0000000000
018210 20130 231-238 231

Optimization for a mixed integer programming problem
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Abstract. In this paper, we propose an interactive solution method for a convex mixed integer
programming problem. The algorithm is based on an outer approximation method, a penalty
function method and a submodular minimization method. It is shown that the proposed:algo-
rithm has the global convergence.
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1 Introduction

In this paper, we consider a convex mixed integer programming problem (P) with the objective
function having the Li-convexity. For (P), an outer approximation algorithm has been proposed
(see [2]). It is known that an integer programming problem to minimize a Li-convex function
can be transformed into a submodular minimization problem. For such a problem, a strongly
polynomial algorithm has been proposed in [4]. Hence, we propose another outer approximation
method for solving (P) by incorporating the submodular minimization algorithm.
The organization of this paper is as follows: In Section 2, we explain Li-convexity and a
-submodular function. In Section 3, we introduce a convex mixed integer programming problem.
In Section 4, we describe the outer approximation algorithm proposed by Bonami, Biegler, Conn,
- Cornuejols, Grossmann, Laird, Lee, Lodi, Margot, Sawaya and Wéchter [2]. In Section 5, we
propose another outer approximation algorithm by incorporating a penalty function algorithm
and the submodular minimization algorithm proposed by Iwata [4].

2 Mathematical preliminaries

Throughout this paper, we use the following notation: R and Z denote the sets of all real numbers -
and all integer numbers, respectively. Let Ry := {z € R : z > 0}. For a natural number n,
R" denotes an n-dimensional Euclidean space. Let || - || denote the Euclidean norm. Given a
vector z € R", ' denotes the transposed vector of z. For a vector ¢ = (zy,...,z,)" € R, [z]
and |x] are the vectors in Z™ such that the ith elements [x]; and |x|; are defined as [z]; :=
min{z € Z: z > z;} and |x]; := max{z € Z : z < z;}, respectively. Given vectors z,y € R",
zVy = (max{z;,y},...,max{zT,, ¥»})" and z Ay := (min{z1,%},..., min{z,,y,})". For a
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function f : R® = R, Vf(x) denotes the gradient vector of f at € R". Given a vector € R"
and a positive real number € € R, B(x,¢) := {y € R" : |y — || < €}. For a subset D C R",
cl D denotes the closer of D.

Moreover, we review some concepts for extended real valued functions.

Definition 2.1 Let S be a nonempty convex set on R"”. A function p : R* — R is said to be
convezon S if (1 —\)p(x) + A p(y) > p(1— ANz +My) foreach z,y e R*and A€ R (0 < A < 1).

Definition 2.2 A function g : Z™ — R is said to be Li-convez if g(a) + ¢(b) > ¢ ( [_a__ ; b]) +

q([a;bJ) for each a,b € Z™.

" Lemma 2.1 Let q1,G2 : Z™ — R be Li-convez. Then, the following assertions hold.

(i) Mai(a) 4+ Xagz(a) is Li-convez on Z™ for each A1, Ay > 0 (A1, X2 € R).
(i) max{q(a),qe(a)} is Li-convez on Z™.

Proposition 2.1 Let g : Z™ — R be Li-convez. Then, there exists a conver function g : R™ —
R satisfying

g(a) = q(a).

Definition 2.3 A function p : R* — R is said to be Li-conver if p(z) + p(y) > p((® — ce) V
y) +p(@ A (y + Ae)) for each &,y € R" and A > 0 (A € R), where e := (1,...,1)T € R™.

Lemma 2.2 Let p;,ps : R® = R be L¥-conver. Then, the following assertions hold.
(i) Mpi(x) + Aopa(z) is Li-conver on R™ for each A1, A2 > 0 (A1, A2 € R).

(ii) max{p;(x),p2(x)} is Li-convez on R™.

Proposition 2.2 Let p: R* = R be L*-convez. Then,

parvm([532) (5]

for each a;,b € Z".

Definition 2.4 Let V : be a finite set of R". Then, a set function F : 2¥ — R is said to be
submodular if F(S)+ F(T) > F(SUT)+ F(SUT) for each S,T C V.

Definition 2.5 Let V := {1,...,m} and let F : 2¥ — R be submodular. Then, B(F) is said
to be the base polyhedron of F, where

B(F):={v=(v1,...,um)’ €R™:0(V)=F(V), v(S) < F(S) for each S C V},

and v(S) := Zvi. A vector of B(F) is called a base. An extreme point of B(F) is called an
i€s
extreme base.
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- Proposition 2.3 Let V := {1,...,m} let F : 2V — R be a submodular function satisfying
F(0) =0. Then,

max{v~ (V) :v = (vy,...,0,) € B(F)} = min{F(S): S c V},
where v~ (V) 1= zm:min{vi, 0}.

Remark 2.1 For each v € B(F),
v (V) <o(V) < F(v).

Proposition 2.4 LetV :={1,...,m} let g : Z™ — R satisfy dom q C {0,1}" and F : 2V - R.
Assume that F(S) = q(xs) for each S C V, where xs = (x1,- .., Xm)" and

1, ifies,
Xi'= 0, ifigs.

Then, q is Li-¢onvez if and only if F is submodular.

Remark 2.2 For each S, T C V,

Xs+Xxr| Xs+txr|
‘—2— = XsurT, —2** = Xsnr-

3 A mixed integer programming problem

In this paper, we propose a new outer approximation method for solving the following mixed
integer programming problem:

minimize f(x,y),
subject to g;(z,y) <0 i=1,...,1,

P
(P) z € {0,1}™,
y€eY C R
where Y is a compact convex set in R™, f,g1,...,9 : R™ x R* — R are continuous functions.

For (P), we assume that the feasible set is nonempty. Since the feasible set is a compact set, (P)
has a globally optimal solution.

4 An outer approximation algorithm

In this section, we assume the following conditions for (P).
e Y is a polytope.

e f(x,-)and g;(x, -) (i = 1,...,1) are continuously twice differentiable convex functions on
R" for each « € {0,1}™.

e f(-,y)and g(-,y) (¢ =1,...,1) are continuously twice differentiable convex functions on
R™ for each y € R".



234

Moreover, let us consider the following convex programming problem:

minimize  f(x,y), ,
() subject to gi(®,y) <0 i=1,...,1,
0<z<e, zeR™
yey.

Then, we have the following inequality.
min(P) > min(P),

where min(P) and min(P) denote the optimal values of (P) and (P), respectively. Moreover,
for given a finite set D := {(z!,y!),...,(zF,y*)} C R™ x R*, we consider the following mixed
integer programming problem: ‘

( minimize «

subject to  Vf(z?,y’)" (

x—al

vy )@y <o

S —x’
S

y—y )+'91($j,yj) <0

(POA(D)) ¢
. j= 17""k7
o — ol L
Va(ai,y)T ( Yo ) + g(@i,y7) <0
ze{0,1}", yeY, aeR.

\

Then, the following theorem holds.

Theorem 4.1 ([2], Theorem 1) For all & € {0,1}™, if the following problem is feasible, then
define @ to be its optimal solution.

_ minimize f(Z,
(P(z)) { subject to ¢i(Z,y) <0 i=1,...,l, yeY.

On the other hand, if (P(Z)) is infeasible, then y is defined as an optimal solution to the following
problem:

(PF("_:_)) minimize Zui

i=1

subject to ¢i(Z,y) —u; <0, v; >0 i=1,...,l, yeY.

Let D be the set of all such pairs (%, 7). Assume that the KKT conditions are satisfied at every

A~

optimal solution of (P(&)) (or (PF(&))), then (P) and (P94(D)) have the same optimal value.

Under Theorem 4.1, the following outer approximation method for solving (P) has been
proposed by Bonami, Biegler, Conn, Cornugjols, Grossmann, Laird, Lee, Lodi, Margot, Sawaya
and Wichter [2].

Algorithm OA



Step 0: Set a tolerance 7 > 0, f; := +o00 and f; := —oo. Calculate an optimal solution (!, yh)
of the following problem:

minimize  f(z,y)
subject to g;(z,y) <0 i=1,...,1,
0<z<e yev.

Set D; := {(z',y")} and k := 1, go to Step O.

Step 1: If B — B < 7, then stop: (z*,y*) is an approximate solution of (P). Otherwise, go to
Step 2.

Step 2: Calculate an optimal solution (&, &, ) of (POA(Dy)). Set Bii1 := &. Go to Step 3.

Step 3: Set &t :=&. If (P(x**+!)) is feasible, then Syt = min{ﬂvkv, f(x**1 y* 1)} where y*+!
is an optimal solution of (P(z**!)). Otherwise, set fy1 := B and calculate an optimal
solution y*+! of (PF(x**1)). Go to Step 4.

Step 4: Set Dyi1 := Dy U {(x*+!, y**1)}, k « k + 1 and return to Step 1.

5 New outer approximation algorithm

In this section, we suppose the following conditions for (P).
e Y is a compact convex set in R" satisfying O € int Y and Y C B(0, ) for some r > 0.

e f(x, -) and g(x, -) (¢ = 1,...,1) are continuously differentiable convex functions on R™
for each « € {0,1}™.

4 f(’y) and gl(ay) (Z
R™ for each y € R™.

1,...,1) are continuously differentiable Li-convex functions on

e A feasible solution (', y’) of (P) is given.

Since (P94(Dy)) has the constraint condition & € {0,1}™, it is difficult to find a globally optimal
solution of (P°*(Dy)). In general, (PO (Dy)) is solved by utilizing branch and bound procedures.
In this paper we propose another algorithm based on outer approximation by incorporating a
penalty function method and a submodular minimization method.

Algorithm NOA
Step 0: Set a penalty parameter M; > 0, v > 1, a tolerance 7 > 0, (z!,y') := (2/,%') and
B = f(a',y"). Construct a polytope Sy = {(3,€) € R* x R : (~r,0) < (3,) < (r,7)}

where 7 := (r,...,7)" € R" and 7 := r/n + 1, and calculate the set V/(S;) of all vertices
of S;. For convenience, set V(Sp) := 0. Set k¥ =1 and go to Step 1.

Step 1:

Step 1-0: Set {(zla 61)3 e (zpk7§pk)} = V(Sk)\V(Sk—1)7 M = Mk7 (:i7 g) = (mkyyk)a B = IBIC
and p := 1, where p;, is the number of all elements of V(S;)\V(Sk-1). Go to Step 1-1.
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Step 1-1: Calculate the optimal value I['(2?) and an optimal solution x(2”) of the following
problem, and go Step 1-2.

( !

minimize ®(x, 2P, M) = f(x, 2°) + MZ max{0, g;(x, z2°)}

- : i=1

SP(2F, M)) 4 - o

( ~ £(0,2°) = M) max{0, g:(0, )}
i=1

subject to x € {0,1}™.

\
Step 1-2:
o If 3(z(27), 2%, M) + f(0,27) < B and g;(a(2P), 2*) > 0 for some i € {1,...,1}, then
set M < M and return to Step 1-1. '
o If p < pr and @(m(z”),z”,M) + f(0,2P) > B, then set p «— p+ 1 and return to
Step 1-1.
o If p = py and ®(x(2?), 27, M) + f(0, z?) > B, then go to Step 1-3.
o If p < py, and gi(x(2?),27) < 0 for all 5 € {1,...,1}, then set (Z,¥) « (x(2),2"),
B + f(z(2P), 2?), p + p+ 1, and return to Step 1-2.
o If p = p; and gi(x(2”),2?) < 0 for all 4 € {1,...,1}, then set (Z,9) « (z(27),27),
and B « f(x(2?),2"), and go to Step 1-3.
Step 1-3: Set My, := M, (! y**1) := (&,9) and Bryy := B. Choose (w*,uz) € V(Sk)
satisfying (w*)Tw* + (ux)? = max{y 'y + &2 : (y,£) € V(Sk)}. Go to Step 2.

Step 2: If (w*)Tw* + (ux)? < 7 + 7, then stop: (x**!,y**1) is an approximate solution and
‘Be+1 is an approximate value of the optimal value of (P). Otherwise, go to Step 3.

Step 3: Set Spy1 := Si N {(y,€) € R* x R : (w*) Ty + ux& < 72} and the vertex set V(Sk+1).
Set k < k + 1 and return to Step 1.
At Step 1-1, for each p € {1,..., px}, we have
f(=, z?) — f(0, 2P) < ®(x, z?, M) for each x € R™
Moreover, we note that if (x, 27) is a feasible solution of (P), then
flz, zP) — £(0, zP) = &(x, 2P, M).

Furthermore, in the case where (&, 2?) is a feasible solution of (P) for some & € {0,1}™, it
is known that there exists an exact penalty parameter M for (SP(z?, M)) (see, for instance,
Theorem 9.3.1 in [1]). This implies that for each = € {0, 1}™ satisfying g;(x, 2?) > 0 for some
i € {1,...,1}, there exists &’ € {0,1}™ such that g;(z’,2?) <0 foralli € {1,...,l} and

¢(m1 zp’ M) > Q(w,’ zp, M)J
because f( -, 2P) and g;(-,2P) (i =1,...,l) are convex functions and {0,1}™ is compact. Then,
we have

min(SP(2?, M))
= min{ f(x, 2°) — f(0,27) : gi(x,2?) <Oforalli=1,...,l, ¢ € {0,1}"}
> min(P) — £(0, 2"),
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where min(SP(2?, M)) and min(P) denote the optimal values of (SP(2?, M)) and (P), respec-
tively. Hence, it follows that for each k,

Flat™,yt) = min {£(2, 4, F(@(2),2°) i p = 1,..., o} 2 f(2¥, ") > min(P).

Moreover, since (x!, y') is a feasible solution of (P), by the procedure for generating (x (1
at iteration k of Algorithm NOA, the sequence {(z*, y*)} is contained in the feasible set of (P).
We remember that f(-,y) and gl( ,yY) (i = 1,...,1) are Li-convex for each y € R™. Hence,
it follows from Lemma 2.2 that the objective function of (SP(2?, M)) is a Li-convex function.
Moreover, by Proposition 2.4, we notice that (SP(z?, M)) can be reformulated a submodular
minimization problem. Therefore, we can obtain @x(z?) by utilizing the strongly polynomial
time algorithm proposed by Iwata [4]. Since (Y x R;) Ncl B(0,7) C S; and cl B(0,7) C
{(4,6) e R* x R: (w*) Ty + & < 72} for each k, we have

k+l)

$108: D28 D2 (Y xRy)ncl B(O,7).

We note that (w*, uy). & Skpy if (w*, ) does not satisfy the stopping criterion at Step 2.
Moreover, the following theorems hold.

Theorem 5.1 Assume that 7 = 0 Then, the infinite sequence {(w*,ux)} generated by Algo-
rithm NOA satisfies hm (w )Tw* + (ui)? = 7.

Theorem 5.2 Assume that 7=0. Lety € Y and € > 0. Then, there ezists k' > 0 such that

B ((y, ViZ—y y) ) NV (Sk) # 0 for each k > K.

Corollary 5.1 Assume that 7 = 0. Let {(x*,y*)} be the infinite sequence of the provisional
solutions generated by Algorithm NOA. Then, we have

lim f(z*,y*) = min(P).

k—o0
From Theorem 5.1, by setting 7 as a positive number, Algorithm NOA terminates within a finite
number of iterations. Moreover, by Corollary 5.1, we note that Algorithm NOA has the global
convergence, that is, every accumulation point of the generated by Algorithm NOA is a globally
optimal solution of (P).

6 Conclusions

In this paper, we have proposed an outer approximation algorithm for solving a mixed integer
programming problem. The proposed algorithm approximates the set lifted the feasible region
of continuous variables on a hemisphere in R"*! by the sequence of polytopes. By utilizing a
penalty function method, the subproblem solved at each iteration can be formulated as a problem
to minimize a LP-convex function over {0,1}™. Hence, an optimal solution of the subproblem
can be obtained by using the submodular minimization algorithm proposed by Iwata [4]. It
is shown that the proposed algorithm has the global convergence. Moreover, we note that the
proposed algorithm is useful in the case where the dimensions of the discrete and continuous
variable regions are large and small respectively.
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