<table>
<thead>
<tr>
<th>Title</th>
<th>A G-family of quandles and handlebody-knots (Intelligence of Low-dimensional Topology)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Author(s)</td>
<td>Iwakiri, Masahide</td>
</tr>
<tr>
<td>Citation</td>
<td>数理解析研究所講究録 1812: 98-110</td>
</tr>
<tr>
<td>Issue Date</td>
<td>2012-10</td>
</tr>
<tr>
<td>URL</td>
<td>http://hdl.handle.net/2433/194511</td>
</tr>
<tr>
<td>Type</td>
<td>Departmental Bulletin Paper</td>
</tr>
<tr>
<td>Textversion</td>
<td>publisher</td>
</tr>
</tbody>
</table>

Kyoto University
A G-family of quandles and handlebody-knots

Masahide Iwakiri
Graduate School of Science and Engineering, Saga University

We introduce the notion of a G-family of quandles and use it to construct invariants for handlebody-knots. Our invariant can detect the chiralities of some handlebody-knots including unknown ones. This is a joint work with Atsushi Ishii, Yeonhee Jang and Kanako Oshiro ([8]).

1 Handlebody-links

A handlebody-link is a disjoint union of handlebodies embedded in the 3-sphere S^3. Two handlebody-links are equivalent if there is an orientation-preserving self-homeomorphism of S^3 which sends one to the other. A spatial graph is a finite graph embedded in S^3. Two spatial graphs are equivalent if there is an orientation-preserving self-homeomorphism of S^3 which sends one to the other. When a handlebody-link H is a regular neighborhood of a spatial graph K, we say that K represents H, or H is represented by K. In this paper, a trivalent graph may contain circle components. Then any handlebody-link can be represented by some spatial trivalent graph. A diagram of a handlebody-link is a diagram of a spatial trivalent graph which represents the handlebody-link.

An IH-move is a local spatial move on spatial trivalent graphs as described in Figure 1, where the replacement is applied in a 3-ball embedded in S^3. Then we have the following theorem.

Theorem 1.1 ([6]). For spatial trivalent graphs K_1 and K_2, the following are equivalent.

- K_1 and K_2 represent an equivalent handlebody-link.
- K_1 and K_2 are related by a finite sequence of IH-moves.
- Diagrams of K_1 and K_2 are related by a finite sequence of the moves depicted in Figure 2.
2 A G-family of quandles

A quandle \([12, 16]\) is a non-empty set \(X\) with a binary operation \(\ast : X \times X \rightarrow X\) satisfying the following axioms.

- For any \(x \in X\), \(x \ast x = x\).
- For any \(x \in X\), the map \(S_x : X \rightarrow X\) defined by \(S_x(y) = y \ast x\) is a bijection.
- For any \(x, y, z \in X\), \((x \ast y) \ast z = (x \ast z) \ast (y \ast z)\).

When we specify the binary operation \(\ast\) of a quandle \(X\), we denote the quandle by the pair \((X, \ast)\). An Alexander quandle \((M, \ast)\) is a \(\Lambda\)-module \(M\) with the binary operation defined by \(x \ast y = tx + (1 - t)y\), where \(\Lambda := \mathbb{Z}[t, t^{-1}]\). A conjugation quandle \((G, \ast)\) is a group \(G\) with the binary operation defined by \(x \ast y = y^{-1}xy\).

Let \(G\) be a group with identity element \(e\). A G-family of quandles is a non-empty set \(X\) with a family of binary operations \(\ast^g : X \times X \rightarrow X\) \((g \in G)\) satisfying the following axioms.

- For any \(x \in X\) and any \(g \in G\), \(x \ast^g x = x\).
- For any \(x, y \in X\) and any \(g, h \in G\),

\[
x \ast^{gh} y = (x \ast^g y) \ast^h y \text{ and } x \ast^e y = x.
\]

- For any \(x, y, z \in X\) and any \(g, h \in G\),

\[
(x \ast^g y) \ast^h z = (x \ast^h z) \ast^{h^{-1}gh} (y \ast^h z).
\]
When we specify the family of binary operations $*^g : X \times X \to X \ (g \in G)$ of a G-family of quandles, we denote the G-family of quandles by the pair $(X, \{*^g\}_{g \in G})$.

Proposition 2.1. Let G be a group. Let $(X, \{*^g\}_{g \in G})$ be a G-family of quandles.

(1) For each $g \in G$, the pair $(X, *^g)$ is a quandle.

(2) We define a binary operation $\triangleright : (X \times G) \times (X \times G) \to X \times G$ by

$$(x, g) \triangleright (y, h) = (x^{h} y, h^{-1}gh).$$

Then $(X \times G, \triangleright)$ is a quandle.

We call the quandle $(X \times G, *)$ in Proposition 2.1 the associated quandle of X.

Example 2.2. (1) Let $(X, *)$ be a quandle. Let $S_x : X \to X$ be the bijection defined by $S_x(y) = y * x$. Let m be a positive integer such that $S_x^m = id_X$ for any $x \in X$ if such an integer exists. We define the binary operation $*^i : X \times X \to X$ by $x *^i y = S_y^i(x)$. Then X is a \mathbb{Z}-family of quandles and a \mathbb{Z}_m-family of quandles, where $\mathbb{Z}_m = \mathbb{Z}/m\mathbb{Z}$.

(2) Let R be a ring, and G a group with identity element e. Let X be a right $R[G]$-module, where $R[G]$ is the group ring of G over R. We define the binary operation $*^g : X \times X \to X$ by $x *^g y = xg + y(e - g)$. Then X is a G-family of quandles.

3 Colorings

Let D be a diagram of a handlebody-link H. We set an orientation for each edge in D. Then D is a diagram of an oriented spatial trivalent graph K. We may represent an orientation of an edge by a normal orientation, which is obtained by rotating a usual orientation counterclockwise by $\pi/2$ on the diagram. We denote by $A(D)$ the set of arcs of D, where an arc is a piece of a curve each of whose endpoints is an undercrossing or a vertex. For an arc α incident to a vertex ω, we define $\epsilon(\alpha; \omega) \in \{1, -1\}$ by

$$\epsilon(\alpha; \omega) = \begin{cases} 1 & \text{if the orientation of } \alpha \text{ points to } \omega, \\ -1 & \text{otherwise}. \end{cases}$$

Let X be a G-family of quandles, and Q the associated quandle of X. Let p_X (resp. p_G) be the projection from Q to X (resp. G). An X-coloring of D is a map $C : A(D) \to Q$ satisfying the following conditions at each crossing χ and each vertex ω of D (see Figure 3).

- Let χ_1, χ_2 and χ_3 be respectively the under-arcs and the over-arc at a crossing χ
such that the normal orientation of χ_3 points from χ_1 to χ_2. Then

$$C(\chi_2) = C(\chi_1) \triangleright C(\chi_3).$$

- Let $\omega_1, \omega_2, \omega_3$ be the arcs incident to a vertex ω arranged clockwise around ω. Then

$$\begin{align*}
(p_X \circ C)(\omega_1) &= (p_X \circ C)(\omega_2) = (p_X \circ C)(\omega_3), \\
(p_G \circ C)(\omega_1)^{e(\omega_1;\omega)}(p_G \circ C)(\omega_2)^{e(\omega_2;\omega)}(p_G \circ C)(\omega_3)^{e(\omega_3;\omega)} &= e.
\end{align*}$$

We denote by $\text{Col}_X(D)$ the set of X-colorings of D. For two diagrams D and E which locally differ, we denote by $\mathcal{A}(D, E)$ the set of arcs that D and E share.

Lemma 3.1. Let X be a G-family of quandles. Let D be a diagram of an oriented spatial trivalent graph. Let E be a diagram obtained by applying one of the $R1$--$R6$ moves to the diagram D once, where we choose orientations for E which agree with those for D on $\mathcal{A}(D, E)$. For $C \in \text{Col}_X(D)$, there is a unique X-coloring $C_{D, E} \in \text{Col}_X(E)$ such that $C|_{\mathcal{A}(D, E)} = C_{D, E}|_{\mathcal{A}(D, E)}$.

Remark 3.2. Let X be a \mathbb{Z}-family of quandles or a \mathbb{Z}_m-family of quandles defined as in Example 2.2 (2). Then an X-coloring be regarded as an X-coloring defined in [7].

Let X be a G-family of quandles, and Q the associated quandle of X. An X-set is a non-empty set Y with a family of maps $*^g : Y \times X \to Y$ satisfying the following axioms, where we note that we use the same symbol $*^g$ as the binary operation of the G-family of quandles.

- For any $y \in Y$, $x \in X$, and any $g, h \in G$,

$$y *^g h x = (y *^h x) *^g x \text{ and } y *^e x = y.$$
Figure 4:

- For any $y \in Y$, $x_1, x_2 \in X$, and any $g, h \in G$,
 \[(y \ast^g x_1) \ast^h x_2 = (y \ast^h x_2) \ast^{h^{-1}gh} (x_1 \ast^h x_2).\]

Put $y \triangleright (x, g) := y \ast^g x$ for $y \in Y$, $(x, g) \in Q$. Then the second axiom implies that $(y \triangleright q_1) \triangleright q_2 = (y \triangleright q_2) \triangleright (q_1 \triangleright q_2)$ for $q_1, q_2 \in Q$. Any G-family of quandles $(X, \{\ast^g\}_{g \in G})$ itself is an X-set with its binary operations. Any singleton set $\{y\}$ is also an X-set with the maps \ast^g defined by $y \ast^g x = y$ for $x \in X$ and $g \in G$, which is a trivial X-set.

Let D be a diagram of an oriented spatial trivalent graph. We denote by $\mathcal{R}(D)$ the set of complementary regions of D. Let X be a G-family of quandles, and Y an X-set. Let Q be the associated quandle of X. An X_Y-coloring of D is a map $C : \mathcal{A}(D) \cup \mathcal{R}(D) \rightarrow Q \cup Y$ satisfying the following conditions.

- $C(\mathcal{A}(D)) \subset Q$, $C(\mathcal{R}(D)) \subset Y$.
- The restriction $C|_{\mathcal{A}(D)}$ of C on $\mathcal{A}(D)$ is an X-coloring of D.
- For any arc $\alpha \in \mathcal{A}(D)$, we have
 \[C(\alpha_1) \triangleright C(\alpha) = C(\alpha_2),\]
 where α_1, α_2 are the regions facing the arc α so that the normal orientation of α points from α_1 to α_2 (see Figure 4).

We denote by $\text{Col}_X(D)_Y$ the set of X_Y-colorings of D.

For two diagrams D and E which locally differ, we denote by $\mathcal{R}(D, E)$ the set of regions that D and E share.

Lemma 3.3. Let X be a G-family of quandles, Y an X-set. Let D be a diagram of an oriented spatial trivalent graph. Let E be a diagram obtained by applying one of the $R1$–$R6$ moves to the diagram D once, where we choose orientations for E which agree with those for D on $\mathcal{A}(D, E)$. For $C \in \text{Col}_X(D)_Y$, there is a unique X_Y-coloring $C_{D,E} \in \text{Col}_X(E)_Y$ such that $C|_{\mathcal{A}(D,E)} = C_{D,E}|_{\mathcal{A}(D,E)}$ and $C|_{\mathcal{R}(D,E)} = C_{D,E}|_{\mathcal{R}(D,E)}$.
4 A homology

Let X be a G-family of quandles, and Y an X-set. Let (Q, \triangleright) be the associated quandle of X. Let $B_n(X)_Y$ be the free abelian group generated by the elements of $Y \times Q^n$ if $n \geq 0$, and let $B_n(X)_Y = 0$ otherwise. We put

$$(y, q_1, \ldots, q_i \triangleright q, q_{i+1}, \ldots, q_n) := (y \triangleright q, q_1 \triangleright q, \ldots, q_i \triangleright q, q_{i+1}, \ldots, q_n)$$

for $y \in Y$ and $q, q_1, \ldots, q_n \in Q$. We define a boundary homomorphism $\partial_n : B_n(X)_Y \to B_{n-1}(X)_Y$ by

$$\partial_n(y, q_1, \ldots, q_n) = \sum_{i=1}^{n}(-1)^i(y, q_1, \ldots, q_{i-1}, q_{i+1}, \ldots, q_n)$$

for $n > 0$, and $\partial_n = 0$ otherwise. Then $B_*(X)_Y = (B_n(X)_Y, \partial_n)$ is a chain complex (see [1, 2, 4, 5]).

Let $D_n(X)_Y$ be the subgroup of $B_n(X)_Y$ generated by the elements of

$$\bigcup_{i=1}^{n-1} \left\{ (y, q_1, \ldots, q_{i-1}, (x, g), (x, h), q_{i+2}, \ldots, q_n) \mid y \in Y, x \in X, g, h \in G, q_1, \ldots, q_n \in Q \right\}$$

and

$$\bigcup_{i=1}^{n} \left\{ (y, q_1, \ldots, q_{i-1}, (x, gh), q_{i+1}, \ldots, q_n) \quad \text{if} \quad y \in Y, x \in X, g, h \in G, q_1, \ldots, q_n \in Q \right\}$$

We remark that

$$(y, q_1, \ldots, q_{i-1}, (x, e), q_{i+1}, \ldots, q_n)$$

and

$$(y, q_1, \ldots, q_{i-1}, (x, g), q_{i+1}, \ldots, q_n)$$

$$+ ((y, q_1, \ldots, q_{i-1}) \triangleright (x, g), (x, g^{-1}), q_{i+1}, \ldots, q_n)$$

belong to $D_n(X)_Y$.

Lemma 4.1. For $n \in \mathbb{Z}$, we have $\partial_n(D_n(X)_Y) \subseteq D_{n-1}(X)_Y$. Thus $D_*(X)_Y = (D_n(X)_Y, \partial_n)$ is a subcomplex of $B_*(X)_Y$.

We put $C_n(X)_Y = B_n(X)_Y / D_n(X)_Y$. Then $C_*(X)_Y = (C_n(X)_Y, \partial_n)$ is a chain complex. For an abelian group A, we define the cochain complex $C^*(X; A)_Y = \text{Hom}(C_*(X)_Y, A)$.

We denote by $H_n(X)_Y$ the nth homology group of $C_*(X)_Y$.
5 Cocycle invariants

Let X be a G-family of quandles, and Y an X-set. Let D be a diagram of an oriented spatial trivalent graph. For an X_Y-coloring $C \in \text{Col}_X(D)_Y$, we define the weight $w(\chi; C) \in C_2(X)_Y$ at a crossing χ of D as follows. Let χ_1, χ_2 and χ_3 be respectively the under-arcs and the over-arc at a crossing χ such that the normal orientation of χ_3 points from χ_1 to χ_2. Let R_χ be the region facing χ_1 and χ_3 such that the normal orientations χ_1 and χ_3 point from R_χ to the opposite regions with respect to χ_1 and χ_3, respectively. Then we define

$$w(\chi; C) = \epsilon(\chi)(C(R_\chi), C(\chi_1), C(\chi_3)),$$

where $\epsilon(\chi) \in \{1, -1\}$ is the sign of a crossing χ. We define a chain $W(D; C) \in C_2(X)_Y$ by

$$W(D; C) = \sum_\chi w(\chi; C),$$

where χ runs over all crossings of D.

Lemma 5.1. The chain $W(D; C)$ is a 2-cycle of $C_*(X)_Y$. Further, for cohomologous 2-cocycles θ, θ' of $C^*(X; A)_Y$, we have $\theta(W(D; C)) = \theta'(W(D; C))$.

Lemma 5.2. Let D be a diagram of an oriented spatial trivalent graph. Let E be a diagram obtained by applying one of the $R1$–$R6$ moves to the diagram D once, where we choose orientations for E which agree with those for D on $A(D,E)$. For $C \in \text{Col}_X(D)_Y$ and $C_{D,E} \in \text{Col}_X(E)_Y$ such that $C|_{A(D,E)} = C_{D,E}|_{A(D,E)}$ and $C|_{R(D,E)} = C_{D,E}|_{R(D,E)}$, we have $[W(D; C)] = [W(E; C_{D,E})] \in H_2(X)_Y$.

We denote by G_H (resp. G_K) the fundamental group of the exterior of a handlebody-link H (resp. a spatial graph K). When H is represented by K, the groups G_H and G_K are identical. Let D be a diagram of an oriented spatial trivalent graph K. By the definition...
of an X_Y-coloring C of D, the map $p_G \circ C|_{A(D)}$ represents a homomorphism from G_K to G, which we denote by $\rho_C \in \text{Hom}(G_K, G)$. For $\rho \in \text{Hom}(G_K, G)$, we define

$$\text{Col}_X(D; \rho)_Y = \{C \in \text{Col}_X(D)_Y \mid \rho_C = \rho\}.$$

For a 2-cocycle θ of $C^*(X; A)_Y$, we define

$$\mathcal{H}(D) := \{[W(D; C)] \in H_2(X)_Y \mid C \in \text{Col}_X(D)_Y\},$$

$$\Phi_\theta(D) := \{\theta(W(D; C)) \in A \mid C \in \text{Col}_X(D)_Y\},$$

$$\mathcal{H}(D; \rho) := \{[W(D; C)] \in H_2(X)_Y \mid C \in \text{Col}_X(D; \rho)_Y\},$$

$$\Phi_\theta(D; \rho) := \{\theta(W(D; C)) \in A \mid C \in \text{Col}_X(D; \rho)_Y\}$$

as multisets.

Lemma 5.3. Let D be a diagram of an oriented spatial trivalent graph K. For $\rho, \rho' \in \text{Hom}(G_K, G)$ such that ρ and ρ' are conjugate, we have $\mathcal{H}(D; \rho) = \mathcal{H}(D; \rho')$ and $\Phi_\theta(D; \rho) = \Phi_\theta(D; \rho')$.

We denote by $\text{Conj}(G_K, G)$ the set of conjugacy classes of homomorphisms from G_K to G. By Lemma 5.3, $\mathcal{H}(D; \rho)$ and $\Phi_\theta(D; \rho)$ are well-defined for $\rho \in \text{Conj}(G_K, G)$.

Lemma 5.4. Let D be a diagram of an oriented spatial trivalent graph K. Let E be a diagram obtained from D by reversing the orientation of an edge e. For $\rho \in \text{Hom}(G_K, G)$, we have $\mathcal{H}(D) = \mathcal{H}(E)$, $\Phi_\theta(D) = \Phi_\theta(E)$, $\mathcal{H}(D; \rho) = \mathcal{H}(E; \rho)$ and $\Phi_\theta(D; \rho) = \Phi_\theta(E; \rho)$.

By Lemma 5.4, $\mathcal{H}(D)$, $\Phi_\theta(D)$, $\mathcal{H}(D; \rho)$ and $\Phi_\theta(D; \rho)$ are well-defined for a diagram D of an unoriented spatial trivalent graph, which is a diagram of a handlebody-link. For a diagram D of a handlebody-link H, we define

$$\mathcal{H}^{\text{hom}}(D) := \{\mathcal{H}(D; \rho) \mid \rho \in \text{Hom}(G_H, G)\},$$

$$\Phi^{\text{hom}}_\theta(D) := \{\Phi_\theta(D; \rho) \mid \rho \in \text{Hom}(G_H, G)\},$$

$$\mathcal{H}^{\text{conj}}(D) := \{\mathcal{H}(D; \rho) \mid \rho \in \text{Conj}(G_H, G)\},$$

$$\Phi^{\text{conj}}_\theta(D) := \{\Phi_\theta(D; \rho) \mid \rho \in \text{Conj}(G_H, G)\}$$

as "multisets of multisets". We remark that, for X_Y-colorings C and $C_{D,E}$ in Lemma 5.2, we have $\rho_C = \rho_{C_{D,E}}$. Then, by Lemmas 5.1–5.4, we have the following theorem.
Theorem 5.5. Let X be a G-family of quandles, Y an X-set. Let θ be a 2-cocycle of $C^*(X;A)_Y$. Let H be a handlebody-link represented by a diagram D. Then the following are invariants of a handlebody-link H.

$$\mathcal{H}(D), \quad \Phi_\theta(D), \quad \mathcal{H}_{\text{hom}}(D), \quad \Phi_{\theta \text{hom}}(D), \quad \mathcal{H}_{\text{conj}}(D), \quad \Phi_{\theta \text{conj}}(D).$$

We denote the invariants of H given in Theorem 5.5 by

$$\mathcal{H}(H), \quad \Phi_\theta(H), \quad \mathcal{H}_{\text{hom}}(H), \quad \Phi_{\theta \text{hom}}(H), \quad \mathcal{H}_{\text{conj}}(H), \quad \Phi_{\theta \text{conj}}(H),$$

respectively.

We denote by H^* the mirror image of a handlebody-link H. Then we have the following theorem.

Theorem 5.6. For a handlebody-link H, we have

$$\mathcal{H}(H^*) = -\mathcal{H}(H), \quad \Phi_\theta(H^*) = -\Phi_\theta(H),$$

$$\mathcal{H}_{\text{hom}}(H^*) = -\mathcal{H}_{\text{hom}}(H), \quad \Phi_{\theta \text{hom}}(H^*) = -\Phi_{\theta \text{hom}}(H),$$

$$\mathcal{H}_{\text{conj}}(H^*) = -\mathcal{H}_{\text{conj}}(H), \quad \Phi_{\theta \text{conj}}(H^*) = -\Phi_{\theta \text{conj}}(H),$$

where $-S = \{-a \mid a \in S\}$ for a multiset S.

6 Applications

In this section, we calculate cocycle invariants defined in the previous section for the handlebody-knots $0_1, \ldots, 6_{16}$ in the table given in [9], by using a 2-cocycle given by Nosaka [18]. This calculation enables us to distinguish some of handlebody-knots from their mirror images, and a pair of handlebody-knots whose complements have isomorphic fundamental groups.

Let $G = SL(2;\mathbb{Z}_3)$ and $X = (\mathbb{Z}_3)^2$. Then X is a G-family of quandles with the proper binary operation as given in Proposition 2.2 (2). Let Y be the trivial X-set $\{y\}$. We define a map $\theta: Y \times (X \times G)^2 \to \mathbb{Z}_3$ by

$$\theta(y, (x_1, g_1), (x_2, g_2)) := \lambda(g_1) \det(x_1 - x_2, x_2(1^{-1}g_2^{-1})), $$

where the abelianization $\lambda: G \to \mathbb{Z}_3$ is given by

$$\lambda \begin{pmatrix} a & b \\ c & d \end{pmatrix} = (a + d)(b - c)(1 - bc).$$
By [18], the map θ is a 2-cocycle of $C^*(X; \mathbb{Z}_3)$. Table 1 lists the invariant $\Phi_{\theta}^{\text{conj}}(H)$ for the handlebody-knots $0_1, \ldots, 6_{16}$. We represent the multiplicity of elements of a multiset by using subscripts. For example, $\{\{0_2, 1_3\}, \{0_3\}\}$ represents the multiset $\{0, 0, 1, 1, 1\}, \{0, 0, 0\}, \{0, 0, 0\}$.

From Table 1, we see that our invariant can distinguish the handlebody-knots $6_{14}, 6_{15}$, whose complements have the isomorphic fundamental groups. Together with Theorem 5.6, we also see that handlebody-knots $5_2, 5_3, 6_5, 6_9, 6_{11}, 6_{12}, 6_{13}, 6_{14}, 6_{15}$ are not equivalent to their mirror images. In particular, the chiralities of $5_3, 6_5, 6_{11}$ and 6_{12} were not known. Table 2 shows us known facts on the chirality of handlebody-knots in [9] so far. In the column of “chirality”, the symbols \bigcirc and \times mean that the handlebody-knot is amphichiral and chiral, respectively, and the symbol $?$ means that it is not known whether the handlebody-knot is amphichiral or chiral. The symbols \checkmark in the right five columns mean that the handlebody-knots can be proved chiral by using the method introduced

<table>
<thead>
<tr>
<th>$\Phi_{\theta}(H)$</th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>0_1</td>
<td>${{0_9}_{76}}$</td>
</tr>
<tr>
<td>4_1</td>
<td>${{0_9}{83}, {0_27}{22}, {0_81}_{3}}$</td>
</tr>
<tr>
<td>5_1</td>
<td>${{0_9}_{76}}$</td>
</tr>
<tr>
<td>5_2</td>
<td>${{0_9}{95}, {0_27}{6}, {0_81}{1}, {0_9, 1{18}}{4}, {0_27, 1{54}}_{2}}$</td>
</tr>
<tr>
<td>5_3</td>
<td>${{0_9}{102}, {0_27}{4}, {0_27, 2_{54}}_{2}}$</td>
</tr>
<tr>
<td>5_4</td>
<td>${{0_9}{74}, {0_81}{2}}$</td>
</tr>
<tr>
<td>6_1</td>
<td>${{0_9}{91}, {0_27}{16}, {0_81}_{1}}$</td>
</tr>
<tr>
<td>6_2</td>
<td>${{0_9}{106}, {0_45, 1{18}, 2_{18}}_{2}}$</td>
</tr>
<tr>
<td>6_3</td>
<td>${{0_9}{74}, {0_27}{2}}$</td>
</tr>
<tr>
<td>6_4</td>
<td>${{0_9}_{76}}$</td>
</tr>
<tr>
<td>6_5</td>
<td>${{0_9}{74}, {0_9, 1{18}}_{2}}$</td>
</tr>
<tr>
<td>6_6</td>
<td>${{0_9}{72}, {0_27}{4}}$</td>
</tr>
<tr>
<td>6_7</td>
<td>${{0_9}{85}, {0_27}{16}, {0_81}{3}, {0_45, 1{18}, 2_{18}}_{4}}$</td>
</tr>
<tr>
<td>6_8</td>
<td>${{0_9}_{76}}$</td>
</tr>
<tr>
<td>6_9</td>
<td>${{0_9}{91}, {0_27}{6}, {0_81}{1}, {0_9, 1{18}}{6}, {0_27, 1{54}}{2}, {0_27, 2{54}}_{2}}$</td>
</tr>
<tr>
<td>6_10</td>
<td>${{0_9}_{76}}$</td>
</tr>
<tr>
<td>6_11</td>
<td>${{0_9}{70}, {0_9, 1{18}}_{8}}$</td>
</tr>
<tr>
<td>6_12</td>
<td>${{0_9}{97}, {0_81}{1}, {0_9, 1_{18}}{8}, {0_9, 1{36}, 2_{36}}_{2}}$</td>
</tr>
<tr>
<td>6_13</td>
<td>${{0_9}{95}, {0_27}{6}, {0_81}{1}, {0_9, 2{18}}{4}, {0_27, 2{54}}_{2}}$</td>
</tr>
<tr>
<td>6_14</td>
<td>${{0_9}{19}, {0_27}{6}, {0_81}{11}, {0_9, 1{18}}{12}, {0_27, 1{54}}_{24}}$</td>
</tr>
<tr>
<td>6_15</td>
<td>${{0_9}{19}, {0_27}{6}, {0_81}{11}, {0_9, 2{18}}{12}, {0_27, 1{54}}_{24}}$</td>
</tr>
<tr>
<td>6_16</td>
<td>${{0_9}{44}, {0_81}{32}}$</td>
</tr>
<tr>
<td>chirality</td>
<td>M</td>
</tr>
<tr>
<td>-----------</td>
<td>---</td>
</tr>
<tr>
<td>0₁</td>
<td></td>
</tr>
<tr>
<td>4₁</td>
<td></td>
</tr>
<tr>
<td>5₁</td>
<td></td>
</tr>
<tr>
<td>5₂</td>
<td></td>
</tr>
<tr>
<td>5₃</td>
<td></td>
</tr>
<tr>
<td>5₄</td>
<td></td>
</tr>
<tr>
<td>6₁</td>
<td></td>
</tr>
<tr>
<td>6₂</td>
<td></td>
</tr>
<tr>
<td>6₃</td>
<td></td>
</tr>
<tr>
<td>6₄</td>
<td></td>
</tr>
<tr>
<td>6₅</td>
<td></td>
</tr>
<tr>
<td>6₆</td>
<td></td>
</tr>
<tr>
<td>6₇</td>
<td></td>
</tr>
<tr>
<td>6₈</td>
<td></td>
</tr>
<tr>
<td>6₉</td>
<td></td>
</tr>
<tr>
<td>6₁₀</td>
<td></td>
</tr>
<tr>
<td>6₁₁</td>
<td></td>
</tr>
<tr>
<td>6₁₂</td>
<td></td>
</tr>
<tr>
<td>6₁₃</td>
<td></td>
</tr>
<tr>
<td>6₁₄</td>
<td></td>
</tr>
<tr>
<td>6₁₅</td>
<td></td>
</tr>
<tr>
<td>6₁₆</td>
<td></td>
</tr>
</tbody>
</table>

表 2:

in the papers corresponding to the columns. Here, M, II, LL, IKO and IIJO denote the papers [17], [7], [15], [10] and this paper, respectively.

References

http://citeseerx.ist.psu.edu/viewdoc/summary?doi=10.1.1.65.3250

Graduate School of Science and Engineering
Saga University
Saga 840-8502
JAPAN
E-mail address: iwakiri@ms.saga-u.ac.jp

佐賀大学工学系研究科 岩切雅英