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1 Introduction

I gave a talk at the conference “Intelligence of Low-dimensional Topology, 2012” $I$

discussed some known results on the growth of groups, from the view point of geometric
group theory. Following computer experiments on examples, we try to raise questions on
knot groups. This is a brief report from that talk. The computer experiments are done
by Yasushi Yamashita, using KBMAG [10]. $I$ am not a specialist on the subject, and
benefited much from talking to M.Davis, R.Kellerhals and T.Nagnibeda.

1.1 Growth function

Let $G$ be a group with a finite generating set $S$ . For $g\in G$ , let $|g|$ be the word length
with respect to $S$ . Define

$a_{n}=\#\{g\in G||g|=n\}.$

The growth function is defined by

$\gamma_{G,S}(t)=\sum_{n}a_{n}t^{n}.$

It is easy to compute for free groups and free abelian groups with standard generators,
but in general, it is very difficult to compute $a_{n}$ and $\gamma_{G,S}(t)$ .

Here are more complicated examples. Serre found that $\gamma_{G,S}(t)$ is a rational function
when $(G, S)$ is a Coxeter group with the standard generators (cf. [5]). As an easy
example, for $G=\langle a,$ $b|a^{2},$ $b^{2}\rangle$ , infinite dihedral group,

$\gamma(t)=\frac{(1+t)^{2}}{1-t^{2}}.$

$\gamma_{G,S}(t)$ is rational for $N=\langle x,$ $y|[[x, y], x],$ $[[x, y], y]\rangle$ , Heisenberg group, which is a nilpo-
tent group.

$\gamma(t)=\frac{t^{8}+9t^{7}+6t^{6}+21t^{5}+8t^{4}+11t^{3}+4t^{2}+t+1}{(t-1)^{4}(t^{2}+1)(t^{2}+t+1)},$
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and $a_{n}\sim n^{3}$ (Shapiro [12]).
$\gamma_{G,S}(t)$ is rational for surface groups with the standard generators (Cannon [2]). For

example, for $G=\langle a,$ $b,$ $c,$ $d|[a, b][c, d]\rangle,$

$\gamma(t)=\frac{1+2t+2t^{2}+2t^{3}+t^{4}}{1-6t-6t^{2}-6t^{3}+t^{4}}.$

Notice that $\gamma(t)=\gamma(1/t)$ , which is called reciprocity, [8].

2 Automatic groups and hyperbolic groups

There is a theorem which explains the rationality for a large class of groups. See the
book [7] for precise definitions and statements.

Theorem 2.1 (Epstein and others [7]) If $(G, S)$ is an automatic group (with a regular
language) by geodesics, then $\gamma_{G,S}(t)$ is rational. The automaton computes $a_{n}.$

For example, the theorem applies to surface groups with the standard presentations.
A Coxeter group $(G, S)$ is an automatic group by geodesics (Brick-Howlett [1], Davis-
Shapiro [6] $)$ . It explains the rationality of $\gamma(t)$ . An Artin group $(G, S)$ of finite type (for
example, Braid groups) has an automatic structure (w.r. $t$ . the generating set of simple
divisors), therefore $\gamma_{G,S}(t)$ is rational (Charney-Meier [3]).

Another example is $G=\langle a,$ $b|aba=bab\rangle$ , the Trefoil knot group and the Braid group
$B_{3},$

$\gamma(t)=\frac{1-2t-7t^{2}+2t^{3}+12t^{4}}{(1-t)(1-2t)(1-3t)(1-4t)}.$

Here is a large class of examples which the theorem applies to.

Theorem 2.2 (cf [7]) $A(word-)$hyperbolic group $G$ is automatic by geodesics for any
generating set $S$ , therefore $\gamma_{G,S}(t)$ is rational.

The rationality of the growth function depends on a set of generators in general. The
significance of the theorem is that it is true for all generators.

For example, the fundamental group of a closed hyperbolic manifold/orbifold is word-
hyperbolic. If $G$ contains $\mathbb{Z}^{2}$ , then it is not hyperbolic. In particular, (hyperbolic) knot
groups are not hyperbolic.

Question 2.3 (Hyperbolic) knot groups are not hyperbolic groups, but is $\gamma_{G,S}(t)$ rational

for some/any $S/$?
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2.1 Experiments

There is a program [10] which seeks for an automatic structure by geodesics if a presen-
tation of a group is given. We used this program in the following computation of growth
functions. In the following exampls, the growth functions are rational, but not reciprocal.

$\bullet$ trefoil knot: $\langle a,$ $b|aa=bbb\rangle$ , as (2,3)-torus knot.

$\frac{(x+1)(4x^{7}+6x^{6}+6x^{5}-10x^{4}-7x^{3}+x^{2}+2x+1)}{(x-1)(2x^{2}-1)^{2}(x^{3}+x^{2}-1)}=1+4x+12x^{2}+22x^{3}+40x^{4}+66x^{5}+106x^{6}+$

$168x^{7}+258x^{8}+\cdots$. trefoil knot: $\langle a,$ $b|aba=bab\rangle$ , as an braid group $B_{3}.$

$\frac{(.x.+1)(2x^{3}-x^{2}+x-1)}{(x-1)(2x-1)(x^{2}+x-1)}=1+4x+12x^{2}+30x^{3}+68x^{4}+148x^{5}+314x^{6}+656x^{7}+1356x^{8}+$

$\bullet$ trefoil knot: $\langle a,$ $b,$ $c|cac^{-1}b^{-1},$ $aba^{-1}c^{-1}\rangle$ , Wirtinger presentation.

$\frac{(x+1)(2x^{2}-1)}{(x-1)(2x-1)^{2}}=1+6x+20x^{2}+54x^{3}+134x^{4}+318x^{5}+734x^{6}+1662x^{7}+3710x^{8}+\cdots$

$\bullet$ figure eight knot: $\langle a,$ $b|a^{-1}bab^{-1}aba^{-1}b^{-1}ab^{-1}\rangle$

$\frac{(x+1)(2x^{10}-4x^{9}+x^{8}-4x^{7}+9x^{6}-9x^{5}+4x^{4}-3x^{3}+4x^{2}-3x+1)}{(x-1)(2x^{10}-5x^{8}+2x^{7}-3x^{6}+5x^{5}-6x^{4}+7x^{3}-8x^{2}+5x-1)}=1+4x+12x^{2}+36x^{3}+108x^{4}+$

$314x^{5}+900x^{6}+2580x^{7}+7396x^{8}+\cdots$

$\bullet$ figure eight knot: $\langle a,$ $b,$ $c,$ $d|dbd^{-1}a^{-1},$ $aba^{-1}c^{-1},$ $bdb^{-1}c^{-1}\rangle$ , Wirtinger presentation.

$\frac{(x+1)(x^{2}-x-1)}{(x-1)(3x^{2}-5x+1)}=1+8x+40x^{2}+178x^{3}+772x^{4}+3328x^{5}+14326x^{6}+61648x^{7}+$

265264 $x^{8}+\cdots$

3 Hyperbolic Coxeter groups

We recommned the book [5] as a reference of this section. Roughly speaking, n-
dimensional Hyperbolic Coxeter groups are the ones which are realized by reflections along
hyperplanes in $\mathbb{H}^{n}$ . Each of them gives a hyperbolic orbifold. Those ones which are com-
pact or of finite volume (and non-compact) are particularly interesting, but producing
examples and the classification are hard, except for $n=2,3.$

The hyperbolic ones of compact quotients are word-hyperbolic, therefore, the growth
functions are rational for any generating set. The finite volume ones are not hyperbolic,
therefore we do not know if the growth functions are rational in general, although we do
know for the Coxeter generators.
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3.1 2 and 3 dimensional hyperbolic Coxeter group

Here are 2-dimensional and 3-dimentional examples:

$\bullet$ (2,3,7), $2-dim$ , compact,

$\langle a, b, c|a^{2}, b^{2}, c^{2}, (ab)^{2}, (bc)^{3}, (ca)^{7}\rangle,$

known to have smallest volume $(\pi/42)$ among $2-dim$ , compact hyperbolic orbifolds
(Siegel).

$\bullet$ $(2, 3, \infty):2-dim$ , non-compact, finite volume.

$\langle a, b, c|a^{2}, b^{2}, c^{2}, (ab)^{2}, (bc)^{3}\rangle,$

known to have smallest volume $(\pi/6)$ among $2-dim$ , hyperbolic, non-compact, orb-
ifolds.

$\bullet$ (3, 5, 3, 2), $3-dim$ , compact, its $\mathbb{Z}_{2}$-extension is expected to have smallest volume
among all compact hyperbolic 3-orbifolds,

$\langle a, b, c, d|a^{2}, b^{2}, c^{2}, d^{2}, (ab)^{3}, (bc)^{5}, (cd)^{3}, (ad)^{2}\rangle.$

$\bullet$ (3, 3, 6, 2): $3-dim$ , non-compact, finite volume, smallest among non-compact, hyper-
bolic 3-orbifolds (Meyerhoff).

$\langle a, b, c, d|a^{2}, b^{2}, c^{2}, d^{2}, (ab)^{3}, (bc)^{3}, (cd)^{6}, (ad)^{2}\rangle.$

3.2 Experiments on growth functions

$\bullet$ $\langle a,$ $b,$ $c|a^{2},$ $b^{2},$ $c^{2},$ $(ab)^{2},$ $(bc)^{3},$ $(ca)^{7}\rangle,$ $2-dim$ , compact.

$\frac{(x+1)^{2}(x^{2}+x+1)(x^{6}+x^{5}+x^{4}+x^{3}+x^{2}+x+1)}{x^{10}+x^{9}-x^{7}-x^{6}-x^{5}-x^{4}-x^{3}+x+1}=1+3x+5x^{2}+7x^{3}+9x^{4}+12x^{5}+16x^{6}+$

$20x^{7}+24x^{8}+\cdots$

This is reciprocal. Of course, the reciprocity is sensitive to the generators. For exam-
ple, if we add a generator $d=$ acacb, then the reciprocity does not hold. Interestingly,
if we add $d=abc$ , the reciprocity holds.

Question 3.1 For which genemtors does the reciprocity hold? (cf. $[8J)$

$\bullet$ $\langle a,$ $b,$ $c|a^{2},$ $b^{2},$ $c^{2},$ $(ab)^{2},$ $(bc)^{3}\rangle,$ $2-dim$ , finite volume, not reciprocal.

$\frac{x^{4}+3x^{3}+4x^{2}+3x+1}{-x^{3}-x^{2}+1}=1+3x+5x^{2}+7x^{3}+9x^{4}+12x^{5}+16x^{6}+21x^{7}+28x^{8}+\cdots$
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$\bullet$ $\langle a,$ $b,$ $c,$ $d|a^{2},$ $b^{2},$ $c^{2},$ $d^{2},$ $(ab)^{3},$ $(bc)^{5},$ $(cd)^{3},$ $(ad)^{2}\rangle,$ $3-dim$ , compact, reciprocal.

$\frac{(x+1)^{2}(x^{2}+x+1)(x^{4}+x^{3}+x^{2}+x+1)}{x^{8}-3x^{6}-5x^{5}-5x^{4}-5x^{3}-3x^{2}+1}=1+4x+11x^{2}+28x^{3}+70x^{4}+175x^{5}+436x^{6}+$

1086 $x^{7}+2706x^{8}+\cdots$

$\bullet$ $\langle a,$ $b,$ $c,$ $d|a^{2},$ $b^{2},$ $c^{2},$ $d^{2},$ $(ab)^{3},$ $(bc)^{3},$ $(cd)^{6},$ $(ad)^{2}\rangle,$ $3-dim$ , non-compact, finite volume, re-
ciprocal.

$\frac{(x+1)^{2}(x^{2}-x+1)(x^{2}+x+1)}{x^{6}-2x^{5}-x^{4}-x^{2}-2x+1}=1+4x+11x^{2}+28x^{3}+70x^{4}+176x^{5}+441x^{6}+1104x^{7}+$

2764 $x^{8}+\cdots$

3.3 Growth rate

Define the (exponential) growth rate of $(G, S)$ by

$r_{G,S}= \lim_{narrow}\inf_{\infty}a_{n}^{1/n}.$

For example, $r=0$ if $G$ is abelian, and $r=3$ if $(G, S)$ is a free group freely generated by
$a,$

$b$ and $S=\{a, b\}.$

If $\gamma_{G,S}(t)$ is rational, let $\{p_{i}\}$ be the set of poles. Then $1/r= \min_{i}|p_{i}|.$

The Coxeter group $\langle a,$ $b,$ $c|a^{2},$ $b^{2},$ $c^{2},$ $(ab)^{2},$ $(bc)^{3},$ $(ca)^{7}\rangle$ has smallest volume among all 2-
dimensional hyperbolic, compact orbifolds. It also has the smallest growth rate among
a112-dim hyperbolic, compact, Coxeter groups (with respect to $S$), (E. Hironaka [9]).
The Coxeter group $\langle a,$ $b,$ $c|a^{2},$ $b^{2},$ $c^{2},$ $(ab)^{2},$ $(bc)^{3}\rangle$ has smallest volume/growth rate among
non-compact and finite volume ones in the same sense (Floyd).

There are no results which directly relates the smallest growth rate and volume. It only
suggests a candidate to each other. In general, the growth rate depends on the generators.

Question 3.2 Does $S$ give the smallest growth rate in each case 2

Figure 8 knot group $K$ has smallest hyperbolic volume among all hyperbolic knots (in
fact all orientable cusped hyperbolic 3-manifolds), (Cao-Meyerhoff).

Question 3.3 Does $K$ has smallest growth rate among knots (with respect to “standard”
generating set in certain sense, or afler taking $\inf$ among all generating sets)?

For closed hyperbolic 3-manifolds, the volume map $M\mapsto$ volume$(M)$ is finite to one
and its image is a well-ordered set.

Question 3.4 How about for the maps $M\mapsto r_{\pi_{1}(M)}$ and $M\mapsto\gamma_{\pi_{1}(M)}\prime$?

Again, we need to specify a generating set $S.$
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4 Accumulation points

Theorem 4.1 (Coornaert [4]) Let $(G, S)$ be a hyperbolic group. Then there exist $A,$ $B,$ $C$

such that for any $n$

$Ae^{Cn}\leq a_{n}\leq Be^{Cn}$ (1)

Notice $r_{G,S}=e^{c}$ . By the theorem, for each $n,$ $a_{n}/e^{Cn}\in[A, B]$ . Therefore, there must be

accumulation points in $[A, B].$

Question 4.2 (K.Saito [11]) Under (1), are there only finitely many accumulation points
$!$? Is it only one?

Saito noticed that $PSL(2, \mathbb{Z})=\mathbb{Z}_{2}*\mathbb{Z}_{3}$ has two accumulation points.

Question 4.3 Does (1) hold for (hyperbolic) knot gmups? If so, are there only finitely

many/only one accumulation points 2

The question concerns $a_{n}/e^{Cn}$ . We did an experiment on the sequence $a_{n+1}/a_{n}$ for the

figure 8 knot group: $G=\langle a,$ $b|a^{-1}bab^{-1}aba^{-1}b^{-1}ab^{-1}\rangle.$

$\gamma(x)=\frac{2x^{11}-2x^{10}-3x^{9}-3x^{8}+5x^{7}-5x^{5}+x^{4}+x^{3}+x^{2}-2x+1}{2x^{11}-2x^{10}-5x^{9}+7x^{8}-5x^{7}+8x^{6}-11x^{5}+13x^{4}-15x^{3}+13x^{2}-6x+1}=1+4x+12x^{2}+36x^{3}+108x^{4}+$

$314x^{5}+900x^{6}+2580x^{7}+7396x^{8}+\ldots$

The smallest pole is $p=0.349145768431\cdots$ , therefore, $r=1/p=2.864133237225887\cdots.$

Computation of $a_{n+1}/a_{n},$ $n=0,1,$ $\cdots$ seems to converge to $r$ , which suggests that there

is only one accumulation point:
4.0, 3.0, 3.0, 3.0,

2.90740740741. . . , 2.86624203822. . . , 2.86666666667. . . , 2.86666666667. . . ,

2.86479177934. . . , 2.86416839721. . . , 2.86418613848. . . , 2.86417821144. . . ,

2.86414108951. . . , 2.86413200513. . . , 2. $86413396932\ldots,$ $\cdots$
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