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1. Introduction

1.1. Self-shrinkers.

Let X : M™ — R™*? be an n-dimensional submanifold in the (n+p)-
dimensional Euclidean space R™*P. If the position vector X evolves in
the direction of the mean curvature H, then it gives rise to a solution
to the mean curvature flow:

F(,t): M™ - R
satisfying F'(-,0) = X(-) and

N

(1) (Z22) - Hw0, penm,
ot

where H(p,t) denotes the mean curvature vector of submanifold M; =

F(M™,t) at point F(p,t).

One of the most important problems in mean curvature flow is to
understand the possible singularities that the flow goes through. Sin-
gularities are unavoidable as the flow contracts any closed embedded
submanifold in Euclidean space eventually leading to extinction of the
evolving submanifolds. A key starting point for singularity analysis is
Huisken’s monotonicity formula.

_1F=pq?
Let p(F,t) = (4m(to — t)) ™% -1 ,t < to at (po,tp). Huisken
proved the following monotonicity formula for the mean curvature flow:

p(F, t)dv, = - / .0 -

dv.
M, 2(to — 1) i

(F
—_ Ft)\H
2/ p<,>\ "

where dv; is the measure on M,.
A solution of (1.1) is called self-shrinking about (po, o) if it satisfies

(F(p,t) — po)™
2(tg —t)

H=-
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A submanifold is said to be a self-shrinker if it is the time ¢t = 0 slice
of solution which is self-shrinking about (po,%p). That is, we call the
submanifold X : M™ — R™*? satisfying

(X —po)"

2 H=-X"_2/

(1.2) %,

a self-shrinker.
Define the functional

X4tp |2
47Tt0 n/2 ’

Obviously, we know that F = [, p(X ,0)dv.

By computing the first variation formula, we can prove that M" is
‘a critical point of F if and only if

(X —po)N
2t

Without loss of generality, we only consider the case py = 0 and
to = 3. The self-shrinker equation (1.2) is equivalent to

(1.3) H=-XxV

H=-

2
Notice that M™ is a critical point of F = (2r)™"/2 f,, e~ dv. So we
can use it to characterize self-shrinkers.

1.2. Some typical examples.

Example 1.1. X : R — R"*! is a complete self-shrinker with |A|?> =
0.

Example 1.2. For any positive integers mq,--- ,m, such that m; +
-+ -+ myp = n, the submanifold

§™ (/i) x -+ x S™(/ip) C R™
is an n-dimensional compact self-shrinker in R™P with
H=-X, |A?=p.
Here, S™(r;) = {X; € R™*! . |X;|? = r%,i = 1,--- ,p} is a my-
dimensional round sphere with radius r;.

In particular, we consider the product submanifold S™ (y/n7) xS™2(y/n2)
of two submanifolds S™(,/n7) and S™(,/n3), and give a simple com-
putation.

Example 1.3. X : S"(,/n7) x S"2(y/ng) — RMtn2t2



Choose local orthonormal vectors {ej,- - ,en,} and {6, ,dp,} in
the tangent spaces of S™ (,/nr) and S™(y/nz), respectively. Put
Ey = (61) 0) nl - (6711’0)7 En1+1 (0 51) n1+n2 - (075112)'

Suppose that v, = ﬁX 1, Vo= ;1;)(2 are the unit normal vectors.
Write
‘/1 (Vl7 ) ‘/2: (07’/2)‘

Obviously, V4, V; are the unit normal vectors in R™*"2+2 Tt is easy to
see that {E1, -+, En,, En;41, ** » Bnytny, V1, Va} forms an orthonormal
basis in R™+nm2+2,

Denote by hl and h2 the second fundamental form for Vi, V,, re-
spectively.
By a direct calculation, we obtain that

hl — 151]) 1§z’,j§n1,
0, othercases,

0, othercases.

Hence, the mean curvature vector H = — X, and |A|? = 2. Therefore,
H=-X" and X : S™(/n1) x S™2(\/fig) — R™*"2+2 g an (n; + ny)-

dimensional compact self-shrinker in R™+72+2,

Example 1.4. For positive integers my,--- ,my,, ¢ > 1, withmy+-- -+
myp + q = n, the submanifold

M"=S™(y/my) x --- x S™(/m,) x R? C R*?

is an n-dimensional complete noncompact self-shrinker in R™P with
polynomial volume growth which satisfies

H=-XxV, |AP=p.

Example 1.5. Let X : $?(y/m(m +1)) — S§™(v/2) C R*™*! pe a
minimal surface in S*™(\/2). Consider it as a surface in R*™1, it is a
self-shrinker with

2
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2. Some known results

2.1. Complete self-shrinkers in R™1.

In this section, I would like to introduce some known results. The
classification of mean convex (i.e. H > 0) self-shrinkers began with
Huisken’s classification which can be stated as follows:

Theorem 2.1. ([8]) If X : M™ — R™*}(n > 2) is a smooth com-
pact self-shrinker with nonnegative mean curvature H in R"*'. Then

X(M") = S™(V/n).

When n = 1, Abresch and Langer [1] had already classified all s-
mooth closed self-shrinker curves in R? and showed that the embedded
ones are round circles.

In a second paper, Huisken dealt with the complete case.

Theorem 2.2. ([8]) Let X : M™ — R™! be a smooth complete em-
bedded self-shrinker in R™*! with H > 0, polynomial volume growth.
Suppose that the second fundamental form |A| is bounded. Then M™ is
one of the following:

(1) a round sphere S™(y/n) in R™*1,

(2) a cylinder S*(vVEk) x R**, 1<k<n-1inR"?,

(3) a hyperplane in R™.

Then, Colding-Minicozzi showed that Huisken’s classification holds
even without the assumption that |A| is bounded.

Theorem 2.3. ([3]) Let X : M™ — R™*! be a smooth complete em-
bedded self-shrinker in R"*! with H > 0, polynomial volume growth.
Then M™ is one of the following:

(1) a round sphere S™(y/n) in R™,

(2) a cylinder S*(vVEk) x R**, 1<k<n-—1inR",

(3) a hyperplane in R™*1.

In Huisken and Colding-Minicozzi’s theorems, they all assumed the
condition polynomial volume growth. In fact, in order to prove their
theorems, they need to use integral formulas which are similar to Stokes
formula for compact manifolds. To guarantee that integral formulas
hold, the condition of polynomial volume growth plays a very important
role.

2.2. Polynomial volume growth.

Definition 2.1. We say that a submanifold M™ in R™*? has polynomial
volume growth if there exist constants C' and d such that for all v > 1,



there holds
Vol(B,(0) N M) < Cr¢,

where B,.(0) is an Euclidean ball in R™*P with radius r and centered at
the origin.

In 2011, Ding-Xin, Cheng-Zhou proved the following theorem:
Theorem 2.4. ([6],[5]) Any complete non-compact properly immersed

self-shrinker M™ in R"*? has Euclidean volume growth at most. Pre-
cisely,

Vol(B.(0)Nn M) < Cr* for r>1.
Proof. From H = — X", we have
AlX)? =2n-2|XY?, V|X|*=2XT.

Since X is a proper immersion, it is well defined for

2
I(t) =t"% / e 3 du,

where D, = M N B,(0) for the submanifold in R*"?, B,.(0) is a standard
ball in R™*? with radius r and centered at the origin. Then

2 1x2
_rte [ e B,

On the other hand,

1x2 |X|2

2
div(e” 2 V(— 'Xl !

Bl = e (a2t - I VIXPP)

2 1
= (n - |XN|2 — 21X

2 1 XN2
= (- e - e XD
_Ix? X2 1
- EL i
2
e~ (n— @-), (for t>1).
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Fort>1
/ _n_ n |X|2 _xi?
— —_— —_— t d
I() =% /Dr( o+ ) Wy
2 2
< - it / aiv(e 5 v(EL))a

2
1w P |X|2 vEL
= —Zt"2 1/ e 2 V , 2_\dv
2 aDr< |\7J3(§|3|>

1

2
:——t“%*l/ % IV| | |dv <0,
2 0D,

then we get I(r?) < I(1) for r > 1, i.e.
2 2
r"”/ e~ 5 du < e_%l_dv,
r D,

but on the other hand, p—f»ﬁ < 1 holds in D,. Therefore,

2 2
(2.1) e—%r'"/ dvgr‘"/ e %E'du</ 5 du.

Note that

x|? _=n? 1 x|? _
/ e'J‘i"dv <e T2 ezr"/ J_dv <e ’/ e~
D \D,_, r r

X2
J_2|_dv’

28

the last inequality holds for r > rq with ry sufficiently large. Then the

above inequality implies

/ e~ du < _T/ e” 2 dv.
™ 1 —€ Dr—l

Then for any N,

_xp al 1 _x?
/D e 2 dv S H 1——6——(;01”_)/ e 2 dv.
ro+N 1=0

D‘I‘o—l

This implies that

_1x2 _1x?
e” 2 dv<(; e 2 dv < C,.
M Dro—l

From (2.1), we have



Remark 2.1. Take self-shrinker
S*(VE)x R** 0<k<n, |H|=VE,
then the above estimate implies that
Vol(B.(0) N M) = Cr"F,
which s sharp.
By Theorem 2.4, it’s niot hard to prove the following lemma:

Lemma 2.1. If self-shrinker M™ — R™P has polynomial volume growth,
then for any m > 0, we have

/ [X|me_u%_dv < 00.
M

Proof. We can prove our lemma by the following

2 +oo 2
/ |X|me‘l'x2—|“dv = Z/ |X}me_|_x'2|—dv
M j=0 Y Dj+1\D;

+00 2
<SG+m / e du
i=0 b

j+1

(V]

“+o00
= Z(] +1)me T / dv
§=0 Djia

+00 2
S CZ(] + 1)m+n€—%

J=0

2.3. Outlines of proofs.

The following linear operator which was introduced and studied first-
ly on self-shrinker by Colding-Minicozzi (see (3.7) in [3]):
X2 X2
(2.2) L=A—-(XV())=e2 div(e 2 V")

where A and V denote the Laplacian and the gradient operator on the
self-shrinker, respectively and (-, -) denotes the standard inner product
of R™*P,

The operator L is self-adjoint in a weighted L?-space:

29
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Lemma 2.2. If X : M™ = R™? is a submanifold, u is a C*-function
with compact support, and v is a C?-function, then

(2.3) /M w(Lo)e 3 = - /M (Vo, Ve 5.

Outline of proof of Theorem 2.1

Step 1. From £LH = H — |A|?H, and by maximum principle, we
know that H satisfies the strict inequality H > 0.

Step 2. By lemma 2.2, we can get a key inequality:
2
/ |V|A| - [A[VlogH[‘?e—%L <.
M

equivalently, |A| = BH, where 3 is some positive constant.
Step 3. By |A| = BH, we can prove theorem 2.1.

The following corollary is an extension of lemma 2.1, used later to
justify computations when M is not closed.

Corollary 2.1. Suppose that X : M™ — R™? is a complete submani-
fold, if u,v are C?-functions satisfying

/ (|luVv| + |Vu||Vy| + lu£v|)e_ﬁ(2l— < 400
M

then we get
2 2
(2.4) / u(Lv)e % = — / (Yo, Vu)e™ 2.
M M

Proof. Let n be a cut-off function with compact support on M. Then

2 2
/nu(ﬁv)e"lxz’—lz/ nudiv(e_%LVv)
M M
2
—— [ (Vm), vy ¥
M

= —/ u(Vn,Vv)e—LX2L —/ n{Vu, Vv)e‘l'xf‘3
M M

Let n = n; be a cut-off fuction linearly to zero from B; to Bj,,, where
B; = M N B;(0) with B;(0) is the Euclidean ball of radius j centered
at at the origin. Since |n;| and |Vn;| are bounded by one, ; — 1 and

2 2 2
/ nju(ﬁv)e“gil— = —/ u(Vn;, Vv)e“ﬁ(ij‘ —/ n;(Vu, Vv)e"l’xfl‘
M M M

By dominated convergence theorem, we can complete the proof of
Corollary 2.1. O



Outline of proofs of Theorem 2.2 and Theorem 2.3

Step 1. From LH = H — |A]*H, and by maximum principle, we
know that H satisfies the strict inequality H > 0.

Step 2. We show that |A| = BH for a constant 8 > 0. This geometric
identity is a key for proving the classification.

2
/ IV|A| — |A|ViogH [2e=5
M

2 2
z/ |V|AH2@‘%_—/ (V|A|2,VlogH)e_|£2L+/ |A|2|VlogH|2e_J£2L.
M M M

In order to insure the above integrations to make sense, the following
lemma is needed.

Proposition 2.1. Let X : M™ — R™"? be an n-dimensional complete
self-shrinker with H > 0. If M™ has polynomial volume growth, then

/ (|AZ|ViogH| + |V|AP||ViogH| + |AP| LlogH|)e™ 2 < oo,
M

2
/M(IAIIVIAH + V1A + | Al|£]A] e F < oo

Let u = |A],v = |A| in corollary 2.1, then we obtain that by propo-
sition 2.1

_x2
/M(IAHVIAII+IVIAII2+|A||5|A-II)6 2" < oo,

which satisfies the condition of corollary 2.1, so we have

| 2

_x2 _1x2
/ V]AlPe S = - / Al(L]AeS"
M M

Let u = |A]?,v = logH in corollary 2.1, then we obtain that by
proposition 2.1

] 2

/ (IA]|ViogH| + |V|A[]*||ViegH| + |A|2|£logH|)e_J§2_ < 00,
M

which satisfies the condition of corollary 2.1, so we have

2

/<V|A|2,VlogH>e_% = —/ |A|2(£logH)e_L&2"
M M

Step 3. From |A| = BH, we can get theorem 2.2 and theorem 2.3 by
a series of discussions.

2

31



32

2.4. Complete self-shrinkers in R"*7.

Recently, based on the differential operator £ defined by (2.2), N.
Q. Le and N. Sesum [10] proved a gap theorem for self-shrinkers of
codimension one: if a hypersurface M™ C R™*! is a smooth complete
embedded self-shrinker and with polynomial volume growth, and sat-
isfies |A|? < 1, then M™ is a hyperplane.

In 2012, Cao-Li extended Le-Sesum’s result to any codimension:

Theorem 2.5. ([2]) Let X : M™ — R"*?(p > 1) be a complete self-
shrinker with polynomimal volume growth in R™*?. If the squared norm
of the second fundamental form satisfies

AP < 1.
Then M 1is one of the following:
(1) a round sphere S™(y/n) in R™*1,
(2) a cylinder S*(VE) x R**  1<k<n-—1in R,
(3) a hyperplane in R™*1.

Question 2.1: Is it possible to remove the assumption on polynomial
volume growth in Theorem 2.57

3. Classifications of self-shrinkers in R"*?

We study complete self-shrinkers without the assumption on polyno-
mial volume growth and obtain the following results by extending the
generalized maximum principle of Yau to £-operator. Our main results
can be stated as follows:

Theorem 3.1. ([4]) Let X : M™ — R™*? (p > 1) be an n-dimensional
complete self-shrinker in R™P then one of the following holds:

(1) sup 4] > 1,

(2) |A| =0, i.e. M™ is a hyperplane in R™*1.

Corollary 3.1. Let X : M — R"?P (p > 1) be a complete self-

shrinker, and satisfy
sup |A]? < 1.

Then M is a hyperplane in R™1.
Remark 3.1. The round sphere S™(\/n) and the cylinder S*(Vk) x

R** 1<k <n—1 are complete self-shrinkers in R"*! with |A| = 1.
Thus, our result is sharp.

Remark 3.2. From corollary 3.1 and remark 3.1, we can easily know
that theorem 2.5 holds without assumption on polynomial volume growth,
which gives an affirmative answer to Question 2.1.
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In order to prove our results, first of all, we extend the generalized
maximum principle of Yau to L-operator on complete self-shrinkers.
We call the following theorem as generalized maximum principle for
L-operator which can be stated as follows:

Theorem 3.2. ([4]) Let X : M™ — R™? be a complete self-shrinker
with Ricci curvature bounded from below. Let f be any C?-function
bounded from above on this self-shrinker. Then, there exists a sequence
of points {pr} C M", such that

lim f(X(pr)) = supf, lim |Vf|(X(pe)) =0, limsup £f(X(px)) < 0.

k—o0

Since M™ is a complete self-shrinker, the self-shrinker equation (1.3)
is equivalent to

(3.1) H*=—(X,ea), n+l1<a<n+p.
Taking covariant derivative of (3.1) with respect to e;, we have
(3.2) Zh (X,er), 1<i<n, n+l<a<<n+p.

Furthermore, by taking covariant derivative of (3.2) with respect to
e;, we have

th(X,ek ) + h +Zhahﬁ (X, ep)

_th (X, ex) + h% — ZH% -

According to (3.3), we obtain

(3.4) CIHP? =2VH +2|H|> =2 Y H*HPhghl
a,B,i.k

(3.3)

Outline of proof of Theorem 3.1
Step 1. By using Cauchy-Schwarz inequality, we can obtain that
LIH]? =2|VH|* +2|H|* -2 Y H*H°hghi,
a,B,i,k
> 2|VH[* +2(1 - [A]*)| H|*.
Step 2. If sup |A|?> > 1, there is nothing to do.
If sup |A]* <1, 3 (h)? < 1. We can know that the Ricci curvature

o,
is bounded from below and |H|? is bounded from above.
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Step 3. By applying the generalized maximum principle for L-operator
to the function H?, we have
0 > limsup £|H|? > 2(1 — sup |A|*) sup |H|*.

From sup|A[> < 1, we have sup |H|> = 0, that is H = 0. From
the self-shrinker equation (1.3), we can know that M™ is a smooth
minimal cone. Hence, it follows that the only smooth cone through 0
is a hyperplane.

Theorem 3.3. ([4]) Let X : M™ — R™*! be a complete self-shrinker.
If inf H2 > 0 and |A|? is bounded, then inf [A]* < 1.

Corollary 3.2. ([4]) Let X : M™ — R™"! be a complete self-shrinker.
Ifinf H? > 0 and |A)? is constant, then |A|> =1 and M™ is the round

sphere S™(y/n) or the cylinder S*(vVk) x R** 1 <k<n-1.

Remark 3.3. Notice that condition inf H2 > 0 is necessary since An-
genent has proved that there exist embedded self-shrinkers from S! x
S™1 jnto R™! with inf H? = 0.

Outline of proof of Theorem 3.3
Step 1. By a direct calculation, we can get
LH = (1-|A*H.

Step 2. Since |A|? is bounded, we know that H is bounded and the

Ricci curvature is bounded from below.
Since inf H? > 0, we can divide it into two cases: inf H > 0 or

sup H < 0.

1° If inf H > 0, applying the generalized maximum principle for
L-operator to —H, we obtain

0 < (1 —inf |A|?)inf H.
Hence, inf |A|2 < 1.

2° If sup H < 0, applying the generalized maximum principle for
L-operator to H, we obtain

0 > limsup LH > (1 — sup |A|*)supH.

Then, inf [A|?> < sup|A|*> < 1. This finishes the proof of Theorem
3.3.

Outline of proof of Corollary 3.3
Step 1. |[A]2=1.

In fact, from Theorem 3.3, we know that inf |A|? < 1. Since inf [H|* >
0, H # 0, that is M™ is not totally geodesic. According to Theorem



3.1, we have sup |A|? > 1. From our assumption that |A|? is a constant,
so we get |A]2 = 1.

Step 2. By a direct calculation, we can obtain that
1
SEIAP = (VAP + |AP(1 - | AP).

Step 3. Substituting |A|> = 1 into the above equation, we know
|[VA|? = 0. According to the theorem of Lawson [9], we know that

M™ is isometric to the round sphere S™(y/n) or the cylinder S*(vk) x
R % 1<k<n-1.

4. Complete proper self-shrinkers of dimension 2
and 3

4.1. Complete proper self-shrinkers of dimension 3.

First, we study complete proper self-shrinkers of dimension 3 in R®
with constant squared norm of the second fundamental form, and then,
obtain a complete classification which can be stated as follows:

Theorem 4.1. ([4]) Let X : M3 — R® be a 3-dimensional complete

proper self-shrinker with H > 0. If the principal normal v = %— 18

parallel in the normal bundle of M3 and the squared norm of the second
fundamental form is constant, then M is one of the following:

(1) S*(VE) x R3*, 1 < k < 3 with |A|2 = 1,

(2) S1(1) x SY(1) x R with |A|* = 2,

(3) S(1) x S%(V/2) with |A]? = 2,

(4) the three dimensional minimal isoparametric Cartan hypersurface
with |A|*> = 3.
Outline of proof of Theorem 4.1

Step 1. Since M3 is a complete proper self-shrinker, we know that M3
has polynomial volume growth. By a result of Li-Wei [11], we know
that M3 is isometric to I' x R? or M™ x R3-" where I is an Abresch-
Langer curve and M is a minimal hypersurface in sphere S™1(/7).

Step 2. Since |A|? is constant, then the Abresch-Langer curve I must
be a circle. In this case, M3 is isometric to S*(1) x R2. -

Step 3. If |A|?> < 1, by Cao-Li’s results (see Theorem 2.5), we have
|A|2 =1 and M3 is S*(VEk) x R3% 1<k < 3.

Step 4. We consider the case of |A|? > 1.
When r = 2, M is the Clifford torus S'(1) x S*(1) in- S3(v/2);
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When 7 = 3, M is the Clifford torus S'(1) x S%(v2) in S*(v/3)
with |A|? = 2 or the three dimensional minimal isoparametric Cartan
hypersurface in $*(+/3) with |A|2 = 3.

4.2. Complete proper self-shrinkers of dimension 2.

Furthermore, we study complete proper self-shrinker of dimension 2,
and give a complete classification theorem for arbitrary codimension.
Theorem 4.2. ([4]) Let X : M?> — R*'P be a 2-dimensional complete
proper self-shrinker with H > 0. If the principal normal v = % 18
parallel in the normal bundle of M? and the squared norm of the second

fundamental form is constant, then M is one of the following:

(1) S*(VE) x R**, 1 < k < 2 with |[A]2 =1,

(2) the Boruvka sphere S?(v/m(m + 1)) in S*™(\/2) withp = 2m—1
and |A]? =2 — 2

m(m+1)’
(3) a compact flat minimal surface in S*™+1(\/2) with p = 2m and
|A|? = 2.

Outline of proof of Theorem 4.2

Step 1. Since M? is a complete proper self-shrinker, we know that
M? has polynomial volume growth. By a result of Li-Wei [11], we know
that M? is isometric to ' x R! or M2, where I is an Abresch-Langer
curve and M is a compact minimal hypersurface in sphere SPt1(1/2).

Step 2. Since |A|? is constant, then the Abresch-Langer curve I must
be a circle. In this case, M? is isometric to S'(1) x R.

Step 3. If |A|> < 1, we have |A]> =1 and M? is S'(1) x R.

Step 4. Consider the case of |[A|> > 1. We can prove that M?
is isometric to a Boruvka sphere S%(y/m(m +1)) in S*™(\/2) with

p=2m—1and |[A?=2- ﬁ or a compact flat minimal surface

in $?™*1(1/2) with p = 2m and |A|? = 2.
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