<table>
<thead>
<tr>
<th>項目</th>
<th>内容</th>
</tr>
</thead>
<tbody>
<tr>
<td>タイトル</td>
<td>代数と確率計算の立場からのモントオーヌのテナンツについて</td>
</tr>
<tr>
<td>著者(s)</td>
<td>鎌田 貴也</td>
</tr>
<tr>
<td>引用</td>
<td>数理解析研究所講究録 (2012), 1820: 69-72</td>
</tr>
<tr>
<td>発行年</td>
<td>2012年</td>
</tr>
<tr>
<td>URL</td>
<td>http://hdl.handle.net/2433/194647</td>
</tr>
<tr>
<td>タイプ</td>
<td>学術誌論文</td>
</tr>
<tr>
<td>応用</td>
<td>出版者</td>
</tr>
</tbody>
</table>

京都大学
Integral representation of monotone functions

Motoya Machida
Tennessee Technological University, Cookeville, TN
mmachida@tnitech.edu

Abstract

Integral representation of monotone functions has been studied by Choquet [1], Murofushi and Sugeno [4], Norberg [5], and many others, but not necessarily been their primal interest due to the lack of uniqueness in their representations. Here we present a brief overview of different approaches and generalizations, and show our own version of integral representation from the ongoing investigation.

1 Choquet theory of integral representation

In his treatise on theory of capacity, Choquet outlined a series of applications for integral representation on the set \mathcal{E} of extreme points of a compact convex Hausdorff space C (Chapter VII of [1]). Let L be a partially ordered set (poset) with a maximum element e, and let C be the convex set of nonnegative monotone functions φ on L with $\varphi(e) \leq 1$. Assuming the topology of simple (i.e., pointwise) convergence on functions over L, we can show that C is compact, and the set \mathcal{E} of extreme points of C consists of indicator functions of the form

\[
\chi(x) = \begin{cases}
1 & \text{if } x \in U; \\
0 & \text{otherwise.}
\end{cases}
\]

The monotonicity of χ implies that $y \in U$ whenever $x \in U$ and $x \leq y$, and such subset U is called an upper set. The set \mathcal{E} is compact, and any element φ of C is represented in the integral form

\[
\varphi(x) = \int \chi(x) \, d\mu(\chi), \quad x \in L,
\]

with a Radon measure μ on \mathcal{E} (Section 40 of [1]).

Let S be a compact Hausdorff space, and \mathcal{K} be the class of compact subsets of S. Then a nonnegative monotone function φ on \mathcal{K} is called a capacity if it is upper semicontinuous (i.e., $\varphi(E) \downarrow \varphi(F)$ whenever $E \downarrow F$) in the exponential (i.e., Vietoris) topology. Here the convex set C of capacities φ with $\varphi(S) \leq 1$ is considered similarly; however, the topology of simple convergence is not suitable
for the space C. Over the convex cone Q of nonnegative continuous functions on S, a capacity φ uniquely corresponds to the functional

\[(3) \quad \varphi(\xi) = \int_0^{\max \xi} \varphi(\{x \in E : \xi(x) \geq r\}) \, dr, \quad \xi \in Q. \]

Then we can introduce the topology of vague convergence on capacities in which a net $\{\varphi_\alpha\}$ converges to φ if and only if $\varphi_\alpha(\xi)$ converges to $\varphi(\xi)$ for any $\xi \in Q$. Under this topology the convex set C is compact Hausdorff, and the indicator function χ in (1) corresponds to a closed upper set U in the exponential topology (Section 48 of [1]).

When S is a locally compact Hausdorff space, it is not necessary for K to contain S. Here we can introduce a partial ordering on K by the dual (i.e., the reverse order) of inclusion, and denote the poset by L with the maximum element \emptyset. Then we can set the convex set C^* of lower semicontinuous and nonnegative monotone functions φ on L with $\varphi(\emptyset) \leq 1$. Observe that a lower semicontinuous and nonnegative monotone functions φ on L uniquely corresponds to a bounded capacity ψ on K via

\[\varphi(E) = \sup_{F \in K} \psi(F) - \psi(E) + \psi(\emptyset), \quad E \in K. \]

The topology of vague convergence is introduced by (3) over the convex cone Q of nonnegative continuous functions with compact support, in which the convex set C^* becomes compact Hausdorff.

2. A framework of continuous semilattice

In the application of integral representation for capacities on a locally compact Hausdorff S, the Hausdorff assumption seems indispensable in order for C^* to be compact Hausdorff. Then the set E^* of extreme points of C^* is compact and homeomorphic to the family of open upper subsets U, and the integral representation (2) of $\varphi \in C^*$ is equivalently formulated as

\[(4) \quad \varphi(x) = \mu(U_x), \quad x \in L, \]

where $U_x := \{U \in E^* : x \in U\}$ is an open set in E^*.

In the framework of continuous posets (cf. Giertz et al. [3]), the compact Hausdorff set E^* is homeomorphic to the family of Scott open subsets of L. Here the topology of vague convergence corresponds to the Lawson topology, which comes solely from the fact that L is a continuous semilattice. Norberg [5] showed that it is entirely possible to construct a Borel measure μ on the family E^* of Scott open subsets satisfying (4) if L is a continuous semilattice and E^* is second countable. Thus, we can choose S to be a locally compact sober and second countable space, which is not necessarily Hausdorff. Note that the Borel measure μ is a Radon measure when E^* is second countable; see [2].

We claim that E^* is not necessarily second countable, and demonstrate it by a rather straightforward construction of a Radon measure μ satisfying (4) due to
Murofushi and Sugeno [4]. Let \(\varphi \in C^* \) be fixed, and let \(e \) denote the top element of the continuous semilattice \(L \). Observe that

\[
F(r) = \{ x \in L : \varphi(x) > r \}
\]

maps from \(r \in [0, \varphi(e)] \) to \(E^* \), and \(F \) is Borel-measurable. For a Borel measurable subset \(V \) of \(E^* \) we can define \(\mu(V) := m(F^{-1}(V)) \) with the Lebesgue measure \(m \) on \([0, \varphi(e)] \). Then we can show that \(\mu \) is a Radon measure, and it satisfies

\[
\mu(U_x) = m([0, \varphi(x)]) = \varphi(x).
\]

It should be noted that Norberg [5] has investigated a Borel measure \(\mu \) on the family \(L^* \) of Scott open filters in \(L \), and proved a bijection between Borel measures on \(L^* \) and lower semicontinuous and completely monotone nonnegative functions on \(L \). The above construction immediately fails for this purpose since (5) does not map into \(L^* \) in general even if \(\varphi \) is completely monotone.

Finally we present our own version of construction without assuming the second countable \(E^* \). Let \(C(E^*) \) be the space of continuous functions on \(E^* \), and let \(\delta_x \) be a point mass probability measure (i.e., Dirac delta) at \(x \in L \). Here we will use the following proposition, but leave the proof for the future publication.

Proposition 1. There exists a subspace \(R \) of \(C(E^*) \) such that \((i) \) each \(g \in R \) is uniquely extended to a signed Radon measure \(R \) on \(L \) so that \(g(U) = R(U) \) for any \(U \in E^* \), and \((ii) \) for each \(x \in L \) there is an increasing net \(\{ g_\alpha \} \) of \(R \) satisfying \(\sup_\alpha g_\alpha(U) = \delta_x(U) \) for any \(U \in E^* \).

For a fixed \(\varphi \in C^* \), we can introduce a nonnegative homogeneous and superadditive functional on \(C(E^*) \) by

\[
M(g) = \sup \left\{ \int \varphi \, dR : R \leq g, R \in R \right\}, \quad g \in C(E^*).
\]

By applying the Hahn-Banach theorem we obtain a linear functional \(\Phi \) on \(C(E^*) \) satisfying \((a) \) \(M \leq \Phi \) on \(C(E^*) \), and \((b) \) \(M = \Phi \) on \(R \). The condition \((a) \) implies that \(\Phi \) is positive, and that \(\Phi \) uniquely corresponds to a Radon measure \(\mu \) on \(E^* \) via the Riesz representation \(\Phi(g) = \int g \, d\mu \). By applying Proposition 1 together with the condition \((b) \), we can show that if an increasing net \(\{ R_\alpha \} \) of \(R \) satisfies \(\sup_\alpha R_\alpha(U) = \delta_x(U) \) for \(U \in E^* \) then

\[
\mu(U_x) = \sup_\alpha \Phi(R_\alpha) = \sup_\alpha M(R_\alpha) = \sup_\alpha \int \varphi \, dR_\alpha = \varphi(x),
\]

as desired. A variation of this construction can be used to show the existence of a Radon measure \(\mu \) whose support lies on \(L^* \) when \(\varphi \) is completely monotone (which is a part of the ongoing investigation).
References

