<table>
<thead>
<tr>
<th>項目</th>
<th>内容</th>
</tr>
</thead>
<tbody>
<tr>
<td>タイトル</td>
<td>ピタゴラス数のある一般化について : 計算機アルゴリズム : 数理解析研究所講究録</td>
</tr>
<tr>
<td>作者</td>
<td>神谷 徳昭 平林 翔太</td>
</tr>
<tr>
<td>発行者</td>
<td>数理解析研究所講究録</td>
</tr>
<tr>
<td>書誌情報</td>
<td>2012-10</td>
</tr>
<tr>
<td>URL</td>
<td>http://hdl.handle.net/2433/194552</td>
</tr>
<tr>
<td>東京大学</td>
<td>Departmental Bulletin Paper</td>
</tr>
<tr>
<td>出版元</td>
<td>publisher</td>
</tr>
</tbody>
</table>
ピタゴラス数のある一般化について
—計算機アルゴリズム—

神谷 徳昭, 平林翔太 （公立大学法人会津大学）
Noriaki Kamiya, Shota Hirabayashi, Aizu Univ,

概要: 非結合的代数の 4 元数と 8 元数を用いた計算機アルゴリズムの研究結果です。つまり 2 × 2 行列によって複素数、4 元数を導入し、三平方の定理（ピタゴラス）の拡張を自然数の範囲で求めることが目標です。これは筆者の一人 (kamiya) の研究分野である非結合的代数系の計算機への応用です。

§ 0. はじめに
筆者 (神谷) の研究分野を概的に表しますと次のようにになります。

\[
\begin{array}{c}
R & \rightarrow & C & \rightarrow & H & \rightarrow & O & \rightarrow & H_3(O) & \rightarrow & M(H_3(O))
\end{array}
\]

ただし \(H_3(O) \) は 27 次元の例外ジョルダン代数です。そして \(M(H_3(O)) \) は 56 次元のフロイデンターの幾何学に現れる空間です。

このカテゴリーが研究分野です。つまり、リー代数、ジョルダン代数を含む三項系と呼ばれる非結合的代数系が専門です。一方、筆者の一人 (平林) が現在コンピュータ理工学部に所属していますので計算機を用いた学際的な分野を開拓中です。そこで超ピタゴラス数と呼ぶべきある考えにいたりました。ここに研究の一部を紹介させていただきます。

§ 1. 複素数の導入
基本的なことから筆者の専門の歴史的な導入部分です。
複素数、4 元数、合成数、19 世紀末の Hurwitz の定理がその歴史の始まりかと思います。その後、Zorn の複素数を 2 × 2 行列とみなす考えを経て、その行列式はベクトルの内積であると考えることから始めます。

\[
A = \begin{pmatrix} a & -b \\ b & a \end{pmatrix} \cong a + ib \ (a, b \in R)
\]

\[
= (a, b) \ (\text{座標表示})
\]

\[
= \sqrt{a^2 + b^2} (\cos \theta + i \sin \theta)
\]

\[
det A = a^2 + b^2 = r^2, \ \text{ただし} \ r = \sqrt{a^2 + b^2} \ \text{と原点の距離、} \ \tan \theta = \frac{b}{a} \ \text{。}
\]

簡単な事柄からコンピュータ計算へと結びつけるための準備です。

§ 2. 線形代数との関係
行列 (線形代数) の基本的な学習で次のことが知られています。

\[
A = \begin{pmatrix} \alpha & \beta \\ \gamma & \delta \end{pmatrix}
\]

とすると、\(A^2 - (tr A) A + (det A) E = 0 \) が成り立ちます。

従って、2 次の行列全体がある代数系 1, x, x^2 が 1 次従属である集合 (一般に 2 次代数と呼ばれる) の例であることが理解できます。これは線形代数の Cayley-Hamilton 定理の特別な場です。
$\begin{pmatrix} a & -b \\ b & a \end{pmatrix} \begin{pmatrix} c & -d \\ d & c \end{pmatrix} = \begin{pmatrix} (ac - bd) & -(ad + bc) \\ (ad + bc) & (ac - bd) \end{pmatrix}$

これらの行列式を考えると

$$(a^2 + b^2)(c^2 + d^2) = (ac - bd)^2 + (ad + bc)^2$$

すなわち、$n = a^2 + b^2 = c^2 + d^2$, $ac - bd = x, y = ad + bc$ とおくと

$$n^2 = x^2 + y^2$$

が成り立ちます。これは行列式とピタゴラスの定理が関連することを示しています。

(n, x, y) が自然数のとき、ピタゴラス数 と呼ばれています。

そして 4 元数、8 元数の場合も行列式の拡張が増え考えられますので、これはノルムの概念すなわち内積の関係式と見ることができます。これからについて後述します。

§3. 複素数と 2×2 行列の対応

複素数は 2×2 行列と対応します。

$$x + iy \to \begin{pmatrix} x & -y \\ y & x \end{pmatrix}$$

(ただし $x, y \in \mathbb{R}$ (実数)) によって複素数 C の同型対応（この概念の導入は高校までの範囲では簡単ではないですが）を与えると、複素数が四則演算で閉じているということと代数的に $x^2 = -1$ の解を含む体であるということを用いずに、2 次方程式の解の解法が可能です。以下このことについて簡単に述べます。

$x, y \in \mathbb{R}$ の時、$A = \begin{pmatrix} x & -y \\ y & x \end{pmatrix}$ とすると、$A^2 - (tr A)A + (det A)E = 0$ の解を求めることができる

$$z^2 + az + b = 0$$

なる2次方程式の解を求めることと同値です。つまり $z = x + iy$, $a = -tr A$, $b = det A$ とおくことから導くことができます。高校から大学として少し高度な数学概念形成へと発展することが可能です。

結論：2次方程式の解法を行列と関係づけて研究・教育することが重要だということが認識されると考えます。

§4. 4 元数と 8 元数代数

4 元数の性質はノルムにより特徴づけられます。

$$||x|| ||y|| = ||xy||$$

ただし、$x = x_1 + x_2 i + x_3 j + x_4 k$, $||x||^2 = x_1^2 + x_2^2 + x_3^2 + x_4^2 = (x, x)$

ここで、182 を 平方数の和で表すことを例示します。

例) $x = 1 + 4i + j, y = 1 + i + 4j$ のとき、$i^2 = j^2 = k^2 = -1, ij = -ji = k$ を用いて、$||x||^2 = (x, x) = (1 + 4i + j)(1 - 4i - j) = 18, ||y||^2 = (y, y) = (1 + i + 4j)(1 - i - 4j) = 18,$

$$||xy||^2 = ||(1 + 4i + j)(1 + i + 4j)||^2$$

$$= || - 7 + 5i + 5j + 15k ||^2 = 18^2$$

したがって

$$18^2 = 7^2 + 5^2 + 5^2 + 15^2$$
が成り立ちます
非結合的代数の8元数も同様の結果が成り立ちます。
つまり次のような8元数のノルム（内積）の定理が存在します。

定理
\[\forall p, q, r, s, t, u, v, w \in \mathbb{R}, \]
\[\forall P, Q, R, S, T, U, V, W \in \mathbb{R}, \]
\[(P^2 + Q^2 + R^2 + S^2 + T^2 + U^2 + V^2 + W^2)(p^2 + q^2 + r^2 + s^2 + t^2 + u^2 + v^2 + w^2) \]
\[= (Pp - Qq - Rr - Ss - Tt - Uu - Vv - Ww)^2 \]
\[+ (Pq + Qp + Rs + Sr + Tu + Ut - Vw + Wv)^2 \]
\[+ (Pr - Qs + Rp + Sq + Tv + Uw - Vt - Wu)^2 \]
\[+ (Ps + Qr - Rq + Sp + Tp - Us + Vw + Uv - Vt - Wt)^2 \]
\[+ (Pt - Qu - Rw + Sw + Tp + Uq + Vr +Ws)^2 \]
\[+ (Pu + Qt - Rw + Sw - Tq + Up - Vs + Ws + Wr)^2 \]
\[+ (Pv + Qw + Rt - Su - Tr + Us + Vp - Wq)^2 \]
\[+ (Pw - Qv + Ru + Ss - Ur + Vq + Wp)^2 \]

が成り立ちます。
これらの概念は合成数という言葉で特徴できます。

§ 5 三平方の定理の拡張と具体例

4元数代数、8元数代数において
\[||xy|| = ||x|| ||y|| \quad (that \ is, \ (xy, xy) = (x, x)(y, y)) \quad (*)\]

が成り立ちます。（これは合成代数の定義でもあります）
合成代数は1, 2, 4, 8次元が存在することが知られています。勿論これは複素数の数概念の一般化であり
3平方の定理
\[c^2 = a^2 + b^2 \]
の一般への拡張です。つまり、\(n^2 = a^2 + b^2 + c^2 + d^2 \)，です。
4平方、8平方の定理にあたる概念です。

(*) を用いて具体的に以下等式を満たす0以上の自然数の組（a, b, c, d）を計算機のプログラムで求めてみます。\(n = 100, n = 30 \)の場合です。

\[100^2 = a^2 + b^2 + c^2 + d^2 \]

以下に表記します（a, b, c, d）
\[n = 100, \ (0,0,0,100), (0,0,28,96), (0,0,60,80), (0,36,48,80), (0,48,60,64), (2,2,34,94), \]
\[(2,10,50,86), (2,14,14,98), (2,14,70,70), (2,22,26,94), (2,22,46,86), (2,26,62,74), \]
\[(2,34,38,86), (2,34,46,82), (2,34,58,74), (6,6,18,98), (6,6,62,78), (6,10,42,90), \]
\[(6,18,54,82), (6,42,46,78), (6,42,62,66), (8,8,64,76), (8,12,24,96), (8,16,44,88), \]
\[(8,20,56,80), (8,24,48,84), (8,32,56,76), (8,40,44,80), (8,52,56,64), (10,10,14,98), \]
\[(10,10,70,70), (10,26,50,82), (10,30,30,90), (10,30,54,78), (10,34,62,70), (10,50,50,70), \]
この計算アルゴリズムは数が小さくなければならず、計算機が必要な事があります。数を大きくなっ時がかかるので、つまり、時間がかかる計算機のアルゴリズムなのでいろいろな数理代数学的な応用が今後考えられます。

§ 6 いろいろな一般化について（超ピタゴラス数の個数）

素数定理と同様に個数の問題への定式化を考えます。つまり

\[n^2 = a^2 + b^2, \]
\[n^2 = a^2 + b^2 + c^2 + d^2, \]
\[n^2 = a^2 + b^2 + c^2 + d^2 + e^2 + f^2 + g^2 + h^2, \]

なる式の自然数 \(n \) を与えてそれそれぞれ、

\((a, b), (a, b, c, d), (a, b, c, d, e, f, g, h)\) の組の自然数解（超ピタゴラス数と呼ぶことにします）の個数はいくつ存在しますか。

\(N_2(n), N_4(n)\) は同様に定義できますので、\(N_8(n)\) のみ以下のように定義します。

\[N_8(n) := \{ (a_1, a_2, a_3, a_4, a_5, a_6, a_7, a_8) \mid n^2 = a_1^2 + a_2^2 + a_3^2 + a_4^2 + a_5^2 + a_6^2 + a_7^2 + a_8^2, \]
\[0 \leq a_1 \leq a_2 \leq a_3 \leq a_4 \leq a_5 \leq a_6 \leq a_7 \leq a_8, \text{for all } a_i : \text{ integer} \} \]

実例で示しますと

n = 5, a = 3, b = 4 のとき \(N_2(5) = 2\). Also, we have \(N_2(13) = 2\), \((13,0,13),(13,5,12)\), \(N_4(2) = 2\), \((2,0,0,0,2),(2,1,1,1,1)\), \(N_4(3) = 2\), \((3,0,0,0,3),(3,0,1,2,2)\), です。又、8元数については \(n = 2\) のとき \(N_8(2) = 2\), \((2,0,0,0,0,0,2),(2,0,0,0,0,0,1,1,1)\) なとき、\(N_8(3) = 3\), \((3,0,0,0,0,0,0,0,3),(3,0,0,1,1,1,1,2),(3,0,0,0,0,0,1,2,2)\) です。

更に、この前の章の結果から \(n = 30\) のときは \(N_4(30) = 37\), \(n = 100\) のときは \(N_4(100) = 67\) です。

又、\(n = 4\) のとき \(N_8(4) = 5\), \(N_8(5) = 8\), \(\cdots\) です。

自明なことですが

定理 すべての自然数 \(n\) について

\(N_2(n) \leq N_4(n) \leq N_8(n)\)
が成り立ちます。
別の見方として \(n \) を与えたとき
\[
N_8^{(p)}(n) := \# \{(a_1, a_2, a_3, a_4, a_5, a_6, a_7, a_8) | \\
0 \leq a_1 \leq a_2 \leq a_3 \leq a_4 \leq a_5 \leq a_6 \leq a_7 \leq a_8, \text{ for all } a_i : \text{ prime number} \}
\]
のような素数の組の個数に関する定式化もできると考えます。
実例
\[
N_8^{(p)}(30) = 2, (30, 3, 5, 5, 29), (30, 3, 13, 19, 19).
\]
\[
N_8^{(p)}(30) = 1, (30, 2, 2, 2, 3, 3, 5, 29)
\]
この章の最後にもう一つ定式化を試みます。（\(\bar{N}_2, \bar{N}_4 \)に関しても同様に可能です。）
\[
\bar{N}_8^{(p)}(n) := \sum_{k=1}^{n} N_8^{(p)}(k)
\]
と定義すれば、勿論
\[
\bar{N}_8^{(p)}(n) \geq \bar{N}_8^{(p)}(n-1) \geq \cdots \geq \bar{N}_8^{(p)}(1)
\]
となります。これは \(n \) 以下の自然数において
\[
n^2 = a_1^2 + a_2^2 + a_3^2 + a_4^2 + a_5^2 + a_6^2 + a_7^2 + a_8^2,
\]
の組
\[
(a_1, a_2, a_3, a_4, a_5, a_6, a_7, a_8)
\]
のすべてが素数である個数を求める式です。（素数定理の 8 元数 2 次形式版と考えることも可能だと思いま
す。）
この小論の最後に、素数定理の類似的な次の予想が成り立つのではないかと考えます。

\[
N_8^{(p)}(n) = \left[c_n \frac{n^2}{\log n} \right]
\]
と定義する。ただし [] はガウス記号です。

このとき、\(n \leq 100 \) ならば、\(n \) に依存する有理数 \(c_n \) は \(0 \leq c_n < \frac{1}{2} \) を満たす。

5. CONCLUDING REMARK.

\[
1 \leq n \leq 9 \quad N_8^{(p)}(n) = 0 \quad c_n = 0 \quad N_8^{(p)}(20) = \left[\frac{25 \cdot 20^2}{\log 20} \right] = 5 \quad N_8^{(p)}(64) = \left[\frac{1}{4} \cdot \frac{64^2}{\log 64} \right] = 246
\]
\[
n = 10 \quad N_8^{(p)}(n) = 1 \quad c_{10} = \frac{1}{43} \quad N_8^{(p)}(24) = \left[\frac{1}{22} \cdot \frac{24^2}{\log 24} \right] = 8 \quad N_8^{(p)}(68) = \left[\frac{100 \cdot 68^2}{\log 68} \right] = 290
\]
\[
n = 11 \quad N_8^{(p)}(n) = 1 \quad c_{11} = \frac{1}{50} \quad N_8^{(p)}(28) = \left[\frac{1}{11} \cdot \frac{28^2}{\log 28} \right] = 21 \quad N_8^{(p)}(72) = \left[\frac{3}{25} \cdot \frac{72^2}{\log 72} \right] = 145
\]
\[
n = 12 \quad N_8^{(p)}(n) = 1 \quad c_{12} = \frac{1}{57} \quad N_8^{(p)}(32) = \left[\frac{1}{9} \cdot \frac{32^2}{\log 32} \right] = 32 \quad N_8^{(p)}(76) = \left[\frac{1}{3} \cdot \frac{76^2}{\log 76} \right] = 444
\]
\[
n = 13 \quad N_8^{(p)}(n) = 2 \quad c_{13} = \frac{1}{65} \quad N_8^{(p)}(36) = \left[\frac{1}{13} \cdot \frac{36^2}{\log 36} \right] = 27 \quad N_8^{(p)}(80) = \left[\frac{40}{125} \cdot \frac{80^2}{\log 80} \right] = 467
\]
\[
n = 14 \quad N_8^{(p)}(n) = 1 \quad c_{14} = \frac{1}{74} \quad N_8^{(p)}(40) = \left[\frac{5}{43} \cdot \frac{40^2}{\log 40} \right] = 50 \quad N_8^{(p)}(84) = \left[\frac{5}{25} \cdot \frac{84^2}{\log 84} \right] = 254
\]
\[
n = 15 \quad N_8^{(p)}(n) = 1 \quad c_{15} = \frac{1}{83} \quad N_8^{(p)}(44) = \left[\frac{10}{69} \cdot \frac{44^2}{\log 44} \right] = 74 \quad N_8^{(p)}(88) = \left[\frac{387}{1000} \cdot \frac{88^2}{\log 88} \right] = 669
\]
\[
n = 16 \quad N_8^{(p)}(n) = 2 \quad c_{16} = \frac{1}{45} \quad N_8^{(p)}(48) = \left[\frac{5}{11} \cdot \frac{48^2}{\log 48} \right] = 58 \quad N_8^{(p)}(92) = \left[\frac{4225}{10000} \cdot \frac{92^2}{\log 92} \right] = 790
\]
\[
n = 17 \quad N_8^{(p)}(n) = 2 \quad c_{17} = \frac{1}{55} \quad N_8^{(p)}(52) = \left[\frac{25}{136} \cdot \frac{52^2}{\log 52} \right] = 125 \quad N_8^{(p)}(96) = \left[\frac{37}{205} \cdot \frac{96^2}{\log 96} \right] = 373
\]
\[
n = 18 \quad N_8^{(p)}(n) = 1 \quad c_{18} = \frac{1}{112} \quad N_8^{(p)}(56) = \left[\frac{4}{19} \cdot \frac{56^2}{\log 56} \right] = 164 \quad N_8^{(p)}(100) = \left[\frac{100}{211} \cdot \frac{100^2}{\log 100} \right] = 1029
\]
\[
n = 19 \quad N_8^{(p)}(n) = 2 \quad c_{19} = \frac{1}{60} \quad N_8^{(p)}(60) = \left[\frac{5}{54} \cdot \frac{60^2}{\log 60} \right] = 81
\]
<table>
<thead>
<tr>
<th>(n)</th>
<th>(n^2)</th>
<th>(N_8^{(P)}(n))</th>
<th>(n)</th>
<th>(n^2)</th>
<th>(N_4^{(P)}(n))</th>
<th>(n)</th>
<th>(n^2)</th>
<th>(N_8^{(P)}(n))</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>1</td>
<td>0</td>
<td>2</td>
<td>4</td>
<td>0</td>
<td>3</td>
<td>9</td>
<td>0</td>
</tr>
<tr>
<td>5</td>
<td>25</td>
<td>0</td>
<td>6</td>
<td>36</td>
<td>0</td>
<td>7</td>
<td>49</td>
<td>0</td>
</tr>
<tr>
<td>10</td>
<td>100</td>
<td>0</td>
<td>11</td>
<td>121</td>
<td>1</td>
<td>13</td>
<td>169</td>
<td>2</td>
</tr>
<tr>
<td>16</td>
<td>256</td>
<td>1</td>
<td>22</td>
<td>484</td>
<td>3</td>
<td>25</td>
<td>625</td>
<td>3</td>
</tr>
<tr>
<td>32</td>
<td>2184</td>
<td>2</td>
<td>44</td>
<td>756</td>
<td>6</td>
<td>50</td>
<td>1000</td>
<td>4</td>
</tr>
<tr>
<td>64</td>
<td>4096</td>
<td>4</td>
<td>62</td>
<td>1246</td>
<td>8</td>
<td>80</td>
<td>1600</td>
<td>8</td>
</tr>
<tr>
<td>128</td>
<td>8192</td>
<td>8</td>
<td>82</td>
<td>1638</td>
<td>16</td>
<td>160</td>
<td>3200</td>
<td>16</td>
</tr>
<tr>
<td>256</td>
<td>16384</td>
<td>16</td>
<td>162</td>
<td>3312</td>
<td>32</td>
<td>320</td>
<td>6400</td>
<td>32</td>
</tr>
<tr>
<td>512</td>
<td>32768</td>
<td>32</td>
<td>322</td>
<td>6624</td>
<td>64</td>
<td>640</td>
<td>12800</td>
<td>64</td>
</tr>
<tr>
<td>1024</td>
<td>65536</td>
<td>64</td>
<td>642</td>
<td>13248</td>
<td>128</td>
<td>1280</td>
<td>25600</td>
<td>128</td>
</tr>
<tr>
<td>2048</td>
<td>131072</td>
<td>128</td>
<td>1282</td>
<td>26496</td>
<td>256</td>
<td>2560</td>
<td>51200</td>
<td>256</td>
</tr>
</tbody>
</table>

Remark. This table is given by C++ programming language.
References

2] エピングハウス, ケッヘル 「数」上, 下, スプリンガー
4] 神谷, 「非結合的代数系概論」2002, 会津大学講義録
5] 神谷, 2 × 2 行列による複素数の一考察, (数学教育学会 2005 年 3 月) 日大理科, 数学教育学会春季年会論文集 208-210