.2.3 later on. By (3.11) with a =0,

2 t
D) Xl | IXlgads < XalB + 20+ (O + (D)

where M; in 2) is defined by (3.12) with o = 0. Since it is not difficult to see
that the above M, is a martingale (cf. [3, p.60, Proof of (10)]), we get (3.8) by
taking expectation of the equality (3.11). Similarly, we obtain (3.9) by taking
expectation of the inequality 2). To see (3.10), it is enough to show that there

exists § € (0,1] such that:
T 5
([ 1xitg,at) J

To see this, we start with a bound on the quadratic variation of the martingale
M.

3) EV {sup HXtH%} <(1+T)C+CEY
t<T

4 (M= /0 (TX,, X, Yds < |Tllsss /0 1. |2ds,

where ||I'||2-2 denotes the operator norm of ' : V59 — V2. We now recall the
Burkholder-Davis-Gundy inequality [2, p.110, Theorem 3.1]:

5) EY {sup |Mt|qJ < CEY [< M >g!2] for g € (0, 00)
t<T

We then observe that:

t<T

([ xzas) UT .

2)
W [sup ntha] 2 1+T)C+28" {sup |Mt1]
t<T
6) 4)5)

< (1+T)C+CEY
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This proves 3) for p > 2. We assume p < 2 in what follows. We have

e inf{t; || X¢ll2 > €} oo, asl /oo,

since the process X; does not explode. On the other hand, it is clear that the

following variant of 6) is true:
TAeg 1/2
) B[ o x| <aemesor ([ i) |
0

t<TAeg

We have by Sobolev embedding that for v € V},1:

7) ”’0”2 < C”vllp 1, sincep 2> 75 d+2
Let € > 0, r———E(4oo)andr 1‘@ (1,4/3). Then,
TNeg 1/2 TAeg 1/2
([ ixias) < s pxas® ([ wxizas)
0 s<TAe, 0 P
7) 2-p T/\eg 1
8) 2 ¢ osup X ( / uxsu;;,lds)
s<TNeg 0 )
' Young g C —7‘ C T Neg 2tp
< 22 sup || X242 (/ IIXsllﬁ,ldS) -
T s<The; 0

Since EY [sup;<rpe, | Xtll3] < £2 < o0, we have by 6’) and 8) that:

TAeg ﬁp
( / ||Xt||§,1dt) .

Letting ¢ oo, we obtain 3). a

EY [ sup ||Xt||§] <(1+T)C+CEY"

t<TAep

Remark: Unfortunately, the SDE (3.3) does not satisfy the condition (2.18)
imposed in the existence theorem [2, p.177, Theorem 2.4]. However, we easily
see from the proof of the existence theorem that (2.18) there can be replaced
by:

lo(@)|* +z - b(z) < K(1+ |=f*).
We have applied [2, p.177, Theorem 2.4] with this modification.

3.2 Further a priori bounds

We first prove the following general estimates, which apply both to the weak
solution X to (2.2), and to the unique solution to (3.3).



Lemma 3.2.1 Let T > 0 and X = (X¢)1>0 be a process on a probability space
(Q, F, P) such that:

X € Lp([O,T] — V;,,l) N Loo([O,T] — 1/2’0), a.s.

and

T
Ar=E U ||Xs||g,1ds] <00, Br=E
0 s€[0,T1]

sup ||Xs||2] < 0.

a) Forp €[22, 00),

d+2?

T )
(/o I V)Xsnz',—/xp,nds)

where § = 5%, p = p—fi, B(p, 1) is defined by (1.29), and C = C(d,p) €
(0, 00).

b)

< CASBL < 0, (3.13)

E [/T [|div T(XS)|I§:’_1d8:| <(T+ Ar)C' < o0, (3.14)
where C' = C'(p, Z) € (0,00).
Proof: a): We have by (1.30) that
D) - 9ollyspa < Cllolpallolls for v € VyanVag

We then use 1) to see that
def T p Y T p p
PN DIX ads £C [ IXg X s

< C sup X8 / 1 X2 ds.
sEOT

Finally, noting that T’f—é = 2, we conclude that

B[] < CE 21(1)1; X 15 (/ 115, dS) }

CE | sup || X]f3

é
E{ [ x| = comyeag
| s€[0,7] 0 ’

IN




26

b):
) . (1.28) 1
div 7(Xs)ly1 < C(1+ lle(Xs)llp)P
which implies that:
div 7(X)I5 _, < C + Clle(X)IIB

and hence that:
T
E L/ ||div T(Xs)Hg/,_ldS]
0

T
< CT+CE [ / ||e<xs)||gds] < (T+ Ar)C.
0
]

Let X" = (X!)i>0 € V be the unique solution of (3.3) for the Galerkin
approximation.

Lemma 3.2.2 Suppose (1.8). Then, there exist p € (1,p) and & € (1, 00) such
that for each T > 0:

T ~
B | [ 1x01fatt] < r <o (3.15
0

where the constant Cr is independent of n.

We will have slightly the better results than the results stated in Lemma 3.2.2
in the course of the proof. For i) d =2 and p > 2 and ii) d > 3 and p > p3(d),
we have that:

T 2p_
EW { / ||AXt"||2”+”dt] < Cr < o0, (3.16)
0

where A > 0 is defined by (3.18) below. For p < %, we have that:

T ~
EY [ / ||Xt"||£,adt] < Or < oo, (3.17)
0

for any p € (1,p) with some & = a(p) > 1.

The rest of this section is devoted to the proof of Lemma 3.2.2. We suppress
the superscript n from the notations. We write the summation over z € [~n, n]®
and j =1, ..,2d — 2 simply by Zz,j. We first establish the following bounds.



Lemma 3.2.3 Suppose that p € (i‘t—“, o0) if d > 3 and let:

0 ifd=2,
A= { 23— p)*; of [1,p.296, (347)),  (3.18)

fd>3
ip—3d+4 V2
[AX:]3 .
>2
T = (14 |VXe]|3)N yr=2 (3.19)
¢t = AX:2 ifl<p<?2 |
L+ VXD + [VXl,p)2 >’ '
Then, for any T > 0,
T
EW [/ Jtdt} < Cr < oo, (3.20)
0

where Cr = C(T,d,p,T,my).
Proof: By (3.11) with o = 1,

t
1) VX = LVXold + M, + / K.ds,
0

where

t .
My=->" / AXPAWE!, Ky = (—AX,,b(X,) ) + str(-TAP,).
z,J 0

Step 1: We will prove that:
0 if d =2,

2 K, I, < i
) T {01<1+||vxtn%>k<1+nvxtnp)p, if d >3

where ¢;, C; € (0, 00) are constants and
Z= [ 1+ (X)) e
To show 2), note that:
(—AX5,b(Xs) ) = (—AX,, (X, - V)X, ) — (7(X,), e(-AXy) ).

We see from the argument in [7, p.225, proof of (3.19)] that:
3) (1(X,), e(~AX,)) > 20T, |
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On the other hand, we have by integration by parts and Holder’s inequality
that:
(-a%, (X, V)X) = Y [ axioxia. X! < IVXIE,
ik T
where X7 = Zze[—n,n]d X#ap, ;. Tt is also well known that the inner pdoduct on
the LHS vanishes if d = 2 [7, p.225,(3.20)]. By the argument in [7, pp.234-235,
proof of (3.46)] (This is where the choice of X is used), we get:

VX3 < Gl + VX2 A + IV Xel,)P + erTs.

These imply that:

=0 if d =2,

4) (=AX,, (Xs - V) Xy ) { < Ci(1+ |VXR A + [VXelp) + oL, if d> 3.

We get 2) by 3)—4).
Step 2, Proof of (3.20): By [7, p.227, (3.25)-(3.26)], J; and I, are related as:

T
1+ (VX3

J<C

Therefore, it is enough to prove that:

t Z.ds
5) EW [/ > :l < CT <0
o (1+[IVX[5)*
where Cr = C(T, d, p,T',mg,m1) € (0,00).
To see this, we introduce the following concave function of z > 0:

[ 4 A #£T,
f@%_{&&+x) if A =1

Then, we have by 1) and Itd6’s formula that:

b dM t Kds
VX < VX 2+/' ° +2/ ’ ,
FUvXdR) < JUVXola) + [ aoxmy *2 ), Gr VX
where we have omitted the term with f” < 0. Moreover, by 2)

Ks < _ Clzs
I+[VXIR* = A+ VXD

5 T O+ IV X[lp)?,

0< f(z) <Cy(1+2z) if A€ [0,1], and —A—_l-_—ISf(x)SOifA>1.
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Putting these together, we get:

t T.ds
—C. 2c EV / s
2% {0 <1+nvxsn§>AJ

< o1+ BIVXl) + CEY [ / A+ VX ],)Pds

(3.10)
< C(Ta dapa FamOaml) < 0,

where C3 = 0 if X € (0,1], and C5 = 125 if A > 1. This proves 5). O
Proof of Lemma 3.2.2: We note that:

p1(d) < p3(d) < pa(d) for d <8,
p1(9) = 2.555... < pa(9) = 2.5714... < p3(9) = 2.620...
p2(d) < p1(d) for d > 10.

Thus, the condition (1.8) takes the following form in any d > 2:
p € (p1(d), p2(d)) U (ps3(d), 00). (3:21)

We consider the following four cases separately:
Case 1: d =2 and p > 2;
Case 2: d > 3 and p > p3(d);
Case 3: p € (p1(d), p2(d)) and p > 2;
Case 4: p € (p1(d),2) (This case appears only if d = 2, 3).
The first two cases cover the interval (p3(d), c0) in (3.21) (Note that p3(2) =

2), while the last two cases cover the interval (p;(d), pa(d)).

Case I: By (3.20), (3.15) has already been shown with p = a = 2.

Case 2: Note that p > p3(d) > 2 and that g o p_ > 1/2. We prove (3.16).

p+2X
Since A8 = £(1 - B),
T T '
o [ / nAxsn’s’ﬂds} _ BV [ | e+ nvxsu%)wds}
0 0

BH(1-p)=1 T p T
1) < EY [/ jsds} EW U (1+|jVX5||§)’éds}
0 0

(3.10),(3.20)
< Cr < 00,

1-5

where, we used (3.20) for p > 2.
Case 3: We prove (3.17) for given p € (1,p) with some & = a(p) € (1,2). Let
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B = ;E5 € (0,1). Then, the bound 1) from Case 2 is still valid, although it
may no longer be the case that 28 > 1 here. On the other hand, it is not
difficult to see via the interpolation and the Sobolev imbedding that for any
P € (1,p), there exist & € (1,2) and 6 € (0,1) such that:

T 6 T
/ 1% ds<c( / nxsnz,lds) (/0 uxsn‘;‘,%ds)

(cf. [7, p.238, proof of (3.58)]. This is where the restriction p < 3-2_—‘_15 is neces-
sary.) Thus,

T B T o T ) 1
B [ / nxsnz,ads} < CEV [ / nxsng,lds} B [ / nxsu;;ds]

(3.10),1)

< CT < ©0. (3.22)

1-6

-6

Case 4: We prove (3 17) for given p € (1, p) and with some a = a(p) € (1, 2).
We recall that p > d +2 and set:

((d+2)p—3d)p

B = arop sd—p < 0D
Then,
def (2 —p)dX an (2-p)B —p)ﬁ
2) o e e, md SEEe0p)

As a result of applications of Holder’s inequality, the interpolation and the
Sobolev imbedding (cf. [7, pp.239-240, (3.60)—(3.63)]), we arrive at the follow-
ing bound:

B
3) / lax.as < ( / 7uds) (h+ 0",

where

T 2-p T
I = / (1+||VX3Hp)L_)_1—Bﬂds, I, = ( / ||AXS||pﬂds> ( / VX, II”ds>
0 0

We first prove that:

1-p

T
4) EW [/ HAXst,Bds] < Cr < .
0



_r _ 1
€ (L,oo)and ' = ;55 = = €

We first assume d = 3, where p > 0. Let r =
(1,00). Then, for € > 0,

p—

1
0

T 3) T 1Y .
EW { / ]|AXs||f,5ds} < CEY ( / jsds) (I + L)
0 0
B+1-p)=1 T 1° s
< CE" [ / Jsds} EV I + I
0
(3.20)
< CrE[1+ I + 1],
(3.10),2)
EW [Il] S CT<OO7
w Young ¢T W T 5 6—7" W T
BVn < IE / |ax,|2ds| + Sk / IV X, [2ds
0 0

(3.10)

r T
< %EW [/ ||AXS|l§ﬁds]+C’T.
0

Putting things together, with e small enough, we arrive at 4) ford = 3. If d = 2
and hence p = 0, then, we have EW [I,] < Cr directly from (3.10). Therefore,
the proof of 4) is even easier than the above.

We finally turn to (3.15). It is not difficult to see via the interpolation (cf.
(7, pp.240-241, proof of (3.65)]) that for any p € (1,p), there exist & € (1,2)
and 6 € (0,1) such that:

T B T 0 T 25
[ s <o [Tixigas) ([ 1)
0 0 0

Thus,

T B T 6 - T 25 1
ok [/ ||Xs||z,ads} < cB" [/ ||Xsu§,1ds} B [/ uxsn,,,zds}

(3.10),4)
< CT < OQ.

1-6

-6

3.3 Compact imbedding lemmas

We will need some compact imbedding lemmas from [4]. We first introduce:

Definition 3.3.1 Let p € [1,00), T' € (0,00), and E be a Banach space.
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a) We let L,([0,7] — E) denote the Sobolev space of all u € L,([0,T] = E)
such that:

t
u(t) = u(0) + / u'(s)ds, for almost all ¢t € [0,T]
0

with some u(0) € E and u/(-) € Ly([0,T] — E). We endow the space
L,1([0,T] — E) with the norm ||ul|z_,o,7j—E) defined by

T
lully, . qormy = [ ([w®IE + [/ (B)[E)dt.
pa(OTI2E) = |

b) For o € (0,1), we let L,,([0,7] = E) denote the Sobolev space of all
u € L,([0,T] — E) such that:

. p
/ [ut) —u(s)E 3 < oo,
O<s<t<T

|t— 8|1+ap

We endow the space L,,([0,T] — E) with the norm |ul, (o11~E) de-
fined by

ul|? ——/ u(t ”dt—l—/ E dsdt.
I “Lp"’([O’T]%E) 0 () 0<s<t<T |t — S[1TOP

To introduce the compact imbedding lemmas, we agree on the following stan-
dard convention. Let X be a vector space and X; C X be a subspace with the
norm | - ||; ( = 1,2). Then, we equip Xo N X; and Xp + X respectively with
the norms:

lullxsnx, = lullo + llull1,
lullxerx, = inf{lluollo + lualli 5 u = uo + w1, u; € X;}.

The following lemmas will be used in section 3.4.

Lemma 3.3.2 [4, p.8370, Theorem 2.2] Let:

compact

» E,,....E, and E be Banach spaces such that each E; — E,1=1,..,n.
» p1,...,Pn € (1,00), aq,...,an > 0 are such that pja; > 1,i=1,...,n.
Then, for any T > 0,

compact

Lp o, ([0,T) = E1) + ... + Lp, o,([0,T] = Ep) — C([0,T] = E).



Lemma 3.3.3 [4, p.372, Theorem 2.1] Let:

E B ESE

0 1

be Banach spaces such that the first embedding is compact, and Ey, E; are
reflexive. Then, for any p € (1,00), a € (0,1) and T > 0,

compact

Lp([0,T] = Eo) N L,y o([0,T] = E;) =  Ly([0,T] — E).

3.4 Convergence of the approximations

Let X™ = (X")s>0 € V be the unique solution to (3.3) for the Galerkin approx-
imation. We write:

p= p—ﬁ? pP'=pAp. (3.23)
Let B(p,1) be defined by (1.29) and let > 1 be the one from Lemma, 3.2.2.
We may assume that p € (1,p"]. We also agree on the following standard
convention. Let S be a set and p; be a metric on S; C S (i = 1,2). Then, we
tacitly consider the metric p; + p on the set S; NSy (cf. (3.24) below). Then
we have the following proposition, using the various estimates proved before

and the lemmas concerning the compact embedding.

Proposition 3.4.1 Let 8 > [(p,1). Then, there exist a process X and a
sequence (X¥)i>1 of processes defined on a probability space (Q,F,P) such
that the following properties are satisfied:

a) The process X takes values in

C([0,00) — Varp,—p) N Lﬁ,loc([Oa 00) = V). (3.24)
b) For some sequence n(k) /* co, X* has the same law as X"®) and
klim X*¥ = X in the metric space (8.24), P-a.s. (3.25)
00

4 Proof of the Existence of Solutions

4.1 Proof of Theorem 2.1.3

Let X and X* be as in Proposition 3.4.1. We will verify (2.1) (with 8 = B(p, 1)),
as well as (2.3)—(2.5), and (2.7) for X. (2.3) can easily be seen. In fact,

Xéc — Xo a.s. in Vory, g,

33
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XE'2 xo®) =Py = € in Vap.
Thus the laws of X and £ are identical.
Xkl Xg(k) = Pp€ = £ in Vap.

Note that the function:
T
o s supluld+ [ g
t<T 0

is lower semi-continuous on the metric space (3.24). Thus, (2.7) follows from
(3.10) and Proposition 3.4.1 via Fatou’s lemma.
To show (2.4)—(2.5), we prepare the following:

Lemma 4.1.1 Let p € V and T > 0. Then,

T
lim / (@, (XF-V)XE— (X;-V)X;)|dt = 0 in probability (P), (4.1)

k—o0 0

lim / (e(@), 7(XF) — (X)) |dt = 0 in Li(P), (4.2)

lim (90,77 (k )b(Xt) —b(X;) Ydt = 0 1in probability (P). (4.3)

k—00 0

Proof: We write Zf = X] X* — X, to simplify the notation. We start by proving
that:

T

lim E [/ ||Ztk||§i 1dt} =0, if p1 <p. (4.4)

k—o0 0 ’
By Proposition 3.4.1,

aet. [T k
I, = / | Z¥||11dt =5 0, P-as.
0

Moreover, the the random variables {I;}x>1 are uniformly integrable, since

(3.10)

E[Ip] < Cr < 0.

Therefore,
2) lim E [I;] = 0.
k—o00

Let k(m) /* oo be such that:



3) Dt o IZ )I + |VZtk(m)[ 0, dtljor x dz x P-a.e.,

where dt|jp 1] X dz denotes the Lebesgue measure on [0,7] x T¢. Such a se-
quence k(m) exists by 2). The sequence {®m, }m>1 are uniformly integrable
with respect to dt|p 1 x dz x P. In fact,

T » (3.10)
E / /d (I)m,tdt < Cr < oo.
0 T

Therefore, 3) together with this uniform integrability implies (4.4) along the
subsequence k(m). Finally, we get rid of the subsequence, since the subse-
quence as k(m) above can be chosen from any subsequence of k given in ad-
vance.

We now prove (4.1): Since,

(XF-V)XE - (X, V)X, = (ZF - V)XF + (X, -V)ZF,

we have: T _
| e (R 9)RE = (X V)Xt < S+
0

where
Jp = /| (ZF-V)XEF)|dt, and Jp = /Iso, (X V)ZF)|de.

We may take p; in (4.4) is bigger than 34 i) +2, so that there exists 0 < a < 1 such
that 75— +2a < p1. Then, by (1.24), we have that:

{0, (ZF - V)XE N < CllZE lps,al XENallllpr 001,0)

and hence that:
N T
71 < Cllolh, stone 5p | X1l / 1ZE ol
t<T 0
By (3.10) and (4.4),

T
sup E[sup || XF||2] < co and lim/ 1 ZF|p,.adt =0 P-as.,
Thus, limj_,o J; = 0 in probability. On the other hand, we have by (1.27)
that:

(@, (Xe- V) ZE )| < Ol ZE|lpall Xell2ll @l peor.)
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and hence that:

T
J2 < Cllollps s(or.0y SuD 1 Xl / 12l adt
t<T 0

By (2.7) and (4.4),
T
Efsup || X¢]|3] < 0o and lim/ |1 Z¥|lp, 0dt =0 P-as.,
t<T k—oo Jq

Thus, limy_,o, J2 = 0 in probability.
We now turn to (4.2): It is enough to prove that:

4  LmE { /0 " —T(Xt)llldt] ~0.

k—o0

Again, let k(m) be such that 3) holds. Then,
5) lim 7(XF™) = 7(X,), dt|oz x dz x P-a.e.

m—ro0

On the other hand, we have for p' = 1{—1 that:

E [/OTdt/Tdh(X’f)p'} <CE Uont/Td (1+ |e(5('t’°)|)p] L or < o0,

which implies that T()?tk), k € N are uniformly integrable with respect to
dt|jo;r) X dx x P. Therefore, 5) together with this uniform integrability implies
4) along the subsequence k(m). Finally, we get rid of the subsequence, since
the subsequence as k(m) above can be chosen from any subsequence of k given
in advance.

(4.3) follows from (4.1) and (4.2). Since ¢ € V is fixed and k is tending to oo,
we do not have to care about Py ;) here. O

Remark: If p = 2, then Lemma 4.1.1 is valid for all d. This is for the following
reason. By inspection of the proof above, we see immediately that (4.1) follows
also from the modification of Proposition 3.4.1 mentioned at the end of section
3.4. Also, for p = 2, (4.2) is equivalent to:

T ~
lim | (Ap, XF— X,)dt =0 in Li(P),

k—o0 0

which also follows from the modification of Proposition 3.4.1 mentioned at the
end of section 3.4.
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Lemma 4.1.2 Let:
t
Y, = Yi(X) = X, — Xo — / b(X.)ds, > 0. (4.5)
0

Then, Y. is a BM(Va,I"). Moreover, Yii. —Y; and {{ p, Xs) ; s < t,p € V}
are independent for any t > 0.

It is enough to prove that for each ¢ € YV and 0 < s < ¢,

1) E[exp(ith—lG))lgs]=exp(—t;3<so,1“s0>),a-&

where Gs = o({ ¢, Xy ) ; u < s,p € V). We set

F(X) = f(( ©1, Xuy )5 < On, Xu, >)a

where f € C,(R"),0 < u; < .. < u, < sand ¢y, ..., o, € V are chosen arbitrary
in advance. Then, 1) can be verified by showing that: '

2) E[exp(iw,n-m)mxn=exp(— <90,F¢>)E[F(X)]-

Let:

t—s

2

YF=XF— Xk - / t Paup(XE)ds, t > 0.
We then see from Theorem 3.1.1 thai?:
B [ew (¥ - vE) PERY] = e (-
Moreover, we have

Lim (o, V¥ — YF) @2 i1 (0, ¥, — Y, ) in probability,
k—o00 k—o0

t—s
2

(6, TPy >) B[F (R,

and hence
lim LHS of 3) = LHS of 2).

k—oo
On the other hand,
lim RHS of 3) "2 RHS of 2).
—00
These prove 2). O

Finally, we prove (2.1) with 8 = (p,1). It follows from (2.7) that:
X e Lp,loc([O, OO) — V‘;,,l) N Loo,loc([o, OO) — ‘/'2,0).

‘Thus, it remains to show that X € C([0,00) = Vory,—s(p,1)). But this follows
from Lemma 3.2.1 and that Y € C([0,00) — Vap). O
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