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1 Introduction

Leonard systems [23] naturally arise in representation theory, combinatorics, and the theory of orthogonal
polynomials (see e.g. [25, 28]). Hence they are receiving considerable attention. Indeed, the use of the
name “Leonard system” is motivated by a connection to a theorem of Leonard [11], [2, p. 260], which
involves the g-Racah polynomials [1] and some related polynomials of the Askey scheme [9]. Leonard
systems also play a role in coding theory; see [10, 18].

Let ® = (A;A%{E};{E},) be a Leonard system over a field K, and V the vector space
underlying ® (see Section 2 for formal definitions). Then V = @fzo EV and dmEV =1 (0<i<d).
We have a “canonical” (ordered) basis for V associated with this direct sum decomposition, called a
standard basis. There are 8 variations for this basis. Next, let Up = (Yr_o EfV) N (Z?:e E;V)(0<£<

d). Then, again it follows that V = @}_, U, and dimUp = 1 (0 < £ < d). We have a “canonical” basis
for V associated with this split decomposition, called a split basis. The split decomposition is crucial in
the theory of Leonard systems,! and there are 16 variations for the split basis. Altogether, Terwilliger
[24] defined 24 bases for V and studied in detail the transition matrices between these bases as well as
the matrices representing A and A* with respect to them.

In this article, we introduce another basis for V', which we call an Erdés—-Ko—Rado (or EKR) basis
for V, under a mild condition on the eigenvalues of A and A*. As its name suggests, this basis arises in
connection with the famous Erdés-Ko-Rado theorem [6] in extremal set theory. Indeed, Delsarte’s linear
programming method [4], which is closely related to Lovdsz’s d-function bound [12, 15] on the Shannon
capacity of graphs, has been successfully used in the proofs of the “Erdés—Ko—Rado theorems” for certain
families of Q-polynomial distance-regular graphs?® [29, 7, 16, 19] (including the original 1961 theorem of
Erdés et al.), and constructing appropriate feasible solutions to the dual programs amounts to describing
the EKR bases for the Leonard systems associated with these graphs; see Section 4. It seems that the
previous constructions of the feasible solutions depend on the geometric/algebraic structures which are
more or less specific to the family of graphs in question. Our results give a uniform description of such
feasible solutions in terms of the parameter arrays of Leonard systems. We refer the reader to [20] for
more details.

2 Leonard systems

Let K be a field, d a positive integer, & a K-algebra isomorphic to the full matrix algebra Matg1(K),
and V an irreducible left &/-module. We remark that V' is unique up to isomorphism, and that V has
dimension d + 1. An element A of & is said to be multiplicity-free if it has d + 1 mutually distinct
eigenvalues in K. Let A be a multiplicity-free element of & and {6;}2_, an ordering of the eigenvalues of
A. Let E; : V — V(6,) (0 < 1 < d) be the projection map onto V(6;) with respect to V = @fzo V(6:),
where V(0;) = {u € V : Au = 6,u}. We call E; the primitive idempotent of A associated with 6;. We
note that the E; are polynomials in A.
A Leonard system in & ([23, Definition 1.4]) is a sequence

(1) ® = (4 A% {Eidio; {Ef Heo)
satisfying the following axioms (LS1)-(LS5):
(LS1) Each of A, A* is a multiplicity-free element in .3

'In some cases, V has the structure of an evaluation module of the quantum affine algebra Uy (2[2), and the split
decomposition corresponds to its weight space decomposition; see e.g. {8].

2Q-polynomial distance-regular graphs are thought of as finite/combinatorial analogues of compact symmetric spaces of
rank one; see [2, pp. 311-312).

31t is customary that A* denotes the conjugate transpose of A. It should be stressed that we are not using this convention.
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(LS2) {E;}., is an ordering of the primitive idempotents of A.
(LS3) {Er}2_, is an ordering of the primitive idempotents of A*.

0 iffi—g|>1

0<14,j<d).
20 iffli—jl=1 OSHISA

(LS4) E;AE; = {
0 ifli—jl>1
#0 ifli—jl=1
We call d the diameter of ®, and say that ® is over K. We refer the reader to [23, 26, 28] for background

on Leonard systems.
For the rest of this article, ® = (A; A*; {E.}{o; {E; }¢_,) shall always denote the Leonard system

(1). Note that the following are Leonard systems in &/
(A* 4 {E* 1_0’{Ei};i=0)’
(A A* {E } _0’{E2—z :i=0)’
‘I’“ = (4 A {BamaYioi { Bl o) -

(LS5) EA™E; = { (0<i,j <d).

Viewing *, |,{ as permutations on all Leonard systems,
2 =2=2=1, x=x], lx=xl, [I={l.

The group generated by the symbols *, |, |} subject to the above relations is the dihedral group D4 with
8 elements. We shall use the following notational convention:

Notation 2.1.1 For any g € D, and for any object f associated with ®, we let f9 denote the corresponding
object for ®9 *; an example is E}(®) = E;($*).

It is known [26, Theorem 6.1] that there is a unique antiautomorphism t of & such that A" = A and
A*T = A*. For the rest of this article, let (-,-) : V x V — K be a nondegenerate bilinear form on V' such
that ([26, Section 15])

(Xuy,ug) = (w1, XTug) (ur,u2 €V, X € &).

‘We shall write
lull? = (u,u) (uweV).

Notation 2.2. Throughout the article, we fix a nonzero vector v9 in EJV for each g € D4. We abbreviate
v = v! where 1 is the identity of D4. For convenience, we also assume v9* = v92 whenever EJ'V = E§*V
(91,92 € D). We may remark that ||v9]|2, (v9,v*9) are nonzero for any g € Dy; see [26, Lemma 15.5].

We now recall a few direct sum decomposmons of V, as well as (ordered) bases for V associated
with them. First, dmE,V*=1(0<i<d)andV = @1 o EV. By (26, Lemma 10.2], Efv # 0
(0 < i < d), so that {Efv}l, is a basxs for V, called a ®-standard basis for V. Next, let U =
(X BrV) N (T, E;V) (0 < € < d). Then, again dimU, = 1 (0 < £ < d) and V = @, U,
which is referred to as the ®-split decomposztzon of V [28]. We observe Uy = E}V and Uy = E4V. For
0 < i < d, let 0; be the eigenvalue of A associated with E,. Then it follows that (A — 8,1)U; = Up+; and
(A* — 6;I)Up = Uy, for 0 < £ < d, where U_1 = Ugy1 = 0 [23, Lemma 3.9]. For 0 <4 < d, let 74,7, be
the following polynomials in K[z]:

£-1 -1
r(2)=[[(z=6:), mel2) = 7}(2) = [[ (2 = bus).
=0 =0

By the above comments it follows that 7(A)v* € Uy (0 < £ < d) and {m(A)v*}¢_, is a basis for
V, called a ®-split basis for V. Moreover, there are nonzero scalars @y (1 < £ < d) in K such that
Arr(A)yv* = 0;1(A)v* + pere—1(A)v*

Let ¢ = <p}L (1 € £ < d). The parameter array of ® is

p(é ({0 }1—01 {9* i=0> {901 =1 {¢1}1— )



Terwilliger {23, Theorem 1.9] showed that the isomorphism class? of ® is determined by p(®) and gave a
classification of the parameter arrays of Leonard systems; cf. [27, Section 5]. In particular, the sequences
{6:}¢. and {6;}2, are recurrent in the following sense:

) 02— 0ip1 07_o— 074,

, are equal and independent of ¢ (2<i<d—1).
0.1 —0; 0y, —6r

It also follows that
(3) &i = p19; + (0] — 05)(0g—i+1 — 6o) (1 <i<d),

where

9h—9dh )
= 1<<i1<£d).
9, = E T 1<i<d)

Note that ¥; =94 = 1. Moreover,
(4) Yairi=8, 9, =49, (1<i<d).
The parameter array behaves nicely with respect to the D4 action:

Lemma 2.3 ([23, Theorem 1.11]). The following hold.

(1) ) = ({9* 1= 09{0 }z 0’ {QD'L i=1) {¢d 1+1}z 1)
(ll) ) = ({9 }1—0’ {gd i 1, 0) {¢d z+1}1,—1’ {Sod z+1}7,— )
(iii) p((IJ )= ({ed z}d 0’ {9*}7,_—07 {¢z 1 {p z=1) .

3 The Erdos—Ko—Rado basis

We shall mainly work with the ®!-split decomposition V = @Z—.o Uel, where we recall

d d
= ( > E;v) n (EEJV) (0<e<d).
2 j=£

i=d—¢

We now “modify” the UZl and introduce the subspaces W; (0 < t < d) defined by®

/A

d d
Wt=(EgV+ > E;V)m EV+ Y EV| (0<t<d).

i=d—t+1 j=t+1
Observe W; # 0 (0 <t < d), Wy = E}V, and W, = EqV. Note also that
(5) W =Wy (0<t<ad).
Proposition 3.1. Let w € W;. Then the following hold.

(w, Egv*)  na—t(fo)
[[Eov*|[?  ma(bo)ns(65)

bd—j41 Te(05)m;_1(05)9¢ .
Z (9 —490)(Z Pa— t)EJv'

i1 P2 oSty Pa—tv1-

(1) w=Fyw +

4A Leonard system ¥ in a K-algebra & is isomorphic to ® if there is a K-algebra isomorphism ~v : & — % such that
V=07 = (A% A BTV {E]},).
5The subscript ¢ is used in accordance with the concept of t-intersecting families in the Erdés—Ko—Rado theorem; see

Section 4.
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(w, Egv) __ ni(%)
|EG[[2 n3(95)na—+(60)
d

1.0 L 6)me-1(60)0e \ ..
X Z ‘P2---30i(93—95)( Z £ "—*—)E,'v.

1=d—t+1 =d—t+1 ¢d_t+1 e ¢l

(ii) w=Ejw+

In particular, EgW; # 0, EgW, # 0, and dim W; = 1.

Notation 3.2. Henceforth we let g be a nonzero scalar in the algebraic closure K of K such that g+¢~1+1
is equal to the common value of (2) for 2 < i < d—1. We call q a base for ®.% By convention, if d < 3
then ¢ can be taken to be any nonzero scalar in K.

Lemma 3.3 (cf. [17, (6.4)]). For 1 < i < d, we have 9, = 0 precisely when ¢ = —1, d is odd, and i is
even.

By Proposition 3.1 and Lemma 3.3, it follows that

Lemma 3.4. Let q be as above. Then for 1 <t < d—1, the following hold.

(i) Suppose q # —1, or q=—1 and d is even. Then Ej_, Wi #0, E..1W; #0.

(ii) Suppose ¢ = —1 and d is odd. Then Ej_, Wi # 0 (resp. E,1W; # 0) if and only if t is odd
(resp. even).

Corollary 3.5. Let q be as above. Then the following hold.

(i) Suppose ¢ # —1, or ¢ = —1 and d is even. Then V = @f:o W;. Moreover, Z?:o Wy = E§V +
Z;'i=d—h+1 EYV, ztd=h Wi = EgV + Zj=h+l E,V (0<h<d).

(ii) Suppose ¢ = —1 and d is odd. Then Wos_1 = Wa, for 1 < s < |d/2].

Proof. (i): Immediate from Lemma 3.4 (i).
(ii): By Lemma 3.4 (ii), we find

d d
W23_1=<E5V+ > E;“V)ﬂ EV+ Y EV|=W,

i=d—2s+2 Jj=2s8+1
for 1 < s<|d/2]. |
By virtue of Corollary 3.5, we make the following assumption.

Assumption 3.6. With reference to Notation 3.2, for the rest of this article we shall assume q # —1, or
g = —1 and d is even.”

Now we are ready to introduce an Erdés—-Ko-Rado basis for V.

Definition 3.7. With reference to Assumption 3.6, for 0 < ¢t < d let w; be the (unique) vector in W;
such that Eow, = Eqv*. We call {w;}{_, a (®-) Erdé6s~-Ko-Rado (or EKR) basis for V.

We note that the basis {w;}2, linearly depends on the choice of v* € E§V. In particular, we have
wp = v* and wy = Egv*. Our preference for the normalization Eyw; = Egv* comes from the applications
to the Erdds—Ko—Rado theorem; see Section 4. The following theorem gives the transition matrix from
each of the ®!-split basis {7¢(A)v*'}{,, the ®*-standard basis {E,v*}?_,, and the $-standard basis
{Erv}L,, to the EKR basis {w;}{_,.

Theorem 3.8. The following hold for 0 < t < d.

d
: (0,0%) [~ ma-el0) 4 ., Ma-i(60) n; (63) .
i w; = Te(A)yv™ + — Te(A)v** ).
O o= oy (& i) T e @) 2 Faeer - e

SWe may remark that if d > 3 then & has at most two bases, i.e., ¢ and ¢

"The Leonard systems with d > 3 that do not satisfy this assumption are precisely those of “Bannai/Ito type” [27,
Example 5.14] with d odd, and those of “Orphan type” [27, Example 5.15].
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d
(ii) wy = Egv* + na~+(%) $dj+1 - (

na(00)1 (65) ;51 2 s 9 - 90

(68)9
Z 771 1 0) £ E’U*.
¢d ¢

Pyl +1 - Pd—t

,0%) [ mi(5nail00) .
||v||2{ " baem (95) 0

Pd—t+1--. O, : 77 (07 )ne~1(00)0e .
+ Z 02 %9*—90)( Z ——-—-—-——————m )Elv}.

r=d—t+1 t=d—t+1 Pd—t41- -

Corollary 3.9. Let {w}}¢_, be the ®*-EKR basis for V normalized so that E3w; = Ejv (0 < t < d).

Then —_—
w: = (’07,0 > . ¢1 "'¢t’r’d—t( O)wd_t (Oé ¢ éd)

lor][2 m3(65)m:(60)

Proof. By (5), w} is a scalar multiple of wy_;, and the scalar is found by looking at the coefficient of
E}v in wq_,; as given in Theorem 3.8 (iii), and by noting that (v,v*)? = ||v||?||Jv*||?. a

Next we give the transition matrix from {w;}& ; to each of the three bases {7,(A)v*1}¢_,, {Efv}d,,
and {E;v*}9_,.

Theorem 3.10. Setting w_; = wqy1 = 0, the following hold.®

w _(v,v") 1a(80) [ Pa—s+1(6¢ — o)
e(Ajo™ = (v,v*) @1 { Nd—t+1(60)9¢

1 Ga—e | Gd-t11 ) 03— — 65 }
+ - wy+ —2=5 0
Na—¢(6o) (19@+1 % ) T e 1(80) Py Y

for 0 < £ < d, where we interpret ¢o/P4+1 = Pa+1/%0 = 1.

o)

Wyp_1

. E.v* = <P2~~<P377d(90) {_¢d—j+1fld—g(9a) .
(i) 7 Pd—j+1 - - ¢dTJ( ~)nd—j(9) g (60)0;

Tld t—1( <¢d e (05— 641) (0341 — 93))
+ Wt
Tld—t 90) 'l9t+1 Dy

+ (6, — 6o)
t=3

+ (o1 + (07 - 5)(6; — 00w
for1 < j <d, and Eqv* = wy.

<'U,1)*>. w2...0; {¢i+1--~d)d(
lo*[[* 7 (0 )ng_s(67) L 7ma(6o)

d—i * *
+ (0 —63) Z Git1 .- a—imi_1(67) (¢d-t+1

(ii) Ev= p1+ (61 — 60)(6; — 65))wo

nd—¢(00) s
(9* 2 t+1)(9t+1 - 90)) 772—1‘(63)(0: - 93) }
+ wy + Wa—i
Vit1 ¢ 7—1(00)9, a-itl

for 1 < i< d, and Ev = (v, v*)||v*||~2

Finally, we describe the matrices representing A and A* with respect to the EKR basis {w:}¢_,. We
use the following notation:

77;—1(63)((6;——5+1 - 95)"9s+1 - (92-5 - 95)793)
¢d—s+1 e ¢d77d——3—1(90)793+1

As: (1<S<d—1)

8We also interpret the coefficients of w_1 and wqy1 as zero, whenever these terms appear.
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We note that
A* = Ns—1(00) ((0a-s+1 — 00)Fss1 ~ (Ba—s — 60)9s)
° G1-- - Bami_g_1(05)0s41
by virtue of Theorem 2.3 (i) and (4).
Theorem 3.11. With the above notation, the following hold.

(1<s<d-1).

) _ - —¢(6
(1) Awy =0y 1w; + <¢d bt - (ﬁg;)d t( 0) A1 — (9t+1 - 00)) W41
d-1
gl e _+(6
n Gd—t+1 *(ﬁf;]d +(6o) { Z (Ay - Ay_1 ), _Ad—l'wd}
”7t 0 s=t+2
for0<t<d—2, Awg_; = 04wgy_1 — (04 — bp)wq, and Awg = Gpwy.
y $1...9a = &1 pa_sl(65) .
ii A*wy = — A% jwo + (A Ay _1)Wws
( ) t "]d(BO) d~-1%0 ; nd—s(oﬂ) ( d d 1)
b1 Pa—t41M5-1(65) 4 . Pd—t+1 .
# (B e = G i+ s

for2 <t < d, A*w; = 0wy — (6] — 05)wo, and A*wg = O5wo.
We end this section with an attractive formula for A,.

Lemma 3.12. For 1 < s<d -1, we have

(Oa-151 = 0151) (Ba—y252) — o))
ba — 6o '
Proof. This is verified using [23, Lemma 10.2]. O

(ed—s+1 - 00)193-{-1 - (ad—s - 90)193 =

Corollary 3.13. For1< s <d -1, we have
N n5-105) (0 5) = 013 ) (O3 os2) — 9[23-_1])'
é1-- -¢s"72_3—1(96)(‘9; = 65)9s+1
Proof. Immediate from Lemma 3.12 and (4). a

4 Applications to the Erd6s—Ko-Rado theorems

The Erdés—Ko-Rado type theorems for various families of @-polynomial distance-regular graphs provide
one of the most successful applications of Delsarte’s linear programming method [4].°

Let T be a Q-polynomial distance-regular graph with vertex set X = V(I"). (We refer the reader to
[2, 3, 21] for the background material.) Pick a “base vertex” z € X and let ® = ®(T') be the Leonard
system (over K = R) afforded on the primary module of the Terwilliger algebra T'(x); cf. [18, Example
(3.5)].10 The second eigenmatrix Q = (Qi;)¢,—o of T is defined by

o d
Byt = 20 ) Y QuErv (0<3<d).
=0

— ll?

As summarized in [19], every “t-intersecting family” Y C X is associated with a vector e = (eq, €1,...,€q)
(known as the inner distribution of Y') satisfying

ec=1 € 20,...,e4-: 20, egy4y1=:--=e€eq=0,
|Yl = (eQ)O) (eQ)l 2 Oy sy (eQ)d 2 0.
9See, e.g., [5, 14] for more applications as well as extensions of this method.

10We note that & is independent of z € X up to isomorphism.
11The matrix Q is denoted P* in [26, p. 264].




Viewing these as forming a linear programming maximization problem, we are then to construct a vector
f = (fo, f1,..., fa) such that

(6) fo=1 fi==fi=0 (fQ 1= =(fQNa-t =0,

which turns out to give a feasible solution to the dual problem (provided that fi1; > 0,..., fa 2 0).
Set w = Z?:o f;E;v*. Then

d
ZQ'LJE 'U—<v ZfQT E*
1=0

7=0 =0
Hence it follows that f satisfies (6) if and only if w = w;. In particular, such a vector f is unique and
is given by Theorem 3.8 (ii).
We now give three examples. First, suppose ® is of “dual Hahn” type [27, Example 5.12], i.e.,
0; =6+ hi(i +1+s), 6] =65+s"
for 0 <i<d, and
pi=hs*ii—-d-1)(t+r), ¢i=hs"i(i—d-1)(i+r—-s—d~—1)
for 1 € ¢ < d, where h, s are nonzero. Then it follows that

f _ Q=0 +s+Dels —r+ 1), (-1)7F o (t-j+Lt+i+s 21,
I T —r+s+D(s+2utlr+2);,1 P2\ t+Lt-r+s+2

fort+1<j <d. IfT is the Johnson graph J(v,d) [3, Section 9.1], then ® is of dual Hahn type with
r=d—v— 1 s =—v—2and s* = —v(v— 1}/d(v — d); cf. [22, pp. 191-192]. In this case, the vector f
was essentially constructed by Wilson [29] and was used to prove the original Erdés-Ko-Rado theorem
[6] in full generality.

Suppose @ is of “Krawtchouk” type [27, Example 5.13], i.e.,

0; = 0 + si, 0:=96+S*i
for 0 <i<d, and
pi=ri(i—d—1), ¢;=(r—ss*)i(i~d—1)
for 1 < i < d, where r, s, s* are nonzero. Then it follows that

(I =5 [r—ss* -1 t—j+1,1 s8*
f]— t' T '2F1 t+1 —7‘—33*

for t+1 < 7 < d. If T is the Hamming graph H(d,n) [3, Section 9.2], then ® is of Krawtchouk type
with r = n(n — 1) and s = §* = —n; cf. [22, p. 195]. In this case, the vector f coincides (up to
normalization) with the weight distribution of an MDS code [13, Chapter 11], i.e., a code attaining the
Singleton bound.!?

Finally, suppose @ is of the most general “g-Racah” type [27, Example 5.3], i.e.,

0; =600+ h(1—q')(1—sg"*!)g™", 6f =65 +h*(1—¢")(1—s"¢"")g™"
for 0 <i<d, and

@i = hh*¢" "% (1 — ¢")(1 — ¢ 1) (1 — r1¢°) (1 — rag?),
¢i = hh*q "% (1 — @) (1 — ¢~ 1) (ry — s*¢*)(r2 — 57¢") /s*

for 1 < i < d, where r1,73,s,s* ¢ are nonzero and rir; = ss*¢®tl. Then it follows that the f; are
expressed as balanced 4¢3 series:

f, = ST DO 3 )u(sg 2 @)e(rag /573 0)i(rag /8" )5
T (1= rigt=4/s*) (1 — raqt=4/5*) (4 @)e(5¢% )¢ (r14% @)5-1(r2¢% @)1

=i+l gqt+at2 gt—d—1/gx
X43(q q q /5*,q q;q)
fort+1<j<d.

qt+1 , qut_d+1/8*, rzqt_‘“’l/s*
12In this regard, one may also wish to call {w:}?_ an MDS basis or a Singleton basis.
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