A G－family of quandles and handlebody－knots

Masahide Iwakiri
Graduate School of Science and Engineering，Saga University

We introduce the notion of a G－family of quandles and use it to construct invariants for handlebody－knots．Our invariant can detect the chiralities of some handlebody－knots including unknown ones．This is a joint work with Atsushi Ishii，Yeonhee Jang and Kanako Oshiro（［8］）．

1 Handlebody－links

A handlebody－link is a disjoint union of handlebodies embedded in the 3 －sphere S^{3} ．Two handlebody－links are equivalent if there is an orientation－preserving self－homeomorphism of S^{3} which sends one to the other．A spatial graph is a finite graph embedded in S^{3} ．Two spatial graphs are equivalent if there is an orientation－preserving self－homeomorphism of S^{3} which sends one to the other．When a handlebody－link H is a regular neighborhood of a spatial graph K ，we say that K represents H ，or H is represented by K ．In this paper，a trivalent graph may contain circle components．Then any handlebody－link can be represented by some spatial trivalent graph．A diagram of a handlebody－link is a diagram of a spatial trivalent graph which represents the handlebody－link．

An $I H$－move is a local spatial move on spatial trivalent graphs as described in Figure 1， where the replacement is applied in a 3 －ball embedded in S^{3} ．Then we have the following theorem．

Theorem $1.1([6])$ ．For spatial trivalent graphs K_{1} and K_{2} ，the following are equiv－ alent．
－K_{1} and K_{2} represent an equivalent handlebody－link．
－K_{1} and K_{2} are related by a finite sequence of IH－moves．
－Diagrams of K_{1} and K_{2} are related by a finite sequence of the moves depicted in Figure 2.

Figure 1:

Figure 2:

2 A G-family of quandles

A quandle $[12,16]$ is a non-empty set X with a binary operation $*: X \times X \rightarrow X$ satisfying the following axioms.

- For any $x \in X, x * x=x$.
- For any $x \in X$, the map $S_{x}: X \rightarrow X$ defined by $S_{x}(y)=y * x$ is a bijection.
- For any $x, y, z \in X,(x * y) * z=(x * z) *(y * z)$.

When we specify the binary operation $*$ of a quandle X, we denote the quandle by the pair $(X, *)$. An Alexander quandle $(M, *)$ is a Λ-module M with the binary operation defined by $x * y=t x+(1-t) y$, where $\Lambda:=\mathbb{Z}\left[t, t^{-1}\right]$. A conjugation quandle $(G, *)$ is a group G with the binary operation defined by $x * y=y^{-1} x y$.
Let G be a group with identity element e. A G-family of quandles is a non-empty set X with a family of binary operations $*^{g}: X \times X \rightarrow X(g \in G)$ satisfying the following axioms.

- For any $x \in X$ and any $g \in G, x *^{g} x=x$.
- For any $x, y \in X$ and any $g, h \in G$,

$$
x *^{g h} y=\left(x *^{g} y\right) *^{h} y \text { and } x *^{e} y=x .
$$

- For any $x, y, z \in X$ and any $g, h \in G$,

$$
\left(x *^{g} y\right) *^{h} z=\left(x *^{h} z\right) *^{h^{-1} g h}\left(y *^{h} z\right) .
$$

When we specify the family of binary operations $*^{g}: X \times X \rightarrow X(g \in G)$ of a G-family of quandles, we denote the G-family of quandles by the pair $\left(X,\left\{*^{g}\right\}_{g \in G}\right)$.

Proposition 2.1. Let G be a group. Let $\left(X,\left\{*^{g}\right\}_{g \in G}\right)$ be a G-family of quandles.
(1) For each $g \in G$, the pair $\left(X, *^{g}\right)$ is a quandle.
(2) We define a binary operation $\triangleright:(X \times G) \times(X \times G) \rightarrow X \times G$ by

$$
(x, g) \triangleright(y, h)=\left(x *^{h} y, h^{-1} g h\right) .
$$

Then $(X \times G, \triangleright)$ is a quandle.
We call the quandle ($X \times G, *$) in Proposition 2.1 the associated quandle of X.
Example 2.2. (1) Let $(X, *)$ be a quandle. Let $S_{x}: X \rightarrow X$ be the bijection defined by $S_{x}(y)=y * x$. Let m be a positive integer such that $S_{x}^{m}=\operatorname{id}_{X}$ for any $x \in X$ if such an integer exists. We define the binary operation $*^{i}: X \times X \rightarrow X$ by $x *^{i} y=S_{y}^{i}(x)$. Then X is a \mathbb{Z}-family of quandles and a \mathbb{Z}_{m}-family of quandles, where $\mathbb{Z}_{m}=\mathbb{Z} / m \mathbb{Z}$. (2) Let R be a ring, and G a group with identity element e. Let X be a right $R[G]$ module, where $R[G]$ is the group ring of G over R. We define the binary operation $*^{g}: X \times X \rightarrow X$ by $x *^{g} y=x g+y(e-g)$. Then X is a G-family of quandles.

3 Colorings

Let D be a diagram of a handlebody-link H. We set an orientation for each edge in D. Then D is a diagram of an oriented spatial trivalent graph K. We may represent an orientation of an edge by a normal orientation, which is obtained by rotating a usual orientation counterclockwise by $\pi / 2$ on the diagram. We denote by $\mathcal{A}(D)$ the set of arcs of D, where an arc is a piece of a curve each of whose endpoints is an undercrossing or a vertex. For an $\operatorname{arc} \alpha$ incident to a vertex ω, we define $\epsilon(\alpha ; \omega) \in\{1,-1\}$ by

$$
\epsilon(\alpha ; \omega)= \begin{cases}1 & \text { if the orientation of } \alpha \text { points to } \omega \\ -1 & \text { otherwise }\end{cases}
$$

Let X be a G-family of quandles, and Q the associated quandle of X. Let p_{X} (resp. p_{G}) be the projection from Q to X (resp. G). An X-coloring of D is a map $C: \mathcal{A}(D) \rightarrow Q$ satisfying the following conditions at each crossing χ and each vertex ω of D (see Figure 3).

- Let χ_{1}, χ_{2} and χ_{3} be respectively the under-arcs and the over-arc at a crossing χ

Figure 3:
such that the normal orientation of χ_{3} points from χ_{1} to χ_{2}. Then

$$
C\left(\chi_{2}\right)=C\left(\chi_{1}\right) \triangleright C\left(\chi_{3}\right) .
$$

- Let $\omega_{1}, \omega_{2}, \omega_{3}$ be the arcs incident to a vertex ω arranged clockwise around ω. Then

$$
\begin{aligned}
& \left(p_{X} \circ C\right)\left(\omega_{1}\right)=\left(p_{X} \circ C\right)\left(\omega_{2}\right)=\left(p_{X} \circ C\right)\left(\omega_{3}\right), \\
& \left(p_{G} \circ C\right)\left(\omega_{1}\right)^{\epsilon\left(\omega_{1} ; \omega\right)}\left(p_{G} \circ C\right)\left(\omega_{2}\right)^{\epsilon\left(\omega_{2} ; \omega\right)}\left(p_{G} \circ C\right)\left(\omega_{3}\right)^{\epsilon\left(\omega_{3} ; \omega\right)}=e .
\end{aligned}
$$

We denote by $\operatorname{Col}_{X}(D)$ the set of X-colorings of D. For two diagrams D and E which locally differ, we denote by $\mathcal{A}(D, E)$ the set of arcs that D and E share.

Lemma 3.1. Let X be a G-family of quandles. Let D be a diagram of an oriented spatial trivalent graph. Let E be a diagram obtained by applying one of the R1-R6 moves to the diagram D once, where we choose orientations for E which agree with those for D on $\mathcal{A}(D, E)$. For $C \in \operatorname{Col}_{X}(D)$, there is a unique X-coloring $C_{D, E} \in$ $\operatorname{Col}_{X}(E)$ such that $\left.C\right|_{\mathcal{A}(D, E)}=\left.C_{D, E}\right|_{\mathcal{A}(D, E)}$.

Remark 3.2. Let X be a \mathbb{Z}-family of quandles or a \mathbb{Z}_{m}-family of quandles defined as in Example 2.2 (2). Then an X-coloring be regarded as an X-coloring defined in [7].

Let X be a G-family of quandles, and Q the associated quandle of X. An X-set is a non-empty set Y with a family of maps $*^{g}: Y \times X \rightarrow Y$ satisfying the following axioms, where we note that we use the same symbol $*^{g}$ as the binary operation of the G-family of quandles.

- For any $y \in Y, x \in X$, and any $g, h \in G$,

$$
y *^{g h} x=\left(y *^{g} x\right) *^{h} x \text { and } y *^{e} x=y .
$$

Figure 4:

- For any $y \in Y, x_{1}, x_{2} \in X$, and any $g, h \in G$,

$$
\left(y *^{g} x_{1}\right) *^{h} x_{2}=\left(y *^{h} x_{2}\right) *^{h^{-1} g h}\left(x_{1} *^{h} x_{2}\right) .
$$

Put $y \triangleright(x, g):=y *^{g} x$ for $y \in Y,(x, g) \in Q$. Then the second axiom implies that $\left(y \triangleright q_{1}\right) \triangleright q_{2}=\left(y \triangleright q_{2}\right) \triangleright\left(q_{1} \triangleright q_{2}\right)$ for $q_{1}, q_{2} \in Q$. Any G-family of quandles $\left(X,\left\{*^{g}\right\}_{g \in G}\right)$ itself is an X-set with its binary operations. Any singleton set $\{y\}$ is also an X-set with the maps $*^{g}$ defined by $y *^{g} x=y$ for $x \in X$ and $g \in G$, which is a trivial X-set.

Let D be a diagram of an oriented spatial trivalent graph. We denote by $\mathcal{R}(D)$ the set of complementary regions of D. Let X be a G-family of quandles, and Y an X-set. Let Q be the associated quandle of X. An X_{Y}-coloring of D is a $\operatorname{map} C: \mathcal{A}(D) \cup \mathcal{R}(D) \rightarrow Q \cup Y$ satisfying the following conditions.

- $C(\mathcal{A}(D)) \subset Q, C(\mathcal{R}(D)) \subset Y$.
- The restriction $\left.C\right|_{\mathcal{A}(D)}$ of C on $\mathcal{A}(D)$ is an X-coloring of D.
- For any $\operatorname{arc} \alpha \in \mathcal{A}(D)$, we have

$$
C\left(\alpha_{1}\right) \triangleright C(\alpha)=C\left(\alpha_{2}\right),
$$

where α_{1}, α_{2} are the regions facing the arc α so that the normal orientation of α points from α_{1} to α_{2} (see Figure 4).

We denote by $\operatorname{Col}_{X}(D)_{Y}$ the set of X_{Y}-colorings of D.
For two diagrams D and E which locally differ, we denote by $\mathcal{R}(D, E)$ the set of regions that D and E share.

Lemma 3.3. Let X be a G-family of quandles, Y an X-set. Let D be a diagram of an oriented spatial trivalent graph. Let E be a diagram obtained by applying one of the R1-R6 moves to the diagram D once, where we choose orientations for E which agree with those for D on $\mathcal{A}(D, E)$. For $C \in \operatorname{Col}_{X}(D)_{Y}$, there is a unique X_{Y}-coloring $C_{D, E} \in \operatorname{Col}_{X}(E)_{Y}$ such that $\left.C\right|_{\mathcal{A}(D, E)}=\left.C_{D, E}\right|_{\mathcal{A}(D, E)}$ and $\left.C\right|_{\mathcal{R}(D, E)}=\left.C_{D, E}\right|_{\mathcal{R}(D, E)}$.

4 A homology

Let X be a G-family of quandles, and Y an X-set. Let (Q, \triangleright) be the associated quandle of X. Let $B_{n}(X)_{Y}$ be the free abelian group generated by the elements of $Y \times Q^{n}$ if $n \geq 0$, and let $B_{n}(X)_{Y}=0$ otherwise. We put

$$
\left(\left(y, q_{1}, \ldots, q_{i}\right) \triangleright q, q_{i+1}, \ldots, q_{n}\right):=\left(y \triangleright q, q_{1} \triangleright q, \ldots, q_{i} \triangleright q, q_{i+1}, \ldots, q_{n}\right)
$$

for $y \in Y$ and $q, q_{1} \ldots, q_{n} \in Q$. We define a boundary homomorphism $\partial_{n}: B_{n}(X)_{Y} \rightarrow$ $B_{n-1}(X)_{Y}$ by

$$
\begin{aligned}
\partial_{n}\left(y, q_{1}, \ldots, q_{n}\right)= & \sum_{i=1}^{n}(-1)^{i}\left(y, q_{1}, \ldots, q_{i-1}, q_{i+1}, \ldots, q_{n}\right) \\
& -\sum_{i=1}^{n}(-1)^{i}\left(\left(y, q_{1}, \ldots, q_{i-1}\right) \triangleright q_{i}, q_{i+1}, \ldots, q_{n}\right)
\end{aligned}
$$

for $n>0$, and $\partial_{n}=0$ otherwise. Then $B_{*}(X)_{Y}=\left(B_{n}(X)_{Y}, \partial_{n}\right)$ is a chain complex (see [1, 2, 4, 5]).

Let $D_{n}(X)_{Y}$ be the subgroup of $B_{n}(X)_{Y}$ generated by the elements of

$$
\bigcup_{i=1}^{n-1}\left\{\begin{array}{l|l}
\left(y, q_{1}, \ldots, q_{i-1},(x, g),(x, h), q_{i+2}, \ldots, q_{n}\right) & \begin{array}{l}
y \in Y, x \in X, g, h \in G \\
q_{1}, \ldots, q_{n} \in Q
\end{array}
\end{array}\right\}
$$

and

$$
\bigcup_{i=1}^{n}\left\{\begin{array}{l|l}
\left(y, q_{1}, \ldots, q_{i-1},(x, g h), q_{i+1}, \ldots, q_{n}\right) & y \in Y, x \in X \\
-\left(y, q_{1}, \ldots, q_{i-1},(x, g), q_{i+1}, \ldots, q_{n}\right) & g, h \in G \\
-\left(\left(y, q_{1}, \ldots, q_{i-1}\right) \triangleright(x, g),(x, h), q_{i+1}, \ldots, q_{n}\right) & q_{1}, \ldots, q_{n} \in Q
\end{array}\right\}
$$

We remark that

$$
\left(y, q_{1}, \ldots, q_{i-1},(x, e), q_{i+1}, \ldots, q_{n}\right)
$$

and

$$
\begin{aligned}
& \left(y, q_{1}, \ldots, q_{i-1},(x, g), q_{i+1}, \ldots, q_{n}\right) \\
& +\left(\left(y, q_{1}, \ldots, q_{i-1}\right) \triangleright(x, g),\left(x, g^{-1}\right), q_{i+1}, \ldots, q_{n}\right)
\end{aligned}
$$

belong to $D_{n}(X)_{Y}$.
Lemma 4.1. For $n \in \mathbb{Z}$, we have $\partial_{n}\left(D_{n}(X)_{Y}\right) \subset D_{n-1}(X)_{Y}$. Thus $D_{*}(X)_{Y}=$ $\left(D_{n}(X)_{Y}, \partial_{n}\right)$ is a subcomplex of $B_{*}(X)_{Y}$.

We put $C_{n}(X)_{Y}=B_{n}(X)_{Y} / D_{n}(X)_{Y}$. Then $C_{*}(X)_{Y}=\left(C_{n}(X)_{Y}, \partial_{n}\right)$ is a chain complex. For an abelian group A, we define the cochain complex $C^{*}(X ; A)_{Y}=\operatorname{Hom}\left(C_{*}(X)_{Y}, A\right)$. We denote by $H_{n}(X)_{Y}$ the nth homology group of $C_{*}(X)_{Y}$.

$\epsilon(\chi)=1$

$\epsilon(\chi)=-1$

Figure 5:

5 Cocycle invariants

Let X be a G-family of quandles, and Y an X-set. Let D be a diagram of an oriented spatial trivalent graph. For an X_{Y}-coloring $C \in \operatorname{Col}_{X}(D)_{Y}$, we define the weight $w(\chi ; C) \in C_{2}(X)_{Y}$ at a crossing χ of D as follows. Let χ_{1}, χ_{2} and χ_{3} be respectively the under-arcs and the over-arc at a crossing χ such that the normal orientation of χ_{3} points from χ_{1} to χ_{2}. Let R_{χ} be the region facing χ_{1} and χ_{3} such that the normal orientations χ_{1} and χ_{3} point from R_{χ} to the opposite regions with respect to χ_{1} and χ_{3}, respectively. Then we define

$$
w(\chi ; C)=\epsilon(\chi)\left(C\left(R_{\chi}\right), C\left(\chi_{1}\right), C\left(\chi_{3}\right)\right)
$$

where $\epsilon(\chi) \in\{1,-1\}$ is the sign of a crossing χ. We define a chain $W(D ; C) \in C_{2}(X)_{Y}$ by

$$
W(D ; C)=\sum_{\chi} w(\chi ; C)
$$

where χ runs over all crossings of D.
Lemma 5.1. The chain $W(D ; C)$ is a 2-cycle of $C_{*}(X)_{Y}$. Further, for cohomologous 2-cocycles θ, θ^{\prime} of $C^{*}(X ; A)_{Y}$, we have $\theta(W(D ; C))=\theta^{\prime}(W(D ; C))$.

Lemma 5.2. Let D be a diagram of an oriented spatial trivalent graph. Let E be a diagram obtained by applying one of the R1-R6 moves to the diagram D once, where we choose orientations for E which agree with those for D on $\mathcal{A}(D, E)$. For $C \in$ $\operatorname{Col}_{X}(D)_{Y}$ and $C_{D, E} \in \operatorname{Col}_{X}(E)_{Y}$ such that $\left.C\right|_{\mathcal{A}(D, E)}=\left.C_{D, E}\right|_{\mathcal{A}(D, E)}$ and $\left.C\right|_{\mathcal{R}(D, E)}=$ $\left.C_{D, E}\right|_{\mathcal{R}(D, E)}$, we have $[W(D ; C)]=\left[W\left(E ; C_{D, E}\right)\right] \in H_{2}(X)_{Y}$.

We denote by G_{H} (resp. G_{K}) the fundamental group of the exterior of a handlebody-link H (resp. a spatial graph K). When H is represented by K, the groups G_{H} and G_{K} are identical. Let D be a diagram of an oriented spatial trivalent graph K. By the definition
of an X_{Y}-coloring C of D, the map $\left.p_{G} \circ C\right|_{\mathcal{A}(D)}$ represents a homomorphism from G_{K} to G, which we denote by $\rho_{C} \in \operatorname{Hom}\left(G_{K}, G\right)$. For $\rho \in \operatorname{Hom}\left(G_{K}, G\right)$, we define

$$
\operatorname{Col}_{X}(D ; \rho)_{Y}=\left\{C \in \operatorname{Col}_{X}(D)_{Y} \mid \rho_{C}=\rho\right\}
$$

For a 2-cocycle θ of $C^{*}(X ; A)_{Y}$, we define

$$
\begin{aligned}
\mathcal{H}(D) & :=\left\{[W(D ; C)] \in H_{2}(X)_{Y} \mid C \in \operatorname{Col}_{X}(D)_{Y}\right\}, \\
\Phi_{\theta}(D) & :=\left\{\theta(W(D ; C)) \in A \mid C \in \operatorname{Col}_{X}(D)_{Y}\right\} \\
\mathcal{H}(D ; \rho) & :=\left\{[W(D ; C)] \in H_{2}(X)_{Y} \mid C \in \operatorname{Col}_{X}(D ; \rho)_{Y}\right\}, \\
\Phi_{\theta}(D ; \rho) & :=\left\{\theta(W(D ; C)) \in A \mid C \in \operatorname{Col}_{X}(D ; \rho)_{Y}\right\}
\end{aligned}
$$

as multisets.
Lemma 5.3. Let D be a diagram of an oriented spatial trivalent graph K. For $\rho, \rho^{\prime} \in \operatorname{Hom}\left(G_{K}, G\right)$ such that ρ and ρ^{\prime} are conjugate, we have $\mathcal{H}(D ; \rho)=\mathcal{H}\left(D ; \rho^{\prime}\right)$ and $\Phi_{\theta}(D ; \rho)=\Phi_{\theta}\left(D ; \rho^{\prime}\right)$.

We denote by $\operatorname{Conj}\left(G_{K}, G\right)$ the set of conjugacy classes of homomorphisms from G_{K} to G. By Lemma 5.3, $\mathcal{H}(D ; \rho)$ and $\Phi_{\theta}(D ; \rho)$ are well-defined for $\rho \in \operatorname{Conj}\left(G_{K}, G\right)$.

Lemma 5.4. Let D be a diagram of an oriented spatial trivalent graph K. Let E be a diagram obtained from D by reversing the orientation of an edge e. For $\rho \in$ $\operatorname{Hom}\left(G_{K}, G\right)$, we have $\mathcal{H}(D)=\mathcal{H}(E), \Phi_{\theta}(D)=\Phi_{\theta}(E), \mathcal{H}(D ; \rho)=\mathcal{H}(E ; \rho)$ and $\Phi_{\theta}(D ; \rho)=\Phi_{\theta}(E ; \rho)$.

By Lemma 5.4, $\mathcal{H}(D), \Phi_{\theta}(D), \mathcal{H}(D ; \rho)$ and $\Phi_{\theta}(D ; \rho)$ are well-defined for a diagram D of an unoriented spatial trivalent graph, which is a diagram of a handlebody-link. For a diagram D of a handlebody-link H, we define

$$
\begin{aligned}
\mathcal{H}^{\mathrm{hom}}(D) & :=\left\{\mathcal{H}(D ; \rho) \mid \rho \in \operatorname{Hom}\left(G_{H}, G\right)\right\}, \\
\Phi_{\theta}^{\mathrm{hom}}(D) & :=\left\{\Phi_{\theta}(D ; \rho) \mid \rho \in \operatorname{Hom}\left(G_{H}, G\right)\right\}, \\
\mathcal{H}^{\mathrm{conj}}(D) & :=\left\{\mathcal{H}(D ; \rho) \mid \rho \in \operatorname{Conj}\left(G_{H}, G\right)\right\}, \\
\Phi_{\theta}^{\mathrm{conj}}(D) & :=\left\{\Phi_{\theta}(D ; \rho) \mid \rho \in \operatorname{Conj}\left(G_{H}, G\right)\right\}
\end{aligned}
$$

as "multisets of multisets". We remark that, for X_{Y}-colorings C and $C_{D, E}$ in Lemma 5.2, we have $\rho_{C}=\rho_{C_{D, E}}$. Then, by Lemmas 5.1-5.4, we have the following theorem.

Theorem 5.5. Let X be a G-family of quandles, Y an X-set. Let θ be a 2-cocycle of $C^{*}(X ; A)_{Y}$. Let H be a handlebody-link represented by a diagram D. Then the following are invariants of a handlebody-link H.

$$
\mathcal{H}(D), \quad \Phi_{\theta}(D), \quad \mathcal{H}^{\mathrm{hom}}(D), \quad \Phi_{\theta}^{\mathrm{hom}}(D), \quad \mathcal{H}^{\text {conj }}(D), \quad \Phi_{\theta}^{\text {conj }}(D)
$$

We denote the invariants of H given in Theorem 5.5 by

$$
\mathcal{H}(H), \quad \Phi_{\theta}(H), \quad \mathcal{H}^{\mathrm{hom}}(H), \quad \Phi_{\theta}^{\mathrm{hom}}(H), \quad \mathcal{H}^{\text {conj }}(H), \quad \Phi_{\theta}^{\text {conj }}(H)
$$

respectively.
We denote by H^{*} the mirror image of a handlebody-link H. Then we have the following theorem.

Theorem 5.6. For a handlebody-link H, we have

$$
\begin{array}{ll}
\mathcal{H}\left(H^{*}\right)=-\mathcal{H}(H), & \Phi_{\theta}\left(H^{*}\right)=-\Phi_{\theta}(H), \\
\mathcal{H}^{\text {hom }}\left(H^{*}\right)=-\mathcal{H}^{\text {hom }}(H), & \Phi_{\theta}^{\text {hom }}\left(H^{*}\right)=-\Phi_{\theta}^{\text {hom }}(H), \\
\mathcal{H}^{\mathrm{conj}}\left(H^{*}\right)=-\mathcal{H}^{\mathrm{conj}}(H), & \Phi_{\theta}^{\text {conj }}\left(H^{*}\right)=-\Phi_{\theta}^{\text {conj }}(H),
\end{array}
$$

where $-S=\{-a \mid a \in S\}$ for a multiset S.

6 Applications

In this section, we calculate cocycle invariants defined in the previous section for the handlebody-knots $0_{1}, \ldots, 6_{16}$ in the table given in [9], by using a 2 -cocycle given by Nosaka [18]. This calculation enables us to distinguish some of handlebody-knots from their mirror images, and a pair of handlebody-knots whose complements have isomorphic fundamental groups.
Let $G=S L\left(2 ; \mathbb{Z}_{3}\right)$ and $X=\left(\mathbb{Z}_{3}\right)^{2}$. Then X is a G-family of quandles with the proper binary operation as given in Proposition 2.2 (2). Let Y be the trivial X-set $\{y\}$. We define a map $\theta: Y \times(X \times G)^{2} \rightarrow \mathbb{Z}_{3}$ by

$$
\theta\left(y,\left(x_{1}, g_{1}\right),\left(x_{2}, g_{2}\right)\right):=\lambda\left(g_{1}\right) \operatorname{det}\left(x_{1}-x_{2}, x_{2}\left(1-g_{2}^{-1}\right)\right)
$$

where the abelianization $\lambda: G \rightarrow \mathbb{Z}_{3}$ is given by

$$
\lambda\left(\begin{array}{ll}
a & b \\
c & d
\end{array}\right)=(a+d)(b-c)(1-b c)
$$

	$\Phi_{\theta}(H)$
0_{1}	$\left\{\left\{0_{9}\right\}_{76}\right\}$
4_{1}	$\left\{\left\{0_{9}\right\}_{83},\left\{0_{27}\right\}_{22},\left\{0_{81}\right\}_{3}\right\}$
5_{1}	$\left\{\left\{0_{9}\right\}_{76}\right\}$
5_{2}	$\left\{\left\{0_{9}\right\}_{95},\left\{0_{27}\right\}_{6},\left\{0_{81}\right\}_{1},\left\{0_{9}, 1_{18}\right\}_{4},\left\{0_{27}, 1_{54}\right\}_{2}\right\}$
5_{3}	$\left\{\left\{0_{9}\right\}_{102},\left\{0_{27}\right\}_{4},\left\{0_{27}, 2_{54}\right\}_{2}\right\}$
5_{4}	$\left\{\left\{0_{9}\right\}_{74},\left\{0_{81}\right\}_{2}\right\}$
6_{1}	$\left\{\left\{0_{9}\right\}_{91},\left\{0_{27}\right\}_{16},\left\{0_{81}\right\}_{1}\right\}$
6_{2}	$\left\{\left\{0_{9}\right\}_{106},\left\{0_{45}, 1_{18}, 2_{18}\right\}_{2}\right\}$
6_{3}	$\left\{\left\{0_{9}\right\}_{74},\left\{0_{27}\right\}_{2}\right\}$
6_{4}	$\left\{\left\{0_{9}\right\}_{76}\right\}$
6_{5}	$\left\{\left\{0_{9}\right\}_{74},\left\{0_{9}, 1_{18}\right\}_{2}\right\}$
6_{6}	$\left\{\left\{0_{9}\right\}_{72},\left\{0_{27}\right\}_{4}\right\}$
6_{7}	$\left\{\left\{0_{9}\right\}_{85},\left\{0_{27}\right\}_{16},\left\{0_{81}\right\}_{3,},\left\{0_{45}, 1_{18}, 2_{18}\right\}_{4}\right\}$
6_{8}	$\left\{\left\{0_{9}\right\}_{76}\right\}$
6_{9}	$\left\{\left\{0_{9}\right\}_{91},\left\{0_{27}\right\}_{6},\left\{0_{81}\right\}_{1},\left\{0_{9}, 1_{18}\right\}_{6},\left\{0_{27}, 1_{54}\right\}_{2},\left\{0_{27}, 2_{54}\right\}_{2}\right\}$
6_{10}	$\left\{\left\{0_{9}\right\}_{76}\right\}$
6_{11}	$\left\{\left\{0_{9}\right\}_{70},\left\{0_{9}, 1_{18}\right\}_{6}\right\}$
6_{12}	$\left\{\left\{0_{9}\right\}_{97},\left\{0_{81}\right\}_{1},\left\{0_{9}, 1_{18}\right\}_{8,},\left\{0_{9}, 1_{36}, 2_{36}\right\}_{2}\right\}$
6_{13}	$\left\{\left\{0_{9}\right\}_{95},\left\{0_{27}\right\}_{6},\left\{0_{81}\right\}_{1},\left\{0_{9}, 2_{18}\right\}_{4},\left\{0_{27}, 2_{54}\right\}_{2}\right\}$
6_{14}	$\left\{\left\{0_{9}\right\}_{119},\left\{0_{27}\right\}_{6,},\left\{0_{81}\right\}_{11},\left\{0_{9}, 1_{18}\right\}_{22},\left\{0_{27}, 1_{54}\right\}_{24}\right\}$
6_{15}	$\left\{\left\{0_{9}\right\}_{119},\left\{0_{27}\right\}_{6},\left\{0_{81}\right\}_{11},\left\{0_{9}, 2_{18}\right\}_{12},\left\{0_{27}, 1_{54}\right\}_{24}\right\}$
6_{16}	$\left\{\left\{0_{9}\right\}_{44},\left\{0_{81}\right\}_{32}\right\}$

表1:

By [18], the map θ is a 2 -cocycle of $C^{*}\left(X ; \mathbb{Z}_{3}\right)_{Y}$. Table 1 lists the invariant $\Phi_{\theta}^{\text {conj }}(H)$ for the handlebody-knots $0_{1}, \ldots, 6_{16}$. We represent the multiplicity of elements of a multiset by using subscripts. For example, $\left\{\left\{0_{2}, 1_{3}\right\}_{1},\left\{0_{3}\right\}_{2}\right\}$ represents the multiset $\{\{0,0,1,1,1\},\{0,0,0\},\{0,0,0\}\}$.
From Table 1, we see that our invariant can distinguish the handlebody-knots $6_{14}, 6_{15}$, whose complements have the isomorphic fundamental groups. Together with Theorem 5.6, we also see that handlebody-knots $5_{2}, 5_{3}, 6_{5}, 6_{9}, 6_{11}, 6_{12}, 6_{13}, 6_{14}, 6_{15}$ are not equivalent to their mirror images. In particular, the chiralities of $5_{3}, 6_{5}, 6_{11}$ and 6_{12} were not known. Table 2 shows us known facts on the chirality of handlebody-knots in [9] so far. In the column of "chirality", the symbols \bigcirc and \times mean that the handlebody-knot is amphichiral and chiral, respectively, and the symbol? means that it is not known whether the handlebody-knot is amphichiral or chiral. The symbols \checkmark in the right five columns mean that the handlebody-knots can be proved chiral by using the method introduced

	chirality	M	II	LL	IKO	IIJO
0_{1}	\bigcirc					
4_{1}	\bigcirc					
5_{1}	\times			\checkmark		
5_{2}	\times		\checkmark	\checkmark		\checkmark
5_{3}	\times					\checkmark
5_{4}	\times				\checkmark	
6_{1}	\times	\checkmark				
6_{2}	$?$					
6_{3}	$?$					
6_{4}	\times			\checkmark		
6_{5}	\times					\checkmark
6_{6}	\bigcirc					
6_{7}	\bigcirc					
6_{8}	$?$					
6_{9}	\times		\checkmark			\checkmark
6_{10}	$?$					
6_{11}	\times					\checkmark
6_{12}	\times					\checkmark
6_{13}	\times		\checkmark	\checkmark		\checkmark
6_{14}	\times				\checkmark	\checkmark
6_{15}	\times				\checkmark	\checkmark
6_{16}	\bigcirc					

表2:
in the papers corresponding to the columns. Here, M, II, LL, IKO and IIJO denote the papers [17], [7], [15], [10] and this paper, respectively.

References

[1] J. S. Carter, D. Jelsovsky, S. Kamada, L. Langford and M. Saito, Quandle cohomology and state-sum invariants of knotted curves and surfaces, Trans. Amer. Math. Soc. 355 (2003) 3947-3989.
[2] J. S. Carter, D. Jelsovsky, S. Kamada and M. Saito, Quandle homology groups, their Betti numbers, and virtual knots, J. Pure Appl. Algebra 157 (2001) 135-155.
[3] J. S. Carter, S. Kamada, and M. Saito, Geometric interpretations of quandle homology, J. Knot Theory Ramifications 10 (2001), 345-386.
[4] R. Fenn, C. Rourke and B. Sanderson, Trunks and classifying spaces, Appl. Categ. Structures 3 (1995), 321-356.
[5] R. Fenn, C. Rourke and B. Sanderson, The rack space, Trans. Amer. Math. Soc. 359 (2007), 701-740.
[6] A. Ishii, Moves and invariants for knotted handlebodies, Algebr. Geom. Topol. 8 (2008), 1403-1418.
[7] A. Ishii and M. Iwakiri, Quandle cocycle invariants for spatial graphs and knotted handlebodies, Canad. J. Math. 64 (2012), 102-122.
[8] A. Ishii, M. Iwakiri, Y. Jang and K. Oshiro, A G-family of quandles and handlebodyknots, preprint.
[9] A. Ishii, K. Kishimoto, H. Moriuchi and M. Suzuki, A table of genus two handlebodyknots up to six crossings, to appear in J. Knot Theory Ramifications
[10] A. Ishii, K. Kishimoto and M. Ozawa, Knotted handle decomposing spheres for handlebody-knots, preprint.
[11] Y. Jang and K. Oshiro, Symmetric quandle colorings for spatial graphs and handlebody-links, J. Knot Theory Ramifications.
[12] D. Joyce, A classifying invariant of knots, the knot quandle, J. Pure Appl. Alg. 23 (1982) 37-65.
[13] S. Kamada, Quandles with good involutions, their homologies and knot invariants, in: Intelligence of Low Dimensional Topology 2006, Eds. J. S. Carter et. al., pp. 101-108, World Scientific Publishing Co., 2007.
[14] S. Kamada and K. Oshiro, Homology groups of symmetric quandles and cocycle invariants of links and surface-links, Trans. Amer. Math. Soc. 362 (2010) 55015527.
[15] J. H. Lee and S. Lee, Inequivalent handlebody-knots with homeomorphic complements, preprint.
[16] S. V. Matveev, Distributive groupoids in knot theory, Mat. Sb. (N.S.) 119(161) (1982) 78-88.
[17] M. Motto, Inequivalent genus 2 handlebodies in S^{3} with homeomorphic complement, Topology Appl. 36 (1970), 283-290.
[18] T. Nosaka, Quandle cocycles from invariant theory, preprint.
［19］C．Rourke and B．Sanderson，There are two 2－twist－spun trefoils． http：／／citeseerx．ist．psu．edu／viewdoc／summary？doi＝10．1．1．65．3250

Graduate School of Science and Engineering
Saga University
Saga 840－8502
JAPAN
E－mail address：iwakiri＠ms．saga－u．ac．jp

