
Braids and branched coverings of dimension three

J. Scott Carter
Department of Mathematics, University of South Alabama

and

Seiichi Kamada
Department of Mathematics, Hiroshima University

1 Introduction

This is on a part of our work in progress, which was introduced at the conference “Intel-
ligence of Low-dimensional Topology” held in RIMS in May, 2012. The purpose of our
research is to understand branched coverings and $m$-dimensional braids which are gen-
eralizations of classical braids. Here we discuss chart descriptions of branched coverings
and braids in dimension $m=2$ first, and then those for which $m=3.$

We work in the $PL$ category ([9, 20]). Let $S^{m}$ denote the $m$-sphere, and let $M^{m}$ denote
a closed oriented $m$-manifold.

2 Preliminaries

We start by giving some definitions and theorems on branched coverings.

Definition 2.1 A PL map $f$ : $M^{m}arrow S^{m}$ is a branched covering (map) if there exists an
$(m-2)$-subcomplex $L$ of $S^{m}$ such that the restriction $\underline{f}$ : $M^{m}\backslash f^{-1}(L)arrow S^{m}\backslash L$ is a
covering map.

We denote the covering degree by $d$ . We call $f$ a $d$ -fold branched covering.
We assume that $L$ is minimum, i.e., $\forall y\in L,$ $\#(f^{-1}(y))<d$ . Then we call $L$ the branch

set of $f.$

Definition 2.2 $Ad$-fold branched covering $f$ is simple if $\forall y\in L,$ $\#(f^{-1}(y))=d-1.$

Remark 2.3 (1) $A$ branched covering is defined in general as follows (cf. [2, 3]): $A$

$PL$ map between manifolds is called proper if the inverse image of the boundary is the
boundary. $A$ proper $PL$ map between manifolds $f$ : $M^{m}arrow N^{m}$ is called a branched
covering if it is finite-to-one and open.

(2) $A$ branched covering $f$ : $Marrow N$ is primitive if $f_{*}:\pi_{1}(M)arrow\pi_{1}(N)$ is surjective.
It is often assumed that a branched covering is primitive.

Note that $M^{m}$ is closed, oriented and connected in what follows in this section.
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Theorem 2.4 (J.W. Alexander [1]) For any closed oriented and connected $m$ -manifold
$M^{m}$ , there exists a simple branched covering $f$ : $M^{m}arrow S^{m}$ for some degree $d.$

Remark 2.5 (1) $A$ closed oriented and connected 1-manifold $M^{1}$ is homeomorphic to $S^{1}.$

Thus there exists a 1-fold covering $f$ : $M^{1}arrow S^{1}.$

(2) For any closed oriented and connected 2-manifold $M^{2}$ , there exists a 2-fold simple
branched covering $f$ : $M^{2}arrow S^{2}.$

Theorem 2.6 (H. M. Hilden [8], J. M. Montesinos [17]) For any closed oriented
and connected 3-manifold $M^{3}$ , there exists a 3-fold simple branched covering $f$ : $M^{3}arrow S^{3}$

such that the bmnch set $L$ is a link (or a knot).

The following is a conjecture due to Montesinos.

Conjecture 2.7 For any closed oriented and connected 4-manifold $M^{4}$ , there exists a
4-fold simple branched covering $f$ : $M^{4}arrow S^{4}$ such that $Lw$ an embedded surface in $S^{4}.$

Some partial answers to this conjecture are known as follows.

Theorem 2.8 (R. Piergallini [19]) For any closed oriented and connected 4-manifold
$M^{4}$ , there exists a 4-fold simple bmnched covering $f$ : $M^{4}arrow S^{4}$ such that $L$ is an
immersed surface in $S^{4}.$

Theorem 2.9 (M. Iori and R. Piergallini [11]) For any closed oriented and connected
4-manifold $M^{4}$ , there exists a 5-fold simple bmnched covering $f$ : $M^{4}arrow S^{4}$ such that $L$

is an embedded surface in $S^{4}.$

3 Two dimensional case $(m=2)$

Let $f$ : $M^{2}arrow S^{2}$ be a $d$-fold simple branched covering with branch set $L$ , and let
$\underline{f}$ : $M^{2}\backslash f^{-1}(L)arrow S^{2}\backslash L$ be the associated covering map.

Take a base point $*ofS^{2}\backslash L$ to consider the fundamental group $\pi_{1}(S^{2}\backslash L, *)$ . The
preimage $f^{-1}(*)$ of the base point $*$ consists of $d$ points of $M^{2}$ . Then we have a monodromy
$\rho$ : $\pi_{1}(S^{2}\backslash L, *)arrow S_{d}$ , where the symmetric group $S_{d}$ on letters $\{$ 1, 2, $\ldots,$

$d\}$ is identified
with the symmetric group on $f^{-1}(*)$ . ( $A$ monodromy $\rho$ depends on the identification
between $\{$ 1, 2, $\ldots,$

$d\}$ and $f^{-1}(*).)$ The covering $\underline{f}$ is determined by the monodromy.
By the Riemann-Hurwitz formula, $L$ consists of an even number of points.
In Figure 1, a branch set, a monodromy, and a chart are depicted. ( $A$ chart description

is explained later.)
When a monodromy is described by a chart, it is easy to construct $M^{2}$ . We explain it

by using an example. Let $\Gamma$ be the chart depicted on the right of Figure 1. Consider three
copies of $S^{2}$ labeled by 1, 2, and 3, say $S_{1}^{2},$ $S_{2}^{2}$ and $S_{3}^{2}$ , respectively. On the copy $S_{1}^{2}$ , draw
the edges with label (12) of $\Gamma$ , on the copy $S_{2}^{2}$ , draw the edges with label (12) of $\Gamma$ and
those with label (23), and on the copy $S_{3}^{2}$ , draw the edges with label (23). Cut the three
2-spheres along these edges, and we obtain three compact surfaces, say $M_{1},$ $M_{2}$ and $M_{3},$

as in the bottom of Figure 2. The surface $M^{2}$ is obtained from the union $M_{1}\cup M_{2}\cup M_{3}$
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branch set $L$ monodromy chart

Figure 1: $A$ branch set, a monodromy and a chart

by identifying the boundary as follows: Let $e$ be an edge with label (12) on $S_{1}^{2}$ , and let
$e_{+}$ and $e_{-}$ be the copies of $e$ in $\partial M_{1}$ . Let $e’$ be the corresponding edge on $S_{2}^{2}$ , and let $e_{+}’$

and $e_{-}’$ be the corresponding copies in $\partial M_{2}$ . Then we identify $e_{+}$ with $e_{-}’$ , and identify $e_{-}$

with $e_{+}’$ , respectively. All boundary edges of $M_{1}\cup M_{2}\cup M_{3}$ are identified in this fashion,
and we have a closed surface. This is the desired $M^{2}.$

$1 2 3$
Figure 2: How to construct $M^{2}$

The classification of simple branched coverings was studied by J. L\"uroth [15], A. Cleb-
sch [6], A. Hurwitz [10], and others. The classification theorem is stated as follows.

Theorem 3.1 Let $f:M^{2}arrow S^{2}$ and $f’$ : $M^{2’}arrow S^{2}$ be $d$ -fold simple branched coverings
with bmnch sets $L$ and $L’$ , respectively. We assume that $M^{2}$ and $M^{2’}$ are connected. Then
$f$ and $f’$ are equivalent if and only if $\neq L=\# L’.$

Hurwitz [10] studied branched coverings by using of a system of monodromies of merid-
ian elements of the branch set, called a Hurwitz system, and studied when two systems
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present the same (up to equivalence) branched coverings.
A Hurwitz system depends on a system of generating set of $\pi_{1}(S^{2}\backslash L, *)$ . For a

generating system depicted in the middle of Figure 1, the Hurwitz system is

$\alpha=((12),$ (12)
$,$
(12)

$,$
(12)

$,$
(23)

$,$
(23) $)$ .

Besides a choice of a generating system, a Hurwitz system depends on the identification
of $\{$ 1, 2, $\ldots,$

$d\}$ and the fiber $f^{-1}(*)$ .
Two Hurwitz systems present the same (up to equivalence) braid monodromy if and

only if they are related by a finite sequence of Hurwitz moves and conjugations. The
Hurwitz moves are

$(a_{1}, \ldots, a_{k}, a_{k+1}, \ldots, a_{n})\mapsto(a_{1}, \ldots, a_{k+1}, a_{k+1}^{-1}a_{k}a_{k+1}, \ldots, a_{n})$

for $k=1,$ $\ldots,$ $n-1$ and their inverse moves. Conjugations are

$(a_{1}, \ldots, a_{n})\mapsto(g^{-1}a_{1}g, \ldots, g^{-1}a_{n}g)$

for $g\in S_{d}$ . When two Hurwitz systems are related by a finite sequence of Hurwitz moves
and conjugations, we say that they are $HC$-equivalent. $(H$ and $C$ stand for Hurwitz and
conjugation.)

Due to Hurwitz [10], the classification theorem is stated as follows.

Theorem 3.2 Let $f$ : $M^{2}arrow S^{2}$ be a $d$ -fold simple bmnched covering. Assume that $M^{2}$

is connected. Any Hurwitz system of $f$ is $HC$-equivalent to

$((12), \ldots,$ (12)
$,$
(23)

$,$
(23)

$,$
(34)

$,$
(34) $, \ldots, (d-1, d), (d-1, d))$ .

(The number of (12) $s$ is a positive even number, and for each $i=2,$ $\ldots,$ $d-1$ , a pair of
$(i, i+1)$ appears.)

In the next section, we will introduce the notion of a chart, called a permutation chart
or an $S_{d}$ -chart, that describes a branched covering or its monodromy. The chart method
helps us to construct $M^{2}$ from a monodromy, and to understand the classification theorem
well.

4 Permutation charts or $S_{d}$-charts $(m=2)$

We denote by $\tau_{i}$ the transposition $(ii+1)$ . The symmetric group $S_{d}$ is generated by
$\tau_{1},$

$\ldots,$
$\tau_{d-1}$ , and has a group presentation

$S_{d}=\langle\tau_{1},$
$\ldots,$ $\tau_{d-1}$ $\tau_{i}\tau_{j}=\tau_{j^{\mathcal{T}}i}$

$\tau_{i}\tau_{j}\tau_{i}=\tau_{j}\tau_{i}\tau_{j}$

$((|\begin{array}{ll}i- ji- j\end{array}|11)\rangle\cdot$

$\tau_{i}^{2}=e$

Definition 4.1 $A$ permutation chart of degree $d$ or an $S_{d}$ -chart is a labeled graph in $S^{2}$

such that each edge is labeled in $\{1, \ldots, d-1\}$ and each vertex is as in Figure 3. We call
a vertex a black vertex, a crossing or a white vertex if the valency of the vertex is 1, 4 or
6, respectively.
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By the correspondence $irightarrow\tau_{i}=(ii+1)\in S_{d}$ , the labels of a chart are assumed
to be transpositions in $S_{d}$ (see Figure 1). Figure 4 is an example of an $S_{4}$-chart, or a
permutation chart of degree 4.

$i$ $j$

$arrow^{i}$

black vertex crossing white vertex

$|i-j|>1 |i-j|=1$

Figure 3: Vertices of a $S_{d}$-chart

chart monodromy

Figure 4: $AS_{4}$-chart $\Gamma$ and the induced monodromy $\rho_{\Gamma}$

For a chart $\Gamma$ , we consider a monodromy

$\rho_{\Gamma}$ : $\pi_{1}(S^{2}\backslash L)arrow S_{d},$ $[\ell]\mapsto[$ intersection word of $\ell$ w.r.t. $\Gamma],$

where $L(=L_{\Gamma})$ is the set of black vertices. An intersection word is a sequence of elements
of $\{1, \ldots, d-1\}$ , which is regarded as an element of $S_{d}$ by the correspondence $irightarrow\tau_{i}=$

$(ii+1)\in S_{d}.$

Example 4.2 Let $\Gamma$ be an $S_{4}$-chart depicted in the left of Figure 4. When we take a Hur-
witz generating system as in the figure, we have a Hurwitz system $(\tau_{1}, \tau_{1}\tau_{3}\tau_{1}, \tau_{3}, \tau_{2}\tau_{1}\tau_{2}\tau_{1}\tau_{2})$ .
It is equal to $(\tau_{1}, \tau_{3}, \tau_{3}, \tau_{1})$ . And it is Hurwitz equivalent to $(\tau_{1}, \tau_{1}, \tau_{3}, \tau_{3})$ .

Theorem 4.3 Let $f$ : $M^{2}arrow S^{2}$ be a $d$ -fold simple bmnched covering, and $\rho_{f}$ a mon-
odromy of $f$ . There exists a chart $\Gamma$ such that $\rho_{\Gamma}=\rho_{f}$ . (We call $\Gamma$ a chart description of
$f$ or $\rho_{f}.)$

Local moves on permutation charts illustrated in Figure 5 are called chart moves.
(Ignore the orientations on edges.) Two charts are said to be equivalent or chart move
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Figure 5: Chart moves

equivalent if they are related by a finite sequence of chart moves and ambient isotopies of
$S^{2}.$

Theorem 4.4 Let $f$ and $f’$ be $d$ -fold simple branched covering of $S^{2}$ , and let $\Gamma$ and $\Gamma’$ be
their chart descriptions. $f$ is equivalent to $f’$ if and only if $\Gamma$ is equivalent to $\Gamma’.$

Using an example, we explain how to construct $M^{2}$ from a chart description. Let $\Gamma$

be an $S_{4}$-chart depicted in the top of Figure 6. Consider four copies of $S^{2}$ labeled by 1,
2, 3 and 4, say $S_{1}^{2},$ $S_{2}^{2},$ $S_{3}^{2}$ and $S_{4}^{2}$ , respectively. On the copy $S_{1}^{2}$ , draw the edges with
label 1 of $\Gamma$ , on the copy $S_{2}^{2}$ , draw the edges with label 1 of $\Gamma$ and those with labe12,
on the copy $S_{3}^{2}$ , draw the edges with labe12 of $\Gamma$ and those with labe13, and on the
copy $S_{4}^{2}$ , draw the edges with labe13. Cut the four 2-spheres along the edges, and we
obtain compact surfaces, say $M_{1},$ $M_{2},$ $M_{3}$ and $M_{4}$ , as in the bottom of Figure 6. The
surface $M^{2}$ is obtained from the union $\bigcup_{i=1}^{4}M_{i}$ by identifying the boundary as follows:
Let $e$ be an edge with label 1 on $S_{1}^{2}$ , and let $e+$ and $e_{-}$ be the copies of $e$ in $\partial M_{1}$ . Let $e’$

be the corresponding edge on $S_{2}^{2}$ , and let $e_{+}’$ and $e_{-}’$ be the corresponding copies in $\partial M_{2}.$

Then we identify $e+$ with $e_{-}’$ , and identify $e_{-}$ with $e_{+}’$ , respectively. All boundary edges
of $\bigcup_{i=1}^{4}M_{i}$ are identified in this fashion, and we have a closed surface. This is the desired
$M^{2}.$

At a white vertex, 3 sheets are gathering as in Figure 7.

Theorem 4.5 Any chart description of $f:M^{2}arrow S^{2}$ with connected $M$ is equivalent to
a chart as in Figure 8.
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chart

$1 2 3 4$Figure 6: How to construct $M^{2}$

This theorem is quite easily proved. As a corollary of this theorem, we have the
classification theorem (Theorem 3. 1).
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$212$

1

$212$

3

$121$

Figure 7: Three sheets gather around a white vertex.

$rightarrow$ $rightarrow$ $—$ $rightarrow$ $rightarrow$ $rightarrow$ $—$ $rightarrow$

1 1 1 2 3 d-l

Figure 8: $A$ chart in a normal form
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5 Braid charts or $B_{d}$-charts $(m=2)$

Let $\sigma_{i}(i=1, \ldots, d-1)$ be the standard generators of the braid group $B_{d}$ . Then $B_{d}$ has
a group presentation

$B_{d}=\langle\sigma_{1}, \ldots, \sigma_{d-1}|_{\sigma_{i}\sigma_{j}=\sigma_{j}\sigma_{i}}^{\sigma_{i}\sigma_{j}\sigma_{i}=\sigma_{j}\sigma_{i}\sigma_{j}} ((|_{i-j}^{i-j}|_{>}^{=}1)1)\rangle\cdot$

Definition 5.1 $A$ bmid chart of degree $d$ or a $B_{d}$ -chart is a labeled and oriented graph
in $S^{2}$ such that each edge is labeled in $\{1, \ldots, d-1\}$ and each vertex is as in Figure 9.
We call a vertex a black vertex, a crossing or a white vertex if the valency of the vertex
is 1, 4 or 6, respectively. The arrow at a black vertex in this figure is suppressed since it
may either be incoming or outgoing.

$i$ $j$

$arrow^{i}$

black vertex crossing white vertex

$|i-j|>1 |i-j|=1$

Figure 9: Vertices of a $B_{d}$-chart

By the correspondence $irightarrow\sigma_{i}=(ii+1)\in B_{d}$ , the labels of a chart are assumed to
present the standard generators in $B_{d}$ . Figure 10 is an example of a $B_{4}$-chart, or a braid
chart of degree 4.

chart monodromy

Figure 10: $AB_{4}$ -chart $\Gamma$ and the induced monodromy $\rho_{\Gamma}$

Forgetting orientations of the edges from a braid chart, we obtain a permutation chart.
Thus we often call a permutation chart an unoriented chart, and a braid chart an oriented
chart.
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Definition 5.2 $A$ permutation chart is called orientable if one can give orientations to
the edges to make it a braid chart. Otherwise it is called nonorientable.

For a braid chart $\Gamma$ of degree $d$ , we consider a monodromy

$\rho_{\Gamma}$ : $\pi_{1}(S^{2}\backslash L)arrow B_{d},$ $[\ell]\mapsto[$intersection word of $\ell$ w.r.t. $\Gamma],$

where $L(=L_{\Gamma})$ is the set of black vertices. An intersection word is a word of $\{1, \ldots, d-1\},$

which is regarded as an element of $B_{d}$ by the correspondence $irightarrow\sigma_{i}=(ii+1)\in S_{d}.$

Example 5.3 Let $\Gamma$ be a $B_{4}$-chart depicted in the left of Figure 10. When we take a
Hurwitz generating system as in the right of the figure, we have a Hurwitz system

$(\sigma_{1}, \sigma_{1}^{-1}\sigma_{3}\sigma_{1}, \sigma_{3}^{-1}, \sigma_{2}^{-1}\sigma_{1}^{-1}\sigma_{2}^{-1}\sigma_{1}\sigma_{2})$ .

It is equal to $(\sigma_{1}, \sigma_{3}, \sigma_{3}^{-1}, \sigma_{1}^{-1})$ . And it is Hurwitz equivalent to $(\sigma_{1}, \sigma_{1}^{-1}, \sigma_{3}, \sigma_{3}^{-1})$ .

Let $D^{2}\cross S^{2}$ be a tubular neighborhood of a standardly embedded 2-sphere in $R^{4}.$

Definition 5.4 A PL embedding $g$ : $M^{2}arrow D^{2}\cross S^{2}\subset R^{4}$ is $a$ (simple) embedded 2-
dimensional braid, or a surface bmid, of degree $d$ if the composition $M^{2}arrow D^{2}\cross S^{2}arrow S^{2}$

is a $d$-fold (simple) branched covering.

For $a$ (simple or nonsimple) embedded 2-dimensional braid $g:M^{2}arrow D^{2}\cross S^{2}\subset R^{4}$ of
degree $m$ , we can consider a monodromy $\rho(=\rho_{g}):\pi_{1}(S^{2}\backslash L, *)arrow B_{d}$ , where $L(=L_{g})$

is the branch set of the branched covering $M^{2}arrow D^{2}\cross S^{2}arrow S^{2}.$

Theorem 5.5 For any simple embedded 2-dimensnional bmid $g:M^{2}arrow D^{2}\cross S^{2}\subset R^{4},$

there exists a braid chart $\Gamma$ such that $\rho_{g}=\rho_{\Gamma}$ . ( $\Gamma$ is called a chart description of $g.$ )

Two charts are equivalent or chart move equivalent if they are related by a finite
sequence of chart moves (Figure 5) and ambient isotopes of $S^{2}.$

Theorem 5.6 Let $\Gamma$ and $\Gamma’$ be chart descriptions of simple embedded 2-dimensional braids
$g$ and $g’$ of the same degree. $g$ and 9’ are equivalent if and only if $\Gamma$ is equivalent to $\Gamma’.$

Let $pr:D^{2}\cross S^{2}arrow S^{2}$ be the projection.
Let $f$ : $M^{2}arrow S^{2}$ be a simple branched covering, and $g:M^{2}arrow D^{2}\cross S^{2}$ a simple

embedded 2-dimensional braid.

Definition 5.7 If prog $=f$ , then we call $g$ an embedded lift of $f$ , and we say that $f$ is
liflable.
Theorem 5.8 Any simple bmnched covering of $S^{2}$ is liftable.
Remark 5.9 For any simple branched covering, there exists a chart description that is
an orientable permutation chart. Not every chart description of a liftable simple branched
covering is orientable.

For further topics related to braid charts and 2-dimensional braids, refer to [4, 5, 13, 14].
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6 Three dimensional case $(m=3)$

We recall the theorem due to H. M. Hilden [8] and J. M. Montesinos [17] again.

Theorem 6.1 (Hilden and Montesinos) Any closed oriented and connected 3-manifold
can be represented as a 3-fold simple bmnched covering of $S^{3}$ bmnched over a link (or a
knot).

Let $f$ : $M^{3}arrow S^{3}$ be a $d$-fold simple branched covering of $S^{3}$ branched along $L$ . Let
$\underline{f}$ : $M^{3}\backslash f^{-1}(L)arrow S^{3}\backslash L$ be the associated covering. The covering map $\underline{f}$ is determined
by a monodromy $\rho$ : $\pi_{1}(S^{3}\backslash L, *)arrow S_{d}.$

Remark 6.2 The monodromy $\rho$ sends each meridian to a transposition. Conversely, any
homomorphism $\rho$ : $\pi_{1}(S^{3}\backslash L, *)arrow S_{d}$ sending each meridian to a transposition is a
monodromy of a simple branched covering.

Figure 11 is a knot with a monodromy in $S_{3}$ . In general, by (12) $\mapsto B=$ blue,
(23) $\mapsto R=$ red, (13) $\mapsto G=$ green, we obtain alink with Fox’s 3-coloring that represents
a 3-manifold. See Figure 12.

monodromy

Figure 11: $A$ knot with a monodromy in $S_{3}$

Figure 12: $A$ 3-colored knot
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The local move depicted in Figure 13 was introduced by Montesinos, that does not
change the 3-manifold.

$B|$ $|R$ $rightarrow$

Figure 13: A Montesions move

Applying a Montesions move to the 3-colored knot in Figure 12, we have a 3-colored
trivial link as in Figure 14, which represents $S^{3}$ . Thus it is a nontrivial representation of
$S^{3}$ as a 3-fold simple branched covering.

Figure 14: Two representations of $S^{3}$ as a 3-fold simple branched covering

Definition 6.3 $A$ homomorphism $\rho$ : $\pi_{1}(S^{3}\backslash L, *)arrow S_{d}$ sending each meridian to a
transposition is called a simple homomorphism.

A link $L$ with a simple homomorphism $\rho$ : $\pi_{1}(S^{3}\backslash L, *)arrow S_{d}$ induces a $d$-fold simple
branched covering $f$ : $M^{3}arrow S^{3}$ branched along $L.$

Let $D^{2}\cross S^{3}$ be a tubular neighborhood of a standardly embedded $S^{3}$ in $R^{5}$ , and let
$pr:D^{2}\cross S^{3}arrow S^{3}$ be the projection.

Definition 6.4 $A$ (simple) (embedded/immersed) 3-dimensional bmid is a $PL$ map $g$ :
$M^{3}arrow D^{2}\cross S^{3}\subset R^{5}$ such that

(1) the composition prog : $M^{3}arrow S^{3}$ is $a$ (simple) branched covering,

(2) $g$ is an embedding/immersion, and

(3) if $g$ is an immersion, the image of multipoint set under $pr$ is a link in $S^{3}$ avoiding
the branch set.

Let $f$ : $M^{3}arrow S^{3}$ be a branched covering and $g$ : $M^{3}arrow D^{2}\cross S^{3}\subset R^{5}$ an embed-
ded/immersed 3-dimensional braid. If prog $=f$ , then we call $g$ an embedded/immersed
lifl of $g.$

75



Theorem 6.5 For any 2-fold simple bmnched covering $f$ : $M^{3}arrow S^{3}$ , there exists an
embedded lift $g:M^{3}arrow D^{2}\cross S^{3}\subset R^{5}.$

Theorem 6.6 For any $d$-fold simple bmnched covereng $f$ : $M^{3}arrow S^{3}$ , there exists an
immersed lift $g:M^{3}arrow D^{2}\cross S^{3}\subset R^{5}.$

Problem 6.7 When does a simple branched covering $f$ : $M^{3}arrow S^{3}$ have an embedded
lift?

In terms of groups

Let $L$ be a link in $S^{3}$ . Recall Definition 6.3 that a homomorphism $f$ : $\pi_{1}(S^{3}\backslash L)arrow S_{d}$

is simple if each meridian is mapped to a transposition.

Definition 6.8 $A$ homomorphism $g$ : $\pi_{1}(S^{3}\backslash L)arrow B_{d}$ is simple if each meridian is
mapped to a conjugate of $\sigma_{i}$ or $\sigma_{i}^{-1}.$

Let $pr:B_{d}arrow S_{d}$ be the natural projection.
Let $f$ : $\pi_{1}(S^{3}\backslash L)arrow S_{d}$ and $g:\pi_{1}(S^{3}\backslash L)arrow B_{d}$ be simple homomorphisms. If

pro $g=f$ , we say that $g$ is a simple lifl of $f.$

Problem 6.9 Characterize a simple homomorphism $f$ : $\pi_{1}(S^{3}\backslash L)arrow S_{d}$ that has a
simple lift.

In terms of quandles

For an oriented link $L$ in $S^{3}$ , let $Q(S^{3}, L)$ denote the fundamental quandle of $L([7,12,$
16] $)$ .

Let $T_{d}$ be the set of transpositions in $S_{d}$ . Let $A_{d}$ be the set of conjugates of standard
generators of $B_{d}$ and their inverses. The sets $A_{d}$ and $T_{d}$ are regarded as quandles by
conjugation. The natural projection $pr:B_{d}arrow S_{d}$ induces the projection $pr:A_{d}arrow T_{d}$

which is a surjective quandle homomorphism.

Problem 6.10 Characterize a quandle homomorphism $f$ : $Q(S^{3}, L)arrow T_{d}$ that has a lift
$f:Q(S^{3}, L)arrow A_{d}$ , i.e., pro $f=f.$

In general we are interested in the following problem.

Problem 6.11 Let $p:\tilde{Q}arrow Q$ be a surjective quandle homomorphism. Characterize a
quandle homomorphism $f$ : $Parrow Q$ that has a lift $\tilde{f}:Parrow\tilde{Q}$ with respect to $p$ , i. e.,
$f=p\circ\tilde{f}.$

7 2-dimensional charts $(m=3)$

Permutation charts and braid charts are graphs in $S^{2}$ describing simple branched coverings
of $S^{2}$ and simple 2-dimensional braids. These notions are generalized into higher dimen-
sions. The authors are studying 2-dimensional permutation charts and 2-dimensional
braid charts. They are used to describe simple branched coverings of $S^{3}$ and simple
3-dimensional braids, respectively.

76



$\bullet$ $A$ simple embedded branched covering of $S^{3}\Leftarrow a$ $2$-dimensional permutation chart.
$\bullet$ $A$ simple embedded 3-dimensional braid

$\Leftarrow a2$-dimensional braid chart, or a curtain.
$\bullet$ $A$ simple immersed 3-dimensional braid

$\Leftarrow a$ $2$-dimensional braid chart (or a curtain) with/without nodal curves.

A 2-dimensional (permutation or braid) chart is a 2-dimensional subcomplex of $S^{3}$

whose faces are (unoriented or oriented), and labeled by integers in $\{1, \ldots, d-1\}$ such that
certain conditions around edges are assumed. We show some examples of 2-dimensional
charts.

Example 7.1 In Figure 15 a trefoil $L$ with a Seifert surface $F$ is depicted. When we
forget the orientation of $F$ , the surface $F$ is regarded as a 2-dimensional permutation
chart of degree 2, or a 2-dimensional $S_{2}$-chart. (We assume that the sheet has label 1.) It
induces a monodromy $\pi_{1}(S^{3}\backslash L, *)arrow S_{2}$ using intersection words. It describes a simple
embedded 2-fold branched covering $f_{F}:M^{3}arrow S^{3}$ with branch set $L.$

When we use the orientation of $F$ , the surface $F$ is regarded as a 2-dimensional braid
chart of degree 2, or a 2-dimensional $B_{2}$-chart. (We assume that the sheet has label l.) It
induces a monodromy $\pi_{1}(S^{3}\backslash L, *)arrow B_{2}$ using intersection words. It describes a simple
embedded 3-dimensional braid $g_{F}:M^{3}arrow D^{2}\cross S^{3}\subset R^{5}.$

$1$ 1
$1$

$\Vert. |\backslash J_{\uparrow} [!_{\searrow} |[ \Vert$

3 times
$!$

$i$ $i$

Figure 15: $A$ trefoil with a Seifert surface
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Example 7.2 In Figure 16 a knot $5_{2}$ , denoted by $L$ here, with a Seifert surface, denoted
by $F$ , is depicted. Figure 17 shows a motion picture of $L$ and $F.$

When we forget the orientation of $F$ , the surface $F$ is regarded as a 2-dimensional
permutation chart of degree 2, or a 2-dimensional $S_{2}$-chart. (We assume that the sheet
has label 1.) It induces a monodromy $\pi_{1}(S^{3}\backslash L, *)arrow S_{2}$ using intersection words. It
describes a simple embedded 2-fold branched covering $f_{F}:M^{3}arrow S^{3}$ with branch set $L.$

When we use the orientation of $F$ , the surface $F$ is regarded as a 2-dimensional braid
chart of degree 2, or a 2-dimensional $B_{2}$-chart. (We assume that the sheet has label l.) It
induces a monodromy $\pi_{1}(S^{3}\backslash L, *)arrow B_{2}$ using intersection words. It describes a simple
embedded 3-dimensional braid $g_{F}:M^{3}arrow D^{2}\cross S^{3}\subset R^{5}.$

Figure 16: $A$ knot $5_{2}$ with a Seifert surface

$[$ $[$

$[$

$|^{\ell}|$ $I[$ $| \int$

Figure 17: $A$ motion picture

Example 7.3 Figures 18 and 19 show a 3-colored trefoil and a 2-dimensional braid chart.
Let $L$ be the trefoil knot depicted on the left of Figure 18. Let $\rho$ : $\pi_{1}(S^{3}\backslash L)arrow S_{3}$ be the
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monodromy described by the 3-coloring. In the right side of Figures 18 and 19, a motion
picture of a 2-dimensional braid chart $\Gamma$ of degree 3 is depicted. The monodromy induced
from $\Gamma$ is $\rho.$

Figure 18: $A$ 3-colored trefoil and a 2-dimensional braid chart

Figure 19: $A$ 3-colored trefoil and a 2-dimensional braid chart
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