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ABSTRACT. A Borsuk-Ulam group is a group for which the isovariant Borsuk-
Ulam theorem holds. $A$ fundamental question is: which groups are Borsuk-Ulam
groups? In this article, we shall recall some properties and previous results on a
Borsuk-Ulam group. After that, we provide a new family of Borsuk-Ulam groups.
We also pose some open questions.

1. NOTATION AND TERMINOLOGY

Let $G$ be a compact Lie group and $V$ an (orthogonal or unitary) representation
space of $G$ . We denote by $SV$ the unit sphere of $V$ , called a $G$-representation
sphere. $AG$-equivariant map (or $G$-map for short) $f$ : $Xarrow Y$ is a continuous map
between $G$-spaces satisfying

$f(gx)=gf(x), \forall x\in X, g\in G.$

It is easy to see that if $f$ is $G$-equivariant, then
(1) $f(X^{H})\subset Y^{H}$ , so we have the restriction map

$f^{H}:X^{H}arrow Y^{H}$

(2) $G_{x}\leq G_{f(x)}(\forall x\in X)$ .

Definition. $A$ continuous map $f$ : $Xarrow Y$ is called a $G$-isovariant map if $f$ is a
$G$-equivariant map satisfying $G_{x}=G_{f(x)}(\forall x\in X)$ .

It is easy to see that $f$ : $Xarrow Y$ is $G$-isovariant if and only if $f$ is a $G$-equivariant
map such that $f_{|G(x)}$ : $G(x)arrow Y$ is injective for any $x\in X$ , where $G(x)$ is the
orbit of $x$ . Similarly we define an isovariant homotopy as follows.
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Definition. Let $f,$ $g$ be $G$-isovariant maps. We call $f$ and $g$ isovariantly G-
homotopic if there exists a $G$-isovariant map $H$ : $X\cross Iarrow Y$ , called a $G$-isovariant
homotopy, such that $H(-, 0)=f$ and $H(-, 1)=g.$

Let $[X, Y]_{G}^{isov}$ denote the set of $G$-isovariant homotopy classes of $G$-isovariant
maps.

By the definition of isovariance, we easily see the following.
(1) Let $X$ and $Y$ be free $G$-spaces. Then $G$-equivariance is equivalent to G-

isovariance.
(2) If $f:Xarrow Y$ is an injective $G$-map, then $f$ is $G$-isovariant.
(3) If there exists a $G$-isovariant map $f$ : $Xarrow Y$ , then Iso (X) $\subset$ Iso $(Y)$ ,

where Iso (X) is the set of isotropy subgroups of $X.$

Example 1.1. Let $X=G/H$ and $Y=G/K.$

(1) There exists a $G$-map $f$ : $G/Harrow G/K$ if and only if $(H)\leq(K)$ , i.e.,
$H\leq aKa^{-1}$ for some $a\in G.$

(2) There exists a $G$-isovariant map $f$ : $G/Harrow G/K$ if and only if $(H)=(K)$ .
In this case, a $G$-isovariant map $f$ is defined by $f(gH)=gaK,$ $H=aKa^{-1}.$

2. ISOVARIANT MAPS BETWEEN REPRESENTATIONS

The following result says that isovariant maps between representations are es-
sentially same as those between representation spheres.

Proposition 2.1. Let $V,$ $W$ be (orthogonal) $G$ -representations. The following are
equivalent.

(1) There exists a $G$ -isovariant map $f$ : $Varrow W.$

(2) There exists a $G$-isovariant map $f$ : $V^{G^{\perp}}arrow W^{G^{\perp}}$

(3) There exists a $G$ -isovariant map $f$ : $S(V^{G^{\perp}})arrow S(W^{G^{\perp}})$ .
Here $V^{G^{\perp}}$ is the orthogonal complement of $V^{G}$ in V. In particular, if $V^{G}=$

$W^{G}=0$ , then there exists a $G$-isovariant map $f$ : $Varrow W$ if and only if $f$ : $SVarrow$

$SW.$

Proof. (1) $\Rightarrow$ (2) $\Rightarrow$ (3) Composing the inclusion $i$ and the projection $p$ with
$f$ : $Varrow W$ , we have an isovariant map

$\overline{f}:V^{G^{\perp}}arrow iVarrow fWarrow pW^{G^{\perp}}$

Composing the inclusion $j$ and the normalization map with $\overline{f}$, we have an iso-
variant map

$\overline{\overline{f}}:S(V^{G^{\perp}})arrow jV^{G^{\perp}}\backslash \{0\}arrow\overline{f}W^{G^{\perp}norm}\backslash \{0\}arrow. S(W^{G^{\perp}})$.

(1) $\Leftarrow(2)\Leftarrow(3)$
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Let $g:S(V^{G^{\perp}})arrow S(W^{G^{\perp}})$ be an isovariant map. By the radial extension, we
have an isovariant map

$\tilde{g}:V^{G^{\perp}}arrow W^{G^{\perp}}$

By adding the zero map to $g$ , we have an isovariant map

$h$ $:=\tilde{g}\oplus 0$ : $V=V^{G^{\perp}}\oplus V^{G}arrow W^{G^{\perp}}\oplus W^{G}=W$

口

By further arguments, we also obtain

Proposition 2.2. When $V^{G}=W^{G}=0$ , there is $a$ one-to-one correspondence

$[V, W]_{G}^{isov}\cong[SV, SW]_{G}^{isov}.$

We here provide some examples. Let $G=C_{n}=\langle c\rangle$ be a cyclic group of order $n,$

where $c$ is a generator of $C$ . Consider the irreducible representations of $C$ . Let

$\ovalbox{\tt\small REJECT}(=\mathbb{C})(0\leq k\leq n-1)$

denote the irreducible representation with the linear action:

$c \cdot z=\xi_{n}^{k}z(z\in U_{k}) , \xi_{n}=\exp(\frac{2\pi\sqrt{-1}}{n})$ .

Assume $n=pq$ , where $p,$ $q$ are distinct primes and $G=C_{pq}.$

Example 2.3. If $(k,pq)=(l,pq)=1$ , then there exist a $G$-isovariant map $f$ :
$SU_{k}arrow SU_{l}.$

In fact, fix $s$ such that $ks\equiv$ lmod $pq$ . We define a map $f$ by

$f(z)=z^{sl}, z\in SU_{k}.$

Then one can check that
(1) $f$ is $G$-equivariant,
(2) $G$ acts freely on $SU_{k}$ and $SU_{l}.$

Hence $f$ is $G$-isovariant.
Further arguments show that the degree of maps classifies isovariant homotopy

classes, and we have

$[U_{k}, U_{l}]_{C_{pq}}^{isov}\cong[SU_{k}, SU_{l}]_{C_{pq}}^{isov}\cong \mathbb{Z},$

and the representatives are given by

$f_{m}(z)=z^{sl+mpq}, z\in SU_{k}, m\in \mathbb{Z}.$

See [3], [4] for the detail.
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Example 2.4. There do not exist isovariant maps $f$ : $U_{p}arrow U_{q}$ and $g:U_{1}arrow U_{q}.$

In fact, if $f$ : $Xarrow Y$ is an isovariant map, then Iso $(X)\subset$ Iso $(Y)$ . However
Iso $(U_{p})=\{C_{p}, G\}\not\subset$ Iso $(U_{q})=\{C_{q}, G\}$

and
Iso $(U_{1})=\{1, G\}\not\subset Iso$ (砺) $=\{C_{q}, G\}.$

Example 2.5. There exists an isovariant map $f:U_{1}arrow U_{p}\oplus U_{q}.$

In fact there are isovariant maps
$f_{\alpha,\beta}:SU_{1}arrow S(U_{p}\oplus U_{q})$

defined by
$f_{\alpha,\beta}(z)=(z^{(1+\alpha q)p}, z^{(1+\beta p)q}) , \alpha, \beta\in \mathbb{Z}, z\in SU_{1}.$

These are isovariant maps since

$G_{f_{\alpha,\beta}(z)}=G_{z^{(1+\alpha q)p}}\cap G_{z^{(1+\beta p)q}}=1(z\in SU_{1})$ .

In this case, the multidegree classifies isovariant maps and one sees
$[U_{1}, U_{p}\oplus U_{q}]_{C_{pq}}^{isov}\cong[SU_{1}, S(U_{p}\oplus U_{q})]_{C_{pq}}^{isov}\cong \mathbb{Z}\oplus \mathbb{Z}.$

See [3], [4] for the detail.

Example 2.6. There does not exist a $G$-isovariant map $f:U_{1}\oplus U_{1}arrow U_{p}\oplus U_{q}.$

If there is an isovariant map, then the isovariant Borsuk-Ulam theorem stated
in the next section shows

$\dim U_{1}\oplus U_{1}-\dim(U_{1}\oplus U_{1})^{C_{p}}\leq\dim U_{p}\oplus U_{q}-\dim(U_{p}\oplus U_{q})^{C_{p}}$

$|| ||$$4-0=4 4– 2=2.$
This is a contradiction.

Remark. There is a $G$-map $f$ : $S(U_{1}\oplus U_{1})arrow S(U_{p}\oplus U_{q})$ . In fact there are $G$-maps
$f_{i}:SU_{1}arrow SU_{i}$ defined by $f_{i}(z)=z^{i}$ for $i=p$ and $q$ . Taking join of $f_{p}$ and $f_{q}$ , one
obtains a $G$-map $f=f_{p}*f_{q}:S(U_{1}\oplus U_{1})arrow S(U_{p}\oplus U_{q})$ .
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Thus one can finally see

Proposition 2.7. Let $G=C_{pq}$ , and $V,$ $W$ $G$-representations. There exists a
$G$ -isovaMnt map $Varrow W$ if and only if

$\{\begin{array}{l}\dim V-\dim V^{H}\leq\dim W-\dim W^{H}\dim V^{H}-\dim V^{G}\leq\dim W^{H}-\dim W^{G}\end{array}$

for $H=C_{p},$ $C_{q}.$

See [2] for the detail.

Question (unsolved). How about $C_{n}$ for an arbitrary $n$?

3. BORSUK-ULAM TYPE THEOREM FOR ISOVARIANT MAPS

In this section we discuss a Borsuk-Ulam type theorem for isovariant maps, which
provides non-existence results on isovariant maps as mentioned in the previous
section.

The Borsuk-Ulam theorem due to Borsuk [1] is generalized in various ways (see
[6]. [7] $)$ . The following is one of them. Let $C_{p}$ be a cyclic group of prime order $p$

and assume that $C_{p}$ acts freely on spheres $S^{m}$ and $S^{n}.$

Theorem 3.1 ($mod p$ Borsuk-Ulam theorem).

If there exists a $C_{p}$ -map ( $\Leftrightarrow C_{p}$ -isovariant map) $f$ : $S^{m}arrow S^{n}$ , then $m\leq n$ , (or
equivalently, if $m>n$ , there does not exist a $C_{p}$ -map $f$ : $S^{m}arrow S^{n}$ ).

Wasserman first studied the isovariant version of the Borsuk-Ulam theorem and
introduced the notion of the Borsuk-Ulam group.

Definition (Wasserman). $A$ compact Lie group $G$ is called a Borsuk- Ulam group
(BUG) if the following statement holds:

For any pair of $G$-representations $V$ and $W$ , if there is a $G$-isovariant map $f$ :
$Varrow W$ , then the Borsuk-Ulam inequality:

$\dim V-\dim V^{G}\leq\dim W-\dim W^{G}$

holds.

Proposition 3.2 ([8]). $C_{p}$ and $S^{1}$ are BUGs.

The following are fundamental properties of Borsuk-Ulam groups.

Proposition 3.3 ([8]).
(1) If $1arrow Harrow Garrow Karrow 1$ is exact and $H,$ $K$ are BUGs, then $G$ is also a

BUG.
(2) $A$ quotient group of a BUG is also a BUG.
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Question (unsolved). Is a subgroup of a BUG also a BUG?

Using this result repeatedly, we have

Corollary 3.4. If
$1=H_{0}\triangleleft H_{1}\triangleleft H_{2}\triangleleft\cdots\triangleleft H_{r}=G$

and $H_{i}/H_{i-1}$ are BUGs $(1\leq i\leq r)$ , then $G$ is a BUG.

We have the following.

Theorem 3.5 (Isovariant Borsuk-Ulam theorem). Any solvable compact Lie group
$G$ is a BUG.

Proof. As is well-known, $G$ is solvable if and only if there exists a composition
series

$1=H_{0}\triangleleft H_{1}\triangleleft H_{2}\triangleleft\cdots\triangleleft H_{r}=G$

such that $H_{i}/H_{i-1}=C_{p}$ or $S^{1}$ . By Proposition 3.4, $G$ is a BUG. $\square$

So the next question is: how about non-solvable case? Wasserman also found
non-solvable examples of BUGs using the prime condition.

Definition (Prime condition ($PC$)). (1) We say that a finite simple group $G$

satisfies the prime condition ( $PC$ ) if

$\sum_{p|o(g)}\frac{1}{p}\leq 1$

holds for any $g\in G$ , where $o(g)$ is the order of $g$ , and the sum is taken over
all prime divisors of $o(g)$ .

(2) We say that a finite group $G$ satisfies ( $PC$ ) if for a composition series
$1=H_{0}\triangleleft H_{1}\triangleleft H_{2}\triangleleft\cdots\triangleleft H_{r}=G,$

each simple $H_{i}/H_{i-1}$ satisfies ( $PC$ ) in the sense of (1).

Theorem 3.6 ([8]). If a finite group $G$ satisfies $(PC)$ , then $G$ is a BUG.

Remark. In the proof of [8], the fact that a cyclic group $C$ is a BUG is used.

Example 3.7. Altemating groups $A_{5},$ $A_{6},$
$\ldots,$

$A_{11}$ satisfy ( $PC$), and hence BUGs.
But $A_{n},$ $n\geq 12$ , does not satisfy ( $PC$). In fact $A_{n},$ $n\geq 12$ , has an element of order
$30=2\cdot 3\cdot 5$ and $1/2+1/3+1/5=31/30>1.$

Question (unsolved). Is $A_{n}$ a BUG for $n\geq 12$?

Example 3.8. $PSL(2, p)$ satisfies ( $PC$ ) for $p$ : prime $\leq 53$ ; hence a BUG. But
$PSL(2,59),$ $PSL(2,61)$ do not satisfy ( $PC$ ). Indeed there are infinitely many primes
$p$ such that $PSL(2,p)$ does not satisfy ($PC$).
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4. A NEW FAMILY OF $BoRSUK-ULAM$ GROUPS

In this section $G$ is a finite group. Let $\mathbb{F}_{q}$ be a finite field of order $q=p^{r},$ $p$ :
prime. Recall

$PSL(2, q)=SL(2, q)/\{\pm I\}$

$=\{A\in M_{2}(\mathbb{F}_{q})|\det A=1\}/\{\pm I\}.$

Remark. $PSL(2,2^{r})=SL(2,2^{r})$ .

Also recall:
(1) If $q=p^{r}\geq 4$ , then $PSL(2, q)$ is simple. On the other hand $PSL(2,2)\cong S_{3}$

and $PSL(2,3)\cong A_{4}$ , which are non-simple.

(2) $|PSL(2, q)|=\{\begin{array}{ll}q(q-1)(q+1) p=2\frac{1}{2}q(q-1)(q+1) p: odd prime.\end{array}$

We introduce the M\"obius condition in [5] and show the following.

Theorem 4.1 ([5]). $PSL(2, q)$ is a BUG for any $q=p^{r}.$

As a corollary,

Corollary 4.2. $SL(2, q),$ $GL(2, q),$ $PGL(2, q)$ are BUGs.

Proof. These are shown from the following exact sequences.

$1arrow\{\pm I\}arrow SL(2, q)arrow PSL(2, q)arrow 1$

$1arrow SL(2, q)arrow GL(2, q)^{\det}arrow \mathbb{F}_{q}^{*}arrow 1$

$(F_{q}^{*}\cong C_{q-1})$

$PGL(2, q)=GL(2, q)$ /center
$($ center $=\{aI|a\in \mathbb{F}_{q}^{*}\}\cong \mathbb{F}_{q}^{*})$ . 口

As seen before, $PSL(2,59),$ $PSL(2,61)$ etc. do not satisfy ( $PC$ ). Our result
provides the first example to be a BUG not satisfying ( $PC$ ).

Finally we announce the following result which will be proved in the forthcoming
paper. Let $Sy1_{p}(G)$ denote a p–Sylow subgroup of $G.$

Theorem 4.3 (N-$U$ ). If $G$ satisfies one of the following conditions, then $G$ is a
BUG.

(1) $Sy1_{2}(G)$ is a cyclic group $C_{2^{r}}$ of order $2^{r}.$

(2) $Sy1_{2}(G)$ is a dihedml group $D_{2^{r}}$ of oder $2^{r}(r\geq 2)$ . As a convention,
$D_{4}=C_{2}\cross C_{2}.$

(3) $Sy1_{2}(G)$ is a genemlized quatemion group $Q_{2^{r}}$ of order $2^{r}(r\geq 3)$ .
(4) $Sy1_{2}(G)$ is abelian and $Sy1_{p}(G)$ is cyclic for every odd prime $p.$
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Example 4.4.
(1) $PSL(2, q),$ $q$ : odd, is an example of (2).
(2) $SL(2, q),$ $q$ : odd, is an example of (3).
(3) $SL(2,2^{r})$ is an example of (4).
(4) $A$ finite group with periodic cohomology is an example of (1), (3) or (4).

For the proof, we use the fact that $PSL(2, q)$ is a BUG and several deep results
of finite group theory.
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