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1 Minimum dilatation problem

Let $\phi$ : $Sarrow S$ be a pseudo-Anosov mapping class on an oriented surface $S=S_{g,n}$ of
genus $g$ and $n$ punctures. The dilatation $\lambda(\phi)$ is the expansion factor of $\phi$ along the
stable transverse measured singular foliation associated to $\phi$ , and is a Perron algebraic
unit greater than one. The set of dilatations for a fixed $S$ is discrete [19].

Let $\mathcal{P}(S)$ be the set of all pseudo-Anosov mapping classes on $S$ . Let $\delta(S)$ be the
minimum dilatation for $\phi\in \mathcal{P}(S)$ . Let $P_{g,n}$ be the set of pseudo-Anos$ov$ mapping classes
on $S_{g,n}$ with dilatation equal to $\delta(S_{g,n})$ .

The minimum dilatation problem (cf. [17, 16, 3]) can be stated as follows.

Problem 1 (Minimum Dilatation Problem I) What is the behavior of $\delta(S_{g,n})$ as a
function of $g$ and $n$ ?

The exact value of $\delta(S_{g,n})$ is not known except for very small cases (for example, for
closed surfaces, the answer is only known for $g=2[6])$ . However, more is known about
the asymptotic behavior of $\delta(S_{g,n})$ as a function of $g$ and $n$ , and the topological Euler
characteristic $\chi(S_{g,n})$ .

Let $\mathcal{P}=\bigcup_{S}\mathcal{P}(S)$ . The normalized dilatation is defined by

$L:\mathcal{P} arrow \mathbb{R}^{+}$

$(S, \phi) \mapsto \lambda(\phi)^{|\chi(S)|}.$

For $\ell>1$ , we say $\phi$ is $\ell$ -small if $L(\phi)\leq\ell$ . Let $\mathcal{P}(\ell)$ be the set of $\ell$-small pseudo-Anosov
maps.

The current smallest known accumulation point of the image of $L$ is

$\ell_{0}=(\frac{3+\sqrt{5}}{2})^{2}$ (1)

(See [8, 1, 14])

Problem 2 (Assymptotic Minimum Dilatation Problem) Is there an accumulation
point for the image of $L$ that is smaller than $\ell_{0}$ ?

One can also formulate the minimum dilatation problem from a geometric rather than
numerical standpoint.
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Problem 3 (Minimum Dilatation Problem II) What do small dilatation mapping
classes look like?

In the remainder of this note, we will describe three constructions of mapping classes
with small dilatation. These constructions all define mapping classes that can be thought
of as nearly periodic. We begin in Section 2 by making precise a notion of deformations
of mapping classes on arbitrary surfaces (cf. [18]), and show that to solve Problems 2 and
3 it suffices to investigate the deformation theory of mapping classes (cf, [4]). Two nearly
periodic constructions are described in Section 3. These are obtained by combining a
periodic mapping class, or a periodic mapping class relative to boundary, with a mapping
class that is the identity outside a subsurface of bounded Euler characteristic. We give
a third construction in Section 4 using generalized Coxeter graphs to construct periodic
mapping classes that form the building block for nearly periodic examples. In Section 5
we discuss further questions concerning the singularities of a mapping class, and their
orbits.

2 Three-manifolds, fibered faces and small dilatation mapping
classes.

Given a hyperbolic 3-manifold $M$ (possibly with cusps), let $\Psi(M)$ be the set (possibly
empty) of fibrations of $M$ (with connected fibers) over the circle $S^{1}$ . Let $\Phi(M)$ be the set
of monodromies of elements of $\Psi(M)$ . By allowing $M$ to vary, we obtain a new partition
of the set of pseudo-Anosov mapping classes

$\mathcal{P}=\bigcup_{M}\Phi(M)$
.

For fixed $M$ , the set $\Phi(M)$ partitions further. Let $||||$ be the Thurston norm on
$H^{1}(M;\mathbb{R})$ defined in [18]. This norm has the property that if $\psi\in H^{1}(M;\mathbb{Z})$ is induced
by a fibration of $M$ over $S^{1}$ , i.e., it is a fibered element, then the the topological Euler
characteristic of the fiber surface $\chi(S)$ satisfies

$||\psi||=|\chi(S)|.$

The unit norm ball for $||||$ is a convex polyhedron with vertices defined over the integers.
For any open top dimensional face $F$ , the primitive integral elements in the cone over $F$

in $H^{1}(M;\mathbb{R})$ are either all fibered, or are all non-fibered. In the former case, $F$ is called
a fibered face. The primitive elements in the cone over $F$ are in 1-1 correspondence with
rational points on $F.$

For a fibered face $F$ and subset $K\subset F$ , let $\Phi(M, K)$ be the set of monodromies $(S, \phi)$

of the fibrations corresponding to rational points on $K$ . Then the $\Phi(M, F)$ , where $F$

ranges over fibered faces of $M$ , partition the set $\mathcal{P}$ of all pseudo-Anosov mapping classes
on punctured oriented surfaces of finite type. Furthermore, by work of Fried [5] and
McMullen [16] the normalized dilatation function $L$ extends to a convex function on $F$

going to infinity toward the boundary of $F$ and has a unique minimum in the interior of
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$F$ . It follows that if $K\subset F$ is a compact subset of $F$ , then $L$ is bounded on $\Phi(M, K)$ ,
and hence $\Phi(M, K)$ defines a family of small dilatation pseudo-Anosov mapping classes.

A theorem of Farb-Leininger-Margalit [4] shows, essentially, that all small dilatation
mapping classes are contained in $\Phi(M, K)$ , for a finite set of pairs $(M, K)$ , as we will now
explain. Consider the subcollection $\mathcal{P}^{0}\subset \mathcal{P}$ consisting of elements $(S, \phi)$ whose stable
and unstable foliations have no interior singularities. Given $(S, \phi)\in \mathcal{P}$ , let $S^{0}$ be the
complement of the interior singularities in $S$ , and let $\phi^{0}$ be the restriction of $\phi$ to $S^{0}.$

Then we have the following.

Lemma 4 The dilatations of $(S, \phi)$ and $(S^{0}, \phi^{0})$ satisfy

$\lambda(\phi^{0})=\lambda(\phi)$ .

It follows that there is a surjective map

$\mathcal{P}arrow \mathcal{P}^{0}$

that preserves dilatation and increases normalized dilatation. Let $\mathcal{P}^{0}(\ell)$ be the set of
pseudo-Anosov mapping classes with normalized dilatation less than or equal to $\ell.$

Theorem 5 (Farb-Leininger-Margalit [4]) Given $\ell>1$ , there is a finite set of 3-
manifolds $M_{1},$

$\ldots,$
$M_{r}$ so that

$\mathcal{P}^{0}(\ell)\subset\bigcup_{i=1}^{r}\Phi(M_{i})$ .

Remark 6 It follows from Theorem 5 that to understand the shape of all $\ell$-small dilata-
tion mapping it suffices to understand how mapping classes vary in $\Phi(M, K)$ for fixed $M$

and $K.$

We also mention the following Corollary to Theorem 5.

Corollary 7 If $P\subset \mathcal{P}^{0}(\ell)$ is any subset, then there is a 3-manifold $M$ so that

$P\cap\Phi(M)$

is infinite.
There has been extensive study, for example, of the so-called magic manifold as a

potential manifold associated to small dilatation pseudo-Anoosv maps [13, 14, 12].
Penner showed [17](cf. [16]) that there exists an $\ell>1$ so that the elements of $P_{g,0}$ are

$\ell$-small for large enough $g$ , Let $P_{g,n}^{0}$ be the elements of $P_{g,n}$ after removing singularities.
By the Farb-Leininger-Margalit theorem, we have the following.

Corollary 8 There is a finite set of $M_{i}$ such that

$\bigcup_{g}P_{g,0}^{0}\subset\bigcup_{i=1}^{r}\Phi(M_{i})$ ,
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and there exists a 3-manifold $M$ so that

$\bigcup_{g}P_{g,0}^{0}\cap\Phi(M)$

is an infinite set.

Tsai showed in [20] that for fixed $g\geq 2$ , the set $\bigcup_{n}P_{g,n}$ is not $P$-small for any $\ell$ . It is
plausible, however, that Farb-Leininger-Margalit’s finiteness theorem extends to families
such as $\bigcup_{n}P_{g,n}.$

Question 9 For which $g\geq 2$ does there exist a finite set of $M_{i}$ so that

$\bigcup_{g,n}P_{g,n}^{0}\subset\bigcup_{i=1}^{k}\Phi(M_{i})$ ?

Non-hyperbolic Dehn fillings. Let $g\geq 2$ and consider $(S_{g,n}, \phi_{g,n})\in P_{g,n}$ . Let $M$

be the mapping torus. Then either $\overline{\phi}$ is not pseudo-Anosov, and hence the corresponding
Dehn filling of $M$ is not hyperbolic, or $\overline{\phi}$ is pseudo-Anosov and we have

$\lambda(\phi)\geq\lambda(\overline{\phi})\geq\lambda(\phi_{g,0})>1.$

The latter can only happen for a finite number of $n$ , since for fixed $g,$

$\lim_{narrow\infty}\lambda(\phi_{g,n})=1$

(see [20]).
It follows that aside from a finite number of $n$ , the Dehn filling $\overline{M}(\phi_{g,n})$ is non-

hyperbolic. Thus, an affirmative answer to Question 9 implies that for each $g$ there
is a 3-manifold $M$ such that

$\Phi(M)\cap(\bigcup_{n}P_{g,n})$

is infinite (accumulating toward the boundaries of fibered faces of $M$ ) and this $M$ admits
an infinite number of non-hyperbolic Dehn fillings corresponding to minimum dilatation
mapping classes.

Question 10 Let $S$ be a fixed surface with boundary, and let $\phi\in \mathcal{P}(S)$ be an element of
minimum dilatation. Is the Dehn filling of the mapping torus of $(S, \phi)$ corresponding to
$\phi$ always non-hyperboli $c^{l}?$

If the answer to Question 10 is negative, it implies that for some $g\geq 2$ , the sequence
$\delta_{g,n}$ is not strictly monotone decreasing as a function of $n$ (cf. [3]).

3 Two constructions of nearly periodic mapping classes with
small dilatation.

It is reasonable to guess that small dilatation mapping classes should be “nearly” periodic.
We give two descriptions of sequences of mapping classes that are of this form.
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Penner-type sequences. Let $\phi\in \mathcal{P}(S)$ be a mapping class with the following
properties:

(i) $S$ admits a periodic map $R_{k}:Sarrow S$ of order $k$ with fundamental domain a subsurface
$\Sigma$ with boundary,

(ii) there are two disjoint unions of arcs $B^{+}$ and $B^{-}$ on the boundary of $\Sigma$ so that

$R_{k}(B^{-})=B^{+}=\Sigma\cap R_{k}(\Sigma)$ ,

(iii) $\eta$ : $Sarrow S$ is the identity map outside of $\Sigma,$

(iv) $\gamma$ is a simple-closed curve on $\Sigma\cup R_{k}\Sigma\cup\cdots R_{k}^{s}\Sigma$ with $s<k$ , and

(v) $R^{i}\gamma$ is disjoint from $\gamma$ for all $i\leq s.$

A sequences of mapping classes $(S_{k}, \phi_{k})$ is of Penner-type if for some $R_{k},$
$\gamma,$ $\eta,$

$\Sigma,$
$B^{\pm}$ as

above,
$\phi_{k}=R_{k}\circ\partial_{\gamma}\circ\eta,$

where $\partial_{\gamma}$ is the (right or left) Dehn twist centered at $\gamma$ . Let $C=|\chi(\Sigma\cup\gamma)|$ . We say
that the Penner sequence has support bounded by $C$ . Given a sequence of Penner-type,
let $\overline{\Sigma}=S_{k}/R_{k_{-}},and$ let $\phi$ be the composition of&o $\eta$ , where 7 is the image of $\gamma$ in the
quotient space $S_{k}.$

Theorem 11 ([10]) Let $(S_{k}, \phi_{k})$ be a Penner-type sequence. Then $(S_{k}, \phi_{k})$ is pseudo-
Anosov for large $k$ if and only if $(\overline{\Sigma}, \overline{\phi})$ is pseudo-Anosov. In this case, the normalized
dilatations $L(S_{k}, \phi_{k})$ converges to $L(\overline{\Sigma}, \overline{\phi})$ and hence is bounded.

Question 12 (Farb-Leininger-Margalit) Can any small dilatation mapping class be
constructed as a composition of a periodic mapping class and a mapping class that is the
identity outside a locus with bounded Euler chamcteristic?

Twisted mapping classes. Let $P_{m}$ be a closed 2$m$-gon with alternate sides removed.
Let $(S_{1}, \phi_{1})$ and $(S_{2}, \phi_{2})$ be two mapping classes with proper embeddings $P_{m}\subset S_{i}$ , for
$i=1,2$ . Then the Mumsugi sum of $(S_{1}, \phi_{1})$ and $(S_{2}, \phi_{2})$ equals $(S, \phi)$ , where $S$ is the
result of gluing $S_{1}$ and $S_{2}$ along the corresponding mages of $P_{m}$ and $\phi$ is the composition
of the extensions of $\phi_{1}$ and $\phi_{2}$ by the identity on $S.$

In [9], we show the following.

Lemma 13 For each $m$ , there is a family of mapping classes $(\Sigma_{k}, \sigma_{k})$ so that

(i) $\sigma_{k}^{mk}$ is a composition of Dehn twists centered at boundary components of $\Sigma_{k},$

(ii) there exist $mk$ disjoint embedded copies of $P_{m}$ in $\Sigma_{k}$ , and

(iii) the mapping tori of $(\Sigma_{k}, \sigma_{k})$ are independent of $k.$

The surfaces $\Sigma_{k}$ constructed in [9] come with a distinguished proper embedding of $P_{m}.$

Let $(S_{0}, \phi_{0})$ be any mapping class with a proper embedding of $P_{m}$ in $S_{0}$ . Let $(S_{k}, \phi_{k})$ be
the mapping classes obtained by Murasugi sum of $(S_{0}.\phi_{0})$ with $(\Sigma_{k}, \sigma_{k})$ along $P_{m}.$
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Lemma 14 ([7]) The mapping tori for $(S_{k}, \phi_{k})$ have homeomorphism type that is inde-
pendent of $k.$

Theorem 15 ([7]) For any choice of $(S_{0}, \phi_{0})$ , the mapping classes $(S_{k}, \phi_{k})$ correpsond
to a convergent sequence on a fibered face (possibly converging to the boundary).

Theorem 16 ([9]) There exists $(S_{0}, \phi_{0})$ so that $(S_{k}, \phi_{k})$ converge to a point in the interior
of a fibered face, and

$\log(\lambda(\phi_{k}))_{\wedge}^{\vee}\frac{1}{k}.$

In particular, there is an $(S_{0}, \phi_{0})$ so that by closing over the boundary of $S_{k}$ , we obtain
orientable mapping classes $(\overline{S}_{k}, \overline{\phi}_{k})$ such that

$\lim_{karrow\infty}\lambda(\overline{\phi}_{k})^{9k}=\frac{3+\sqrt{5}}{2},$

where $g_{k}$ is the genus of $\overline{S}_{k}.$

4 Small dilatation orientable pseudo-Anosov mapping classes
from mixed-sign Coxeter graphs.

In this section, we construct small dilatation quasi-periodic mapping classes using gener-
alized Coxeter graphs.

Let $\Gamma$ be a simply-laced Coxeter graph with vertices $\mathcal{V}$ and a $sign-$ labeling $\epsilon$ : $\mathcal{V}arrow\{\pm 1\}.$

A geometric realization of $\Gamma$ is a pair $(S, \mathcal{G})$ , where $S$ is a compact oriented surface, and
$\mathcal{G}$ is a set of simple-closed curves on $S$ in general position with a bijection $f$ : $\mathcal{V}arrow \mathcal{G}$ so
that the geometric intersection matrix for $\{f(v)|v\in \mathcal{V}\}$ in $S$ equals the incidence matrix
for $\mathcal{V}$ on $\Gamma$ . The geometric realization $(S, \mathcal{G})$ determines a map from the Artin group of $\Gamma$

to the mapping class group of $S$ given by sending generators of the Artin group to Dehn
twists centered at the curves in $\mathcal{G}$ . Let $\phi$ : $Sarrow S$ be the composition of Dehn twists
centered at the curves of $\mathcal{G}$ with respect to some ordering. The graph $\Gamma$ determines $(S, \mathcal{G})$

once we add the following requirements:

(a) the realization $(S, \mathcal{G})$ respects a given fat graph structure on $\Gamma$ ;

(b) $S$ has a deformation retract to the union of curves in $\mathcal{G}$ ;

(c) for a given ordering on the vertices $\{v_{1}, \ldots, v_{k}\}$ of $\Gamma$ , if $i<j$ , then the algebraic
intersection of the curves $\gamma_{i}$ and $\gamma_{j}$ is non-positive; and

(d) the ordering of $\mathcal{G}$ used to define $\phi$ is compatible with the ordering in $(c)$ .

Given a surface $S$ with boundary, let $\overline{S}$ be the closed surface obtained by filling in
the boundary components of $S$ with disks. If $\phi$ is a mapping claes on $S$ , then let $\overline{\phi}$ be
the isotopy class of the canonical extension of $\phi$ over S. We call $(\overline{S}, \phi)$ the closure of the
mapping class $(S, \phi)$ .

Question 17 For which $g$ can the minimum dilatation orientable mapping classes on a
closed surfaces of genus $g$ be realized as the closure of a mixed-sign Coxeter mapping class?
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In [9], we show using results of [15] that minimum dilatation orientable mapping classes
for genus $g=2,3,4$ and 5 can be realized as the closures of mixed-sign Coxeter mapping
classes.

The structure of the mixed-sign Coxeter mapping classes is strongly associated to
properties of an associated reflection system, which we call the mixed-sign Coxeter system.
These are defined in [9]. The key property is that the Coxeter element (a product of
reflections) of the mixed-sign Coxeter system has spectral radius equal to the spectral
radius of the homological action of the corresponding mapping class (a corresponding
product of parabolic elements). One expects small dilatation mapping classes to come
from Coxeter graphs that are the join of a small Coxeter graph with a Coxeter element
of spectral radius 1.

Consider the graph in Figure 1. The positively signed (or classical) Coxteter system
associated to this graph is of higher rank type [2], and in particular none of its Coxeter
elements have finite order. When the vertices of this graph are all given negative signs,
however, and the vertices are ordered from top to bottom, the Coxeter element has finite
order, but the Coxeter group can have infinite order, as is true for the Coxeter graph in
Figure 1. One can see this by noticing that the graph contains bipartite Coxeter subgraphs
that are non-spherical or affine.

Figure 1: $A$ negatively signed graph with finite order Coxeter element.

The example in Figure 1 can be generalized to graphs with $m\cross m$ vertices for $m\geq 2$

(see [9]). Broadly speaking, mixed-sign Coxeter graphs provide a larger set of examples
of periodic mapping classes than in the classical case. These mapping classes may in turn
be used to construct further examples of small dilatation mapping classes.

Problem 18 Classify mixed-sign Coxeter graphs. In particular, which mixed-sign Cox-
eter graphs have a Coxeter element of finite order?

5 Singularities of mapping classes

We conclude this note with some further questions concerning the shape of small dilatation
mapping classes $(S, \phi)$ . These concern the associated local Euclidean structure on $S$ so
that $\phi$ stretches in one direction by $\lambda>1$ and in the other by $\frac{1}{\lambda}.$

Let $P_{*,0}= \bigcup_{g}P_{g,0}$ . In [8], we find a sequence $(S_{g}, \phi_{g})\in \mathcal{P}$ , where $S_{g}$ is a closed surface
of $g\geq 2$ , and $L(S_{g}, \phi_{g})$ converges to $\ell_{0}$ . For these examples, $(S_{g}, \phi_{9})$ has either 2 or 4
singularities.

Question 19 Is there a bound on the number of singularities of elements of $P_{*,0}$ ?
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By Theorem 5, we know, for example, that there is a finite collection of hyperbolic
3-manifolds $M_{i}$ such that the elements of $P_{*,0}$ are, after removing singularities, contained
in $\Phi(M_{i})$ for some $i$ . Since the number of orbits of the singularities an element of $\Phi(M_{i})$

equals the number of cusps of $M_{i}$ , this means that the number of orbits must be bounded.

Question 20 What is the $\max\iota mum$ number of orbits of singularities for $(S, \phi)\in P_{*,0^{1)}}$

Now consider $P_{g,*}= \bigcup_{n}P_{g,n}$ . If Question 9 has an affirmative answer, then again,
we see that the number of orbits of the singularities of $P_{g,n}$ must be bounded. On the
other hand, by a theorem of Thurston, a hyperbolic 3-manifold with a single cusp has
at most a finite number of non-hyperbolic Dehn fillings. Thus, an affirmative answer to
Question 9 would imply that for fixed $g$ there are an infinite number of elements of $P_{g,*}$

with punctures lying in more than one orbit. For $g=0$ , the smallest known examples
have one orbit (see [11]).

The following questions are analogs of Question 19 and Question 20 for the punctured
case.

Question 21 For each fixed $g$ , is there a bound on the number of interior singularities
of elements $(S, \phi)\in \mathcal{P}_{g,n}’$?

Question 22 For each fixed $g$ is there a bound on the number of orbits of punctures for
$(S, \phi)\in P_{g,n}^{0Q}$
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