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1 Introduction

In this paper we consider the capital structure of a firm with stock option grants as manage-

rial compensation in real options framework. Murphy (1999) suggests the equity-based pay

represents a significant proportion of executive compensation. The equity-based ownership can

potentially align the interests between shareholders and managers and thus mitigate the agency

problems due to the separation of ownership and control. We focus on pay-performance sensi-

tivity (PPS), that is, the sensitivity of changes in $CEO$ wealth to changes in shareholder one,

and discuss about the stock option grants and the capital structure.
Ortiz-Molina (2007) provides empirical evidences on the relationship between the $CEO$ com-

pensation and firms’ capital structures by the PPS through two channels. First, the agency

cost of equity hypothesis suggests since debt mitigates shareholder-manager agency problems,

more levered firms have lower PPS. Secondly, the agency cost of debt hypothesis suggests man-

agerial incentives are driven by the need to mitigate not only shareholder-manager but also

shareholder-bondholder conflicts of interest. The implication of this hypothesis is a negative

association between the PPS and the financial leverage. Furthermore, he finds that the fraction

of annual pay in the form of stock option grants decreases in the amount of straight debt. Also,

John and John (1999) provide negative relationship between PPS and leverage.

There are some empirical evidences on the relationship between executive stock option and

firms’ capital structures. Lewellen et al. (1987), Berger et al. (1997) and Dong et al. (2010) find

a positive effect of leverage on stock option grants. On the other hand, John and John (1993),

Bryan et al. (2000) and Ryan and Wiggins (2001) find a negative effect of the leverage on the

stock option grants. The evidence from these studies relating financial leverage and executive

pay is mixed and difficult to interpret. Moreover, Hall and Liebman (1998) provide empirical

evidences on the relationship between the PPS and the executive stock option that the PPS

in managerial compensation contracts increases significantly in the $1990s$ primarily due to a

dramatic increase in the use of stock options.

Recently, the interaction among firm’s capital structure, managerial compensation and in-

vestment under uncertainty by means of real options framework has been studied in Lambrecht

and Myers (2008), Andrikopoulos (2009), Henderson (2010), Shibata and Nishihara (2010),
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Kanagaretnam and Sarkar (2011), etc.. However, in these previous works, the managerial com-
pensation and the PPS of firms with the stock option grants has not been taken into account. We
extend a model in Kanagaretnam and Sarkar (2011) by incorporating the stock option grants.

In this study, we propose a theoretical model regarding the managerial compensation of firms
with stock options grants. We investigate how the stock option grants and the leverage affect the
PPS, and discuss the some consistencies of our theoretical model about the PPS with empirical
evidences in Ortiz-Molina (2007) and John and John (1999). Furthermore, we explore the effect
of the stock option grants on the agency costs between equity holders and managers, and the
relation between the stock option grants and the leverage for the optimal capital structure.

The remainder of this paper is organized as follows. Section 2 describes the model. In
Section 3, we derive the numerical results and provide some discussion of the numerical analysis.
Section 4 summarizes this paper and gives some concluding remarks.

2 Model

We consider a firm with a single perpetual project, which issues equity and debt, and use a stan-
dard contingent claim structural model with an endogenous default strategy. We suppose that
the firm determines the optimal strategies, observing a demand shock $X_{t}$ given by a geometric
Brownian motion

$dX_{t}=\mu X_{t}dt+\sigma X_{t}dW_{t}, X_{0}=x$ , (2.1)

where $\mu$ and $\sigma$ are the risk-adjusted expected growth rate and the volatility of $X_{t}$ , respectively,
and $W_{t}$ is a standard Brownian motion defined on a probability space $(\Omega, \mathcal{F}, \mathbb{P})$ . We assume
that all agents are risk-neutral and discount their future payoffs at a rate $r(>\mu)$ .

We consider the firm with stock option grants in a managerial compensation. We assume
that the manager has the compensation package consists of a salary, a severance pay at default,
and stocks and stock options ownership. We suppose that the manager can receive a constant
salary of $f$ prior to default. At default, the manager receives a severance pay of $nf(n>1)$ .
The manager’s stock ownership is a fraction $\delta_{s}$ of the total equity of the company. Let $\delta_{o}$ be
the shareholding ratio issued for the original equity at exercise of the stock option and $K$ be the
exercise price for the stock option. We define that $K$ is equal to the shareholding ratio $\delta_{o}$ issued
at exercise of the stock option of the equity value at grant time of stock option.

We suppose the stock price movement at exercise of the stock option follows Galai and
Schneller (1978) and Noreen and Wolfson (1981). Once the manager exercises the stock option,
the manager pays the exercise price $K$ and then can receive the stocks. The equity value will
rise by $K$ and will be diluted to $\frac{1}{1+\delta_{o}}$ . When the manager exercises the stock option, he can
receive a fraction $\frac{\delta_{\circ}}{1+\delta_{0}}$ of the original equity. Since the price of the existing shareholding is also
diluted, the manager holds a fraction $\frac{\delta_{S}+\delta_{\circ}}{1+\delta_{0}}$ of equity after exercise.

We assume that the debt holders can receive the coupon payment $c$ per unit of time and the
equity holders can receive the instantaneous profit

$\pi(X_{t})=(1-\tau)(QX_{t}-c-f)$ , (2.2)
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where $\tau$ is a constant corporate tax rate and $Q$ is the quantity produced from the asset in place.

Letting $\epsilon(X_{t})$ be the expected value of the perpetual benefit given by

$\epsilon(X_{t})=\frac{1-\tau}{r-\mu}QX_{t}$ (2.3)

and $\theta$ be the proportional bankruptcy cost, the debt holders can receive $(1-\theta)\epsilon(X_{t})$ at default

time $t.$

The optimal default policy of the equity holders selects the optimal default time, maximizing

the equity value. Furthermore, the optimal exercise policy of the manager selects the optimal

exercise time, maximizing the manager’s value. The optimal problems for the equity holders and

the manager must be solved simultaneously. First, we present the formulations for the values of

the equity, the debt and the manager before exercise of the stock option. After that, we consider
the values after exercise.

2.1 Before exercise of the stock option

In this section, we examine the equity value, the debt value and the manager’s value before

exercise of the stock option. When the demand level $X_{t}$ becomes lower, the default occurs.
On the other hand, when the demand level $X_{t}$ becomes higher, then the manager exercises the

stock option. Since the equity values before and after exercise are different, the optimal default

strategies before and after exercise are also different. Denoting $E(X_{t})$ as the total value of

the equity at time $t,$ $D(X_{t})$ as the value of the debt at time $t,$ $M(X_{t})$ as the manager’s value

before exercise, $x_{d}$ as the optimal default threshold before exercise and $x_{e}$ as the optimal exercise

threshold, the equity value, the debt value and the manager’s value before exercise satisfy

$\frac{1}{2}\sigma^{2}x^{2}\frac{d^{2}E}{dx^{2}}+\mu x\frac{dE}{dx}-rE+(1-\tau)(Qx-c-f)=0$ , (2.4)

$\frac{1}{2}\sigma^{2}x^{2}\frac{d^{2}D}{dx^{2}}+\mu x\frac{dD}{dx}-rD+c=0$ , (2.5)

$\frac{1}{2}\sigma^{2}x^{2}\frac{d^{2}M}{dx^{2}}+\mu x\frac{dM}{dx}-rM+f+\delta_{s}(1-\tau)(Qx-c-f)=0$ (2.6)

for $x_{d}<x<x_{e}$ . The value matching conditions of the equity value, the debt value and the

manager’s value at the optimal default threshold $x_{d}$ and the optimal exercise threshold $x_{e}$ are
given by

$\{\begin{array}{ll}E(x_{d}) = 0D(x_{d}) = (1-\theta)\epsilon(x_{d})M(x_{d}) = nfE(x_{e}) = E_{a}(x_{e})D(x_{e}) = D_{a}(x_{e})M(x_{e}) = M_{a}(x_{e})-\delta_{o}E(x_{0}) ,\end{array}$ (2.7)

where $E_{a}(X_{t}),$ $D_{a}(X_{t})$ and $M_{a}(X_{t})$ are the equity value, the debt value and the manager’s

value after exercise at time $t$ and $E(x_{0})$ is the equity value at grant time of the stock option
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$(x_{d}<x_{0}<x_{e})$ . Then, we can obtain the following value functions:

$E(x) = (1- \tau)(\frac{Qx}{r-\mu}-\frac{c+f}{r})$

$+ \{E_{a}(x_{e})-(1-\tau)(\frac{Qx_{e}}{r-\mu}-\frac{c+f}{r})\}p_{1}(x;x_{e}, x_{d})$

$-(1- \tau)(\frac{Qx_{d}}{r-\mu}-\frac{c+f}{r})p_{2}(x;x_{e}, x_{d})$ , (2.8)

$D(x) = \frac{c}{r}+(D_{a}(x_{e})-\frac{c}{r})p_{1}(x;x_{e}, x_{d})+((1-\theta)(1-\tau)\frac{Qx_{d}}{r-\mu}-\frac{c}{r})p_{2}(x;x_{e}, x_{d})$ ,

(2.9)

$M(x)$ $=$ $\frac{f}{r}+\delta_{s}(1-\tau)(\frac{Qx}{r-\mu}-\frac{c+f}{r})$

$+ \{M_{a}(x_{e})-\delta_{o}E(x_{0})-(\frac{f}{r}+\delta_{s}(1-\tau)(\frac{Qx_{e}}{r-\mu}-\frac{c+f}{r}))\}p_{1}(x;x_{e}, x_{d})$

$+ \{nf-(\frac{f}{r}+\delta_{s}(1-\tau)(\frac{Qx_{d}}{r-\mu}-\frac{c+f}{r}))\}p_{2}(x;x_{e}, x_{d})$ . (2.10)

where $p_{1}(x;x_{e}, x_{d})$ and $p_{2}(x;x_{e}, x_{d})$ are

$p_{1}(x;x_{e}, x_{d}) = \frac{x^{\beta_{1}}x_{d}^{\beta_{2}}-x^{\beta_{2}}x_{d}^{\beta_{1}}}{x_{e}^{\beta_{1}}x_{d}^{\beta_{2}}-x_{e}^{\beta_{2}}x_{d}^{\beta_{1}}}$ , (2.11)

$p_{2}(x;x_{e}, x_{d}) = \frac{x_{e}^{\beta_{1}}x^{\beta_{2}}-x_{e}^{\beta_{2}}x^{\beta_{1}}}{x_{e}^{\beta_{1}}x_{d}^{\beta_{2}}-x_{e}^{\beta_{2}}x_{d}^{\beta_{1}}}$ . (2.12)

and $\beta_{1}=\frac{1}{2}-f+\sqrt{(\frac{1}{2}-\sigma*)^{2_{+}2}p^{r}}>1$ and $\beta_{2}=\frac{1}{2}-4_{\sigma}-\sqrt{(\frac{1}{2}-\Leftrightarrow_{\sigma})^{2}+\frac{2}{\sigma}\tau^{r}}<0.$

The optimal default threshold is determined by the smooth-pasting condition of the equity
value at the default threshold. Moreover, the exercise threshold is determined from the smooth-
pasting condition of the manager’s value at the exercise threshold. Since the optimal default
and exercise thresholds cannot be solved analytically, these must be solved numerically.

2.2 After exercise of the stock option

In this section, we examine the equity value, the debt value and the manager’s value after
exercise of the stock option. When the manager exercises the stock option, the manager pays
the exercise price and then he can receive the stocks. The equity value will rise by the exercise
price $\delta_{o}E(x_{0})$ and will diluted to $\frac{1}{1+\delta_{o}}$ . We define $E_{b}(x)$ as the difference between the equity
value after exercise and the increased equity value at exercise:

$E_{b}(x) \equiv E_{a}(x)-\frac{\delta_{o}}{1+\delta_{o}}E(x_{0})$ . (2.13)

Similarly, since the manager holds a fraction $(\delta_{s}+\delta_{o})$ of the equity after exercise, we define
$M_{b}(x)$ as follows:

$M_{b}(x) \equiv M_{a}(x)-(\delta_{s}+\delta_{o})\frac{\delta_{o}}{1+\delta_{o}}E(x_{0})$, (2.14)
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Denoting $x_{d}^{a}$ as the optimal default threshold after exercise, the values $E_{b}(x),$ $D_{a}(x)$ and $M_{b}(x)$

satisfy the ordinary differential equations

$\frac{1}{2}\sigma^{2}x^{2}\frac{d^{2}E_{b}}{dx^{2}}+\mu x\frac{dE_{b}}{dx}-rE_{b}+\frac{1}{1+\delta_{o}}(1-\tau)(Qx-c-f)=0$ , (2.15)

$\frac{1}{2}\sigma^{2}x^{2}\frac{d^{2}D_{a}}{dx^{2}}+\mu x\frac{dD_{a}}{dx}-rD_{a}+c=0$ , (2.16)

$\frac{1}{2}\sigma^{2}x^{2}\frac{d^{2}M_{b}}{dx^{2}}+\mu x\frac{dM_{b}}{dx}-rM_{b}+f+\frac{\delta_{s}+\delta_{o}}{1+\delta_{o}}(1-\tau)(Qx-c-f)=0$

(2.17)

for $x>x_{d}^{a}$ . The value matching conditions of the equity value, the debt value and the manager’s

value at the optimal default threshold after exercise $x_{d}^{a}$ are given by

$\{\begin{array}{l}E_{a}(x_{d}^{a}) = 0,D_{a}(x_{d}^{a}) = (1-\theta)\epsilon(x_{d}^{a}) ,M_{a}(x_{d}^{a}) = nf.\end{array}$ (2.18)

Thus,

$\{\begin{array}{l}E_{b}(x_{d}^{a}) = -\frac{\delta_{o}}{1+\delta_{o}}E(x_{0}) ,M_{b}(x_{d}^{a}) = nf-(\delta_{s}+\delta_{o})\frac{\delta_{o}}{1+\delta_{o}}E(x_{0}) .\end{array}$ (2.19)

Since the smooth-pasting conditions of the equity value at the default threshold is given by

$\frac{dE_{a}}{dx}(x_{d}^{a})=0, \frac{dE_{b}}{dx}(x_{d}^{a})=0$ , (2.20)

we obtain the following value functions:

$E_{a}(x) = \frac{1}{1+\delta_{o}}\{(1-\tau)(\frac{Qx}{r-\mu}-\frac{c+f}{r})+\delta_{o}E(x_{0})$

$-((1- \tau)(\frac{Qx_{d}^{a}}{r-\mu}-\frac{c+f}{r})+\delta_{o}E(x_{0}))(\frac{x}{x_{d}^{a}})^{\beta_{2}}\}$ , (2.21)

$D_{a}(x) = \frac{c}{r}+((1-\theta)(1-\tau)\frac{Qx_{d}^{a}}{r-\mu}-\frac{c}{r})(\frac{x}{x_{d}^{a}})^{\beta_{2}}$ (2.22)

$M_{a}(x) = \frac{f}{r}+\frac{\delta_{s}+\delta_{o}}{1+\delta_{o}}((1-\tau)(\frac{Qx}{r-\mu}-\frac{c+f}{r})+\delta_{o}E(x_{0}))$

$+ \{nf-\frac{f}{r}-\frac{\delta_{S}+\delta_{o}}{1+\delta_{o}}((1-\tau)(\frac{Qx_{d}^{a}}{r-\mu}-\frac{c+f}{r})+\delta_{o}E(x_{0}))\}(\frac{x}{x_{d}^{a}})^{\beta_{2}}(2.23)$

and the optimal default threshold after exercise:

$x_{d}^{a}= \frac{\beta_{2}r-\mu}{\beta_{2}-1(1-\tau)Q}((1-\tau)\frac{c+f}{r}-\delta_{o}E(x_{0}))$ . (2.24)

The value functions and the default threshold after exercise include the equity value before

exercise. Hence, these must be also solved numerically.
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2.3 Constraint conditions

We consider two cases about the leverage in order to investigate the relationship between the
stock option grants and the capital structure.

In the first case, we suppose that the financial leverage is fixed. Since the sum of the equity
value and the debt value gives the firm value:

$V(x)=E(x)+D(x)$ , (2.25)

the leverage ratio $l$ is given by

$l= \frac{D(x)}{V(x)}$ . (2.26)

Here, we present the important factor in this paper, the PPS, that is, the sensitivity of changes
in the $CEO$ wealth to changes in the shareholder one. The PPS is given by

$\frac{dM(x)}{dE(x)}=\frac{\frac{dM}{dx}(x)}{\frac{dE}{dx}(x)}$ . (2.27)

We analyze the PPS by fixing leverage ratio $l.$

Furthermore, in order to analyze the agency cost between the equity holders and the manager,
we consider the another default policy. It selects the optimal default time, maximizing the
manager’s value. Then, we use the following smooth-pasting conditions at default.

$\frac{dM}{dx}(x_{d})=0, \frac{dM_{a}}{dx}(x_{d}^{a})=0$ (2.28)

Let $V^{E}(x)$ and $V^{M}(x)$ be the firm value on the equity value and the manager’s value maximiza-
tion at default, respectively. Then, the agency cost between the equity holders and the manager
$AC(x)$ is given by

$AC(x)= \frac{V^{E}(x)-V^{M}(x)}{V^{E}(x)}$ . (2.29)

In the second case, we consider the optimal capital structure. It selects the optimal coupon
payment, maximizing the firm value:

$c^{*}(x)= \arg\max_{c>0}V(x;c)$ . (2.30)

We explore the optimal leverage, the PPS, the optimal default and exercise thresholds, the
equity value, the debt value and the manager’s value for the optimal capital structure.

3 Numerical Analysis

In this section, we present the calculation results in order to examine the relationship between
the leverage and the PPS and investigate how the stock option grants affect the financial decision
for the optimal capital structure. We use the following base parameters: $Q=1,$ $\mu=0,$ $\sigma=$

$0.2,$ $r=0.05,$ $\theta=0.3,$ $\tau=0.3,$ $f=0.01,$ $\delta_{s}=0.05,$ $\delta_{o}=0.05,$ $n=25$ and $x=1.0.$
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Table 1 represents the PPS for the leverage ratio $l$ and the shareholding ratio issued at

exercise of the stock option $\delta_{o}$ when the leverage ratio is fixed. It can been seen that the

stock option grants increase the PPS. Since the increase of the equity value leads to that of

the value of the stock option, the value of the manager who holds the stock option increases.

Thus, As $\delta_{o}$ increases, the PPS also increases. This result is consistent with empirical evidences

in Hall and Liebman (1998). Also, the PPS decreases in the leverage ratio. This is because

the debt mitigates the shareholder-manager agency problems and is consistent with results in

Ortiz-Molina (2007) that provides a negative association between the PPS and the financial

leverage.

Table 1: The effect of the stock option grants and the leverage ratio on the PPS : the fixed

leverage ratio

Table 2 represents the agency cost between the equity holders and the manager for the

shareholding ratio issued at exercise of the stock option $\delta_{o}$ . We have shown in this table that

the stock option grants decrease the agency cost between the equity holders and the manager.
This implies that the stock option grants can align the interests between shareholders and
managers.

Table 2: The Agency cost between the equity holders and the manager: the fixed leverage ratio

Table 3 represents the calculation results for the optimal capital structure. We can obtain

that the stock option grants do not affect the optimal coupon payment. When the shareholding

ratio issued at exercise of the stock option is higher, the PPS and the optimal leverage ratio are
also higher. This result for the leverage ratio is consistent with result in Lewellen et al. (1987)

and Berger et al. (1997), etc. that find a positive effect of the leverage on the stock option

grants. Before exercise of the stock options, default occurs earlier in the firm with the stock

option grants relative to that without the grants from the possibility of dilution. On the other

hand, after exercise, the possibility of default decreases since the more wealth transfer from the
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manager to the shareholders occurs when $\delta_{o}$ is higher. When the stock option grants increase,
the manager exercises earlier from increase of the shareholding ratio. When the stock option
grants is higher, the equity value and the debt value are lower and the manager’s value is higher.
This result related to the debt is consistent with the empirical evidence in Ortiz-Molina (2007)
that finds a negative association of the stock option grants and the amount of the debt.

Table 3: The effect of the stock option grants on the optimal coupon payment, the PPS, the
optimal leverage ratio, the optimal default and exercise thresholds, the equity value, the debt
value and the manager’s value: the optimal capital structure

4 Conclusions

In this paper, we propose the theoretical $mo$del regarding the managerial compensation of the
firm with the stock option grants. We show that the PPS decreases in the leverage ratio. This
result is consistent with empirical evidences in Ortiz-Molina (2007) and John and John (1999).
Furthermore, the stock option grants increase the PPS. This is consistent with results in Hall
and Liebman (1998). Also, we show that the stock option grants decrease the agency cost
between the equity holders and the manager. For the optimal capital structure, we obtain a
positive effect of the leverage on the stock option grants. This is consistent with results in
Lewellen et al. (1987) and Berger et al. (1997), etc.. Before exercise, default occurs earlier in
the firm with the stock option grants relative to that without the grants. On the other hand,
after exercise, the possibility of default decreases. Moreover, the manager exercises earlier when
the stock option grants increase. The stock option grants decrease the debt value. This result is
consistent with empirical evidences in Ortiz-Molina (2007). In future work, $we’ d$ like to analyze
the credit spread and the relation between the stock option grants and the investment.
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