Simple factor dressing of a minimal surface

Katsuhiro Moriya
University of Tsukuba

1 Introduction

In this paper, we announce the results in [6]. A simple factor dressing is a transform of a harmonic map from a Riemann surface. A Gauss map of a constant mean curvature surface in \mathbb{R}^3 is a harmonic map from a Riemann surface to S^2. It is shown that every μ-Draboux transform of a harmonic map $N: M \to S^2$ is given by a simple factor dressing of N ([1], Theorem 6.1). A conformal Gauss map of a Willmore conformal map from a Riemann surface to S^4 is a harmonic map from a Riemann surface to $\mathcal{Z} = \{C \in \text{End}(\mathbb{H}) | C^2 = -\text{Id}\}$ (see [7]). It is shown that the Darboux transform of a harmonic sphere congruence \mathcal{C} in \mathbb{H} is a μ-Darboux transform of \mathcal{C} with $\mu \in (\mathbb{R} \setminus \{0\}) \cup S^1$. Moreover, it is a simple factor dressing of \mathcal{C} ([8]).

When we consider these transforms, there is a theory of minimal surfaces in Euclidean space in the intersection of the theory of constant mean curvature surfaces in \mathbb{R}^3 and that of Willmore surfaces in S^4 (see Table 1). The Gauss map of a minimal surface is a conformal harmonic map and the mean curvature sphere of a minimal surface is a harmonic map. This is an interesting point to consider μ-Darboux transforms and simple factor dressing of a minimal surface.

The definitions and propositions used in this paper are summarized in [7].

2 Minimal surfaces

We recall minimal surfaces in terms of quaternions.

<table>
<thead>
<tr>
<th>map</th>
<th>Gauss map</th>
<th>conformal Gauss map</th>
</tr>
</thead>
<tbody>
<tr>
<td>CMC</td>
<td>harmonic</td>
<td>harmonic</td>
</tr>
<tr>
<td>minimal</td>
<td>holomorphic</td>
<td>harmonic</td>
</tr>
<tr>
<td>Willmore</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Table 1: Maps and Gauss maps
2.1 One-forms with values in quaternions

We model \mathbb{R}^4 on \mathbb{H}. We denote by S^2 the two-sphere centered at the origin with radius one. Then

$$\{a \in \text{End}(\mathbb{H}) | a^2 = -1\} = \{a \in \text{Im} \mathbb{H} | |a| = 1\} = S^2.$$

Hence an element of S^2 is a quaternionic linear complex structure of \mathbb{H} and a square root of -1.

Let M be a Riemann surface with complex structure J. We fix a map $N: M \to S^2$. Then a one-form ω on M with values in \mathbb{H} is decomposed as

$$\omega = \omega_N + \omega_{-N} = \omega_N^* + \omega_{-N}^*,$$

where $\omega_N := \frac{1}{2}(\omega - N^* \omega), \quad \omega_N^* := \frac{1}{2}(\omega - * \omega N).$

Let η be another one-form on M with values in \mathbb{H}. Then

$$\omega \wedge \eta = \omega_N \wedge \eta_{-N} + \omega_{-N} \wedge \eta_N.$$

2.2 Minimal surfaces

Let $f: M \to \mathbb{H}$ be a map. Then f is conformal if and only if there exists $N: M \to S^2$ and $R: M \to S^2$ such that $(df)_{-N} = (df)^R = 0$ ([2]). The map N is called the left normal of f and the map R is called the right normal of f. A conformal map f with $(df)_{-N} = (df)^R = 0$ is minimal with respect to the induced metric if and only if $(dN)_N = (dN)^{-N} = 0$ and, equivalently, $(dR)_R = (dR)^{-R} = 0$ ([2]). Hence if f is a minimal surface with $(df)_{-N} = (df)^R = 0$, then N and R are conformal maps. In fact, they are holomorphic maps with respect to a standard complex structure of $S^2 \cong \mathbb{C}P^1$. For a minimal surface f, there exists locally a map f^* such that $df = \star df$. The map f^* is called a conjugate minimal surface of f. We see that $(df^*)_{-N} = (df^*)^R = 0$. For $(p, q) \in \mathbb{H}^2 \setminus \{(0, 0)\}$, $f_{p,q} := fp + f^* q$ and $f^{p,q} := fp + q f^*$ are minimal surfaces.

Definition 1 ([6]). The family of minimal surfaces $\{f_{p,q}\}_{(p,q) \in \mathbb{H}^2 \setminus \{(0,0)\}}$ is called the right associated family of f and the family of minimal surfaces $\{f^{-p,q}\}_{(p,q) \in \mathbb{H}^2 \setminus \{(0,0)\}}$ is called the left associated family of f.

If f is a minimal surface in \mathbb{R}^3, then $\{f_{\cos \theta, \sin \theta}\}_{\theta \in \mathbb{R}}$ is the classical associated family. The classical associated family is an isometric deformation of the original minimal surface.

Theorem 1 ([6]). $f_{p,q} (p, q) \in \mathbb{H}^2 \setminus \{(0, 0)\}$ is isometric to f if and only if $(p, q) = (n \cos \theta, n \sin \theta)$, $n \in S^3 = \{a \in \mathbb{H} | |a| = 1\}$.

3 Holomorphic Gauss maps

We explain transforms of the Gauss map of a minimal surface. These are similar to the transforms of a harmonic map into S^2.
3.1 The associated family of a harmonic map into S^2

We set $I\phi := \phi i$. We identify \mathbb{H} with \mathbb{C}^2 by the complex structure I. A map $R: M \to S^2$ is harmonic if and only if $d(R \ast dR) = 0$. We define a family of connections on \mathbb{H} by setting $d_\mu := d + (\mu - 1)Q^{(1,0)} + (\mu^{-1} - 1)Q^{(0,1)}$, where $\mu \in \mathbb{C} \setminus \{0\}$ and $Q = -\frac{1}{2}(\ast dR)_{R}$.

Lemma 1 ([3]). A map $R: M \to S^2$ is harmonic if and only if d_μ is flat for any $\mu \in \mathbb{C} \setminus \{0\}$.

3.2 The SFD of a holomorphic Gauss map

Let $r_\lambda: M \to \text{GL}(2, \mathbb{C})$ be a map such that it is meromorphic on $\mathbb{C}P^1$ with respect to λ with simple pole away from $\{0, \infty\}$ and $r_1 = \text{Id}$. Set $\hat{d}_\lambda := r_\lambda \circ d_\lambda \circ r_\lambda^{-1}$.

Definition 2. A map $\hat{R}: M \to S^2$ is called a simple factor dressing of R if there exists r_λ such that \hat{d}_λ is the associated family of \hat{R}.

A simple factor dressing is a harmonic map. In fact, it is written as follows.

Theorem 2 ([1]). If \hat{R} is a simple factor dressing of R, then $\hat{R} := \hat{T}^{-1}R\hat{T}$, where $\hat{T} := \frac{1}{2}(-R\beta(a - 1)\beta^{-1} + \beta b\beta^{-1})$, $a := \frac{\lambda + \lambda^{-1}}{2}$, $b := \frac{i\lambda^{-1} - \lambda}{2}$, and $d_\lambda \beta = 0$.

We consider the case where R is holomorphic. If f is minimal, then R is holomorphic. The simple factor dressing \hat{R} is harmonic. In fact, we have the following:

Theorem 3 ([6]). Let $f: M \to \mathbb{H}$ be minimal with $(df)^R = 0$. Then a simple factor dressing \hat{R} is a right normal of $f_{p,q}$ for some $(p, q) \in \mathbb{H}^2 \setminus \{(0,0)\}$.

\[R \leftrightarrow f \]
\[\hat{R} \leftrightarrow f_{p,q} \]

4 Conformal Gauss maps

We explain transforms of a conformal Gauss map of a minimal surface.

4.1 The SFD of a conformal Gauss map

Let $f: M \to \mathbb{H}$ be a minimal surface with $(df)_{-N} = (df)^R = 0$. It is known that f is Willmore, too. We set the sections e and ψ of $\underline{\mathbb{H}^2}$ as

$e := \begin{pmatrix} 1 & 0 \end{pmatrix}, \quad \psi := \begin{pmatrix} f & 1 \end{pmatrix}$.

We define a line bundle L by $L := \psi\mathbb{H}$. Then L is associated with a Willmore conformal map with mean curvature sphere

$S(e \quad \psi) := (e \quad \psi) \begin{pmatrix} N & 0 \\ 0 & -R \end{pmatrix}$.
Let \(d^S_\mu \) be the associated family of \(d \) with \(S \) (see [7]). Set \(a := \frac{\mu + \mu^{-1}}{2}, \ b := i \frac{\mu^{-1} - \mu}{2} \). Then, we have the following:

Theorem 4 ([6]). If \(\hat{S} \) is a simple factor dressing of a conformal Gauss map \(S \) of a minimal surface \(f \), then \(\hat{S} \) is the conformal Gauss map of a minimal surface \(\hat{f} = h^{n \frac{b}{a-1} n^{-1},-1}, \ h := -f_{mg_{m^{-1},m \frac{a-1}{2} m^{-1}}} \).

\[
\begin{array}{c}
S \quad \downarrow \quad \hat{S} \\
\downarrow \quad \downarrow \\
\hat{f} \quad \rightarrow \quad f
\end{array}
\]

4.2 \(\mu \)-Darboux transform of a conformal Gauss map

Let \(f: M \rightarrow \mathbb{H} \) be a minimal with \((df)^R = 0 \). Then, the map \(g := f_R - f^* \) is a super-conformal map. A super-conformal map is a conformal map with vanishing Willmore energy.

Definition 3 ([6]). The super-conformal map \(g \) is called an associated Willmore surface of \(f \).

The following is a relation between \(\mu \)-Darboux transform, associated family, and associated Willmore surface.

Theorem 5 ([6]). Every non-constant \(\mu \)-Darboux transform of a minimal surface \(f \) is an associated Willmore surface of an associated minimal surface \(f^{pa} \).

References

