ON BORSUK-ULAM GROUPS

Ikumitsu NAGASAKI (京都府立医科大学 医学部・長崎 生光) Department of Mathematics Faculty of Medicine Kyoto Prefectural University of Medicine

Fumihiro USHITAKI (京都産業大学 理学部・牛瀧 文宏) Department of Mathematics Faculty of Science Kyoto Sangyo University

ABSTRACT. A Borsuk-Ulam group is a group for which the isovariant Borsuk-Ulam theorem holds. A fundamental question is: which groups are Borsuk-Ulam groups? In this article, we shall recall some properties and previous results on a Borsuk-Ulam group. After that, we provide a new family of Borsuk-Ulam groups. We also pose some open questions.

1. NOTATION AND TERMINOLOGY

Let G be a compact Lie group and V an (orthogonal or unitary) representation space of G. We denote by SV the unit sphere of V, called a G-representation sphere. A G-equivariant map (or G-map for short) $f: X \to Y$ is a continuous map between G-spaces satisfying

$$f(gx) = gf(x), \ \forall x \in X, g \in G.$$

It is easy to see that if f is G-equivariant, then

(1) $f(X^H) \subset Y^H$, so we have the restriction map

$$f^H: X^H \to Y^H$$

(2) $G_x \leq G_{f(x)} \ (\forall x \in X).$

Definition. A continuous map $f : X \to Y$ is called a *G*-isovariant map if f is a *G*-equivariant map satisfying $G_x = G_{f(x)}$ ($\forall x \in X$).

It is easy to see that $f: X \to Y$ is G-isovariant if and only if f is a G-equivariant map such that $f_{|G(x)}: G(x) \to Y$ is injective for any $x \in X$, where G(x) is the orbit of x. Similarly we define an isovariant homotopy as follows.

²⁰⁰⁰ Mathematics Subject Classification. 57S17, 55M20,

The first author was partially supported by JSPS KAKENHI Grant Number 23540101.

Definition. Let f, g be G-isovariant maps. We call f and g isovariantly G-homotopic if there exists a G-isovariant map $H: X \times I \to Y$, called a G-isovariant homotopy, such that H(-,0) = f and H(-,1) = g.

Let $[X, Y]_G^{isov}$ denote the set of *G*-isovariant homotopy classes of *G*-isovariant maps.

By the definition of isovariance, we easily see the following.

- (1) Let X and Y be free G-spaces. Then G-equivariance is equivalent to G-isovariance.
- (2) If $f: X \to Y$ is an injective G-map, then f is G-isovariant.
- (3) If there exists a G-isovariant map $f : X \to Y$, then $\text{Iso}(X) \subset \text{Iso}(Y)$, where Iso(X) is the set of isotropy subgroups of X.

Example 1.1. Let X = G/H and Y = G/K.

- (1) There exists a G-map $f : G/H \to G/K$ if and only if $(H) \leq (K)$, i.e., $H \leq aKa^{-1}$ for some $a \in G$.
- (2) There exists a G-isovariant map $f: G/H \to G/K$ if and only if (H) = (K). In this case, a G-isovariant map f is defined by f(gH) = gaK, $H = aKa^{-1}$.

2. Isovariant maps between representations

The following result says that isovariant maps between representations are essentially same as those between representation spheres.

Proposition 2.1. Let V, W be (orthogonal) G-representations. The following are equivalent.

- (1) There exists a G-isovariant map $f: V \to W$.
- (2) There exists a G-isovariant map $f: V^{G^{\perp}} \to W^{G^{\perp}}$.
- (3) There exists a G-isovariant map $f: S(V^{G^{\perp}}) \to S(W^{G^{\perp}})$.

Here $V^{G^{\perp}}$ is the orthogonal complement of V^{G} in V. In particular, if $V^{G} = W^{G} = 0$, then there exists a G-isovariant map $f: V \to W$ if and only if $f: SV \to SW$.

Proof. (1) \Rightarrow (2) \Rightarrow (3) Composing the inclusion *i* and the projection *p* with $f: V \to W$, we have an isovariant map

$$\overline{f}: V^{G^{\perp}} \xrightarrow{i} V \xrightarrow{f} W \xrightarrow{p} W^{G^{\perp}}.$$

Composing the inclusion j and the normalization map with \overline{f} , we have an isovariant map

$$\overline{\overline{f}}: S(V^{G^{\perp}}) \xrightarrow{j} V^{G^{\perp}} \setminus \{0\} \xrightarrow{\overline{f}} W^{G^{\perp}} \setminus \{0\} \xrightarrow{\operatorname{norm.}} S(W^{G^{\perp}}).$$

$$(1) \Leftarrow (2) \Leftarrow (3)$$

Let $g: S(V^{G^{\perp}}) \to S(W^{G^{\perp}})$ be an isovariant map. By the radial extension, we have an isovariant map

$$\tilde{g}: V^{G^{\perp}} \to W^{G^{\perp}}$$

By adding the zero map to \overline{g} , we have an isovariant map

1

$$h := \tilde{g} \oplus 0 : V = V^{G^{\perp}} \oplus V^{G} \to W^{G^{\perp}} \oplus W^{G} = W.$$

By further arguments, we also obtain

Proposition 2.2. When $V^G = W^G = 0$, there is a one-to-one correspondence $[V, W]_G^{\text{isov}} \cong [SV, SW]_G^{\text{isov}}.$

We here provide some examples. Let $G = C_n = \langle c \rangle$ be a cyclic group of order n, where c is a generator of C. Consider the irreducible representations of C. Let

 $U_k \ (=\mathbb{C}) \ (0 \le k \le n-1)$

denote the irreducible representation with the linear action:

$$c \cdot z = \xi_n^k z \ (z \in U_k), \quad \xi_n = \exp(\frac{2\pi\sqrt{-1}}{n}).$$

Assume n = pq, where p, q are distinct primes and $G = C_{pq}$.

Example 2.3. If (k, pq) = (l, pq) = 1, then there exist a *G*-isovariant map $f : SU_k \to SU_l$.

In fact, fix s such that $ks \equiv 1 \mod pq$. We define a map f by

$$f(z) = z^{sl}, \quad z \in SU_k.$$

Then one can check that

- (1) f is G-equivariant,
- (2) G acts freely on SU_k and SU_l .

Hence f is G-isovariant.

Further arguments show that the degree of maps classifies isovariant homotopy classes, and we have

$$[U_k, U_l]_{C_{pq}}^{\text{isov}} \cong [SU_k, SU_l]_{C_{pq}}^{\text{isov}} \cong \mathbb{Z},$$

and the representatives are given by

$$f_m(z) = z^{sl+mpq}, \quad z \in SU_k, \quad m \in \mathbb{Z}.$$

See [3], [4] for the detail.

Example 2.4. There do not exist isovariant maps $f: U_p \to U_q$ and $g: U_1 \to U_q$. In fact, if $f: X \to Y$ is an isovariant map, then $\text{Iso}(X) \subset \text{Iso}(Y)$. However

$$\operatorname{Iso}\left(U_{p}\right) = \{C_{p}, G\} \not\subset \operatorname{Iso}\left(U_{q}\right) = \{C_{q}, G\}$$

and

$$\operatorname{Iso}(U_1) = \{1, G\} \not\subset \operatorname{Iso}(U_q) = \{C_q, G\}$$

Example 2.5. There exists an isovariant map $f: U_1 \to U_p \oplus U_q$.

In fact there are isovariant maps

$$f_{\alpha,\beta}: SU_1 \to S(U_p \oplus U_q)$$

defined by

$$f_{\alpha,\beta}(z) = (z^{(1+\alpha q)p}, z^{(1+\beta p)q}), \quad \alpha, \beta \in \mathbb{Z}, \ z \in SU_1.$$

These are isovariant maps since

$$G_{f_{\alpha,\beta}(z)} = G_{z^{(1+\alpha q)p}} \cap G_{z^{(1+\beta p)q}} = 1 \ (z \in SU_1).$$

In this case, the multidegree classifies isovariant maps and one sees

$$[U_1, U_p \oplus U_q]_{C_{pq}}^{\text{isov}} \cong [SU_1, S(U_p \oplus U_q)]_{C_{pq}}^{\text{isov}} \cong \mathbb{Z} \oplus \mathbb{Z}.$$

See [3], [4] for the detail.

Example 2.6. There does not exist a G-isovariant map $f: U_1 \oplus U_1 \to U_p \oplus U_q$.

If there is an isovariant map, then the isovariant Borsuk-Ulam theorem stated in the next section shows

$$\dim U_1 \oplus U_1 - \dim (U_1 \oplus U_1)^{C_p} \leq \dim U_p \oplus U_q - \dim (U_p \oplus U_q)^{C_p}$$

$$|| \qquad \qquad ||$$

$$4 - 0 = 4 \qquad \qquad 4 - 2 = 2.$$

This is a contradiction.

Remark. There is a *G*-map $f: S(U_1 \oplus U_1) \to S(U_p \oplus U_q)$. In fact there are *G*-maps $f_i: SU_1 \to SU_i$ defined by $f_i(z) = z^i$ for i = p and q. Taking join of f_p and f_q , one obtains a *G*-map $f = f_p * f_q : S(U_1 \oplus U_1) \to S(U_p \oplus U_q)$.

Thus one can finally see

Proposition 2.7. Let $G = C_{pq}$, and V, W G-representations. There exists a G-isovariant map $V \to W$ if and only if

 $\begin{cases} \dim V - \dim V^H \le \dim W - \dim W^H \\ \dim V^H - \dim V^G \le \dim W^H - \dim W^G \end{cases}$

for $H = C_p, C_q$.

See [2] for the detail.

Question (unsolved). How about C_n for an arbitrary n?

3. BORSUK-ULAM TYPE THEOREM FOR ISOVARIANT MAPS

In this section we discuss a Borsuk-Ulam type theorem for isovariant maps, which provides non-existence results on isovariant maps as mentioned in the previous section.

The Borsuk-Ulam theorem due to Borsuk [1] is generalized in various ways (see [6]. [7]). The following is one of them. Let C_p be a cyclic group of prime order p and assume that C_p acts freely on spheres S^m and S^n .

Theorem 3.1 (mod p Borsuk-Ulam theorem). If there exists a C_p -map ($\iff C_p$ -isovariant map) $f: S^m \to S^n$, then $m \leq n$, (or equivalently, if m > n, there does not exist a C_p -map $f: S^m \to S^n$).

Wasserman first studied the isovariant version of the Borsuk-Ulam theorem and introduced the notion of the Borsuk-Ulam group.

Definition (Wasserman). A compact Lie group G is called a *Borsuk-Ulam group* (*BUG*) if the following statement holds:

For any pair of G-representations V and W, if there is a G-isovariant map $f : V \to W$, then the Borsuk-Ulam inequality:

$$\dim V - \dim V^G \le \dim W - \dim W^G$$

holds.

Proposition 3.2 ([8]). C_p and S^1 are BUGs.

The following are fundamental properties of Borsuk-Ulam groups.

Proposition 3.3 ([8]).

- (1) If $1 \to H \to G \to K \to 1$ is exact and H, K are BUGs, then G is also a BUG.
- (2) A quotient group of a BUG is also a BUG.

Question (unsolved). Is a subgroup of a BUG also a BUG?

Using this result repeatedly, we have

Corollary 3.4. If

$$1 = H_0 \triangleleft H_1 \triangleleft H_2 \triangleleft \cdots \triangleleft H_r = G$$

and H_i/H_{i-1} are BUGs $(1 \le i \le r)$, then G is a BUG.

We have the following.

Theorem 3.5 (Isovariant Borsuk-Ulam theorem). Any solvable compact Lie group G is a BUG.

Proof. As is well-known, G is solvable if and only if there exists a composition series

$$1 = H_0 \triangleleft H_1 \triangleleft H_2 \triangleleft \cdots \triangleleft H_r = G$$

such that $H_i/H_{i-1} = C_p$ or S^1 . By Proposition 3.4, G is a BUG.

So the next question is: how about non-solvable case? Wasserman also found non-solvable examples of BUGs using the prime condition.

Definition (Prime condition (PC)). (1) We say that a finite simple group G satisfies the prime condition (PC) if

$$\sum_{p|o(g)} \frac{1}{p} \le 1$$

holds for any $g \in G$, where o(g) is the order of g, and the sum is taken over all prime divisors of o(g).

(2) We say that a finite group G satisfies (PC) if for a composition series

$$1 = H_0 \triangleleft H_1 \triangleleft H_2 \triangleleft \cdots \triangleleft H_r = G,$$

each simple H_i/H_{i-1} satisfies (PC) in the sense of (1).

Theorem 3.6 ([8]). If a finite group G satisfies (PC), then G is a BUG.

Remark. In the proof of [8], the fact that a cyclic group C is a BUG is used.

Example 3.7. Alternating groups A_5, A_6, \ldots, A_{11} satisfy (PC), and hence BUGs. But $A_n, n \ge 12$, does not satisfy (PC). In fact $A_n, n \ge 12$, has an element of order $30 = 2 \cdot 3 \cdot 5$ and 1/2 + 1/3 + 1/5 = 31/30 > 1.

Question (unsolved). Is A_n a BUG for $n \ge 12$?

Example 3.8. PSL(2, p) satisfies (PC) for p: prime ≤ 53 ; hence a BUG. But PSL(2, 59), PSL(2, 61) do not satisfy (PC). Indeed there are infinitely many primes p such that PSL(2, p) does not satisfy (PC).

4. A NEW FAMILY OF BORSUK-ULAM GROUPS

In this section G is a finite group. Let \mathbb{F}_q be a finite field of order $q = p^r$, p: prime. Recall

$$PSL(2,q) = SL(2,q) / \{\pm I\}$$

= { $A \in M_2(\mathbb{F}_q) \mid \det A = 1$ }/{ $\pm I$ }.

Remark. $PSL(2, 2^r) = SL(2, 2^r)$.

Also recall:

(1) If $q = p^r \ge 4$, then PSL(2, q) is simple. On the other hand $PSL(2, 2) \cong S_3$ and $PSL(2, 3) \cong A_4$, which are non-simple.

(2)
$$|PSL(2,q)| = \begin{cases} q(q-1)(q+1) & p=2\\ \frac{1}{2}q(q-1)(q+1) & p: \text{odd prime} \end{cases}$$

We introduce the Möbius condition in [5] and show the following.

Theorem 4.1 ([5]). PSL(2,q) is a BUG for any $q = p^r$.

As a corollary,

Corollary 4.2. SL(2,q), GL(2,q), PGL(2,q) are BUGs.

Proof. These are shown from the following exact sequences.

$$\begin{split} 1 &\to \{\pm I\} \to SL(2,q) \to PSL(2,q) \to 1 \\ 1 \to SL(2,q) \to GL(2,q) \stackrel{\text{det}}{\to} \mathbb{F}_q^* \to 1 \end{split}$$

 $(F_q^* \cong C_{q-1})$

$$PGL(2,q) = GL(2,q)/\text{center}$$

 $(\text{center} = \{aI \mid a \in \mathbb{F}_q^*\} \cong \mathbb{F}_q^*).$

As seen before, PSL(2,59), PSL(2,61) etc. do not satisfy (PC). Our result provides the first example to be a BUG not satisfying (PC).

Finally we announce the following result which will be proved in the forthcoming paper. Let $\operatorname{Syl}_p(G)$ denote a *p*-Sylow subgroup of *G*.

Theorem 4.3 (N-U). If G satisfies one of the following conditions, then G is a BUG.

- (1) $\operatorname{Syl}_2(G)$ is a cyclic group C_{2^r} of order 2^r .
- (2) $\operatorname{Syl}_2(G)$ is a dihedral group D_{2^r} of oder 2^r $(r \ge 2)$. As a convention, $D_4 = C_2 \times C_2$.
- (3) Syl₂(G) is a generalized quaternion group Q_{2^r} of order 2^r $(r \ge 3)$.
- (4) $\operatorname{Syl}_2(G)$ is abelian and $\operatorname{Syl}_p(G)$ is cyclic for every odd prime p.

 \Box

Example 4.4.

- (1) PSL(2,q), q: odd, is an example of (2).
- (2) SL(2,q), q: odd, is an example of (3).
- (3) $SL(2, 2^r)$ is an example of (4).
- (4) A finite group with periodic cohomology is an example of (1), (3) or (4).

For the proof, we use the fact that PSL(2,q) is a BUG and several deep results of finite group theory.

References

- [1] K. Borsuk, Drei Sätze über die n-dimensionale Sphäre, Fund. Math, 20 (1933), 177-190.
- [2] I. Nagasaki, The converse of isovariant Borsuk-Ulam results for some abelian groups, Osaka.
 J. Math. 43 (2006), 689-710.
- [3] I. Nagasaki and F. Ushitaki, Isovariant maps from free C_n -manifolds to representation spheres, Topology Appli., 155 (2008), 1066-1076.
- [4] I. Nagasaki and F. Ushitaki, A Hopf type classification theorem for isovariant maps from free G-manifolds to representation spheres, Acta Math. Sinica 27 (2011), 685-700.
- [5] I. Nagasaki and F. Ushitaki, New examples of the Borsuk-Ulam groups, to appear.
- [6] H. Steinlein, Borsuk's antipodal theorem and its generalizations and applications: a survey, Topological methods in nonlinear analysis, 166-235, Montreal, 1985.
- [7] H. Steinlein, Spheres and symmetry: Borsuk's antipodal theorem, Topol. Methods Nonlinear Anal. 1 (1993), 15-33.
- [8] A. G. Wasserman, Isovariant maps and the Borsuk-Ulam theorem, Topology Appli. 38 (1991), 155–161.

DEPARTMENT OF MATHEMATICS, KYOTO PREFECTURAL UNIVERSITY OF MEDICINE, 13 NISHITAKATSUKASA-CHO, TAISHOGUN KITA-KU, KYOTO 603-8334, JAPAN *E-mail address*: nagasaki@koto.kpu-m.ac.jp (I. Nagasaki)

DEPARTMENT OF MATHEMATICS, , FACULTY OF SCIENCE, KYOTO SANGYO UNIVERSITY, KAMIGAMO MOTOYAMA, KITA-KU, KYOTO 603-8555, JAPAN

E-mail address: ushitaki@ksuvx0.kyoto-su.ac.jp (F. Ushitaki)