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Abstract. Let H be a real Hilbert space and let C' be a nonempty closed convex subset -of
H. A mapping U : C — H is called extended hybrid if there exist o, 3,7 € R such that

a1+ Uz — Uyl + (1 — a1 + 7))z — Uyl
< (B+aNUz -yl + (1= (B+ o)z - yll?
— (a=B)llz = Uz|® —~|ly — Uyl®

for all z,y € C. In this article, we first deal with fundamental properties for extended hybrid
mappings in a Hilbert space. Then we deal with weak and strong convergence theorems for
these nonlinear mappings in a Hilbert space.

1 Introductiqn

- Throughout this paper, we denote by N fhe set of positive integers and by R the set of real
numbers. Let H be a real Hilbert space and let C' be a nonempty closed convex subset of H.
A mapping T : C — H is called generalized hybrid [11] if there exist , 8 € R such that

a|Tz = Ty|* + (1 - @)z — Ty|* < BTz — y|> + (1 - Bz — ylI? (1.1)

for all z,y € C. We call such a mapping an (a, 8)-generalized hybrid mapping. Kocourek,
Takahashi and Yao [11] proved a fixed point theorem for such mappings in a Hilbert space.
Furthermore, they proved a nonlinear mean convergence theorem of Baillon’s type [2] in a
Hilbert space. Notice that the class of the mappings above covers several classes of well-
known mappings. For example, an (o, 3)-generalized hybrid mapping T is nonexpansive for
a=1and 8=0,ie.,

Tz - Tyl < lz—yll, Vz,yeC.

It is also nonspreading [12, 13] for a =2 and 8 =1, i.e.,
2Tz - Ty|)* < [Tz — yl* + | Ty — =l|*, Vz,yeC.
Furthermore, it is hybrid [28] for a =  and 8= 1, i.e,
3Tz — Ty|l® < ||z -yl + [Tz ~ yl|® + 1Ty ~ 2?, Vz,y € C.
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The classes of nonexpansive mappings, nonspreading mappings and hybrid mappings are de-
duced from the equilibrium problem in optimization; see [6] and [28]. Putting z = u with
u = Tu in (1.1), we have that for any y € C,

allu— Tyl + (1 — o) |lu — Tyll* < Bllu — yi* + 1 - B)llu ~ y|I?

and hence |ju — Ty|| < ||lv — y|- This means that an (a, ()-generalized hybrid mapping
with a fixed point is quasi-nonexpansive. Recently, Hojo, Takahashi and Yao [8] defined the
following class of nonlinear mappings which contains the class of generalized hybrid mappings.
A mapping U : C — H is called extended hybrid if there exist o, 8,7 € R such that

a1+ )z — Uyl + (1 - a(1 + 7))z — Uy? (1.2)
< (B +anUz -yl + (1 — (B + )z — ol
— (@ =Bz - Uz|® = lly — Uyl)?

for all z,y € C. We note that an extended hybrid mapping is not quasi-nonexpansive generally.

In this article, we first deal with fundamental properties for extended hybrid mappings in a
Hilbert space. Then we deal with weak and strong convergence theorems for these nonlinear
mappings in a Hilbert space.

2 Preliminaries

Let H be a (real) Hilbert space with inner product (-,-) and norm | -||. We denote the
strong convergence and the weak convergence of {z,} to z € H by =, — = and =, — z,
respectively. From [27], we know the following basic equality. For z,y € H and A € R, we

have
Az + (1 — Nyl = Allz[|® + (1 = Mlyll* = 21 = V[lz -yl (2.1)

Furthermore, we have that for z,y,u,v € H,
2(x —y,u—v) = [l = ol* + ly — | ~ llo — ul® ~ ly - v]|*. (2.2)

From [18], a Hilbert space H satisfies Opial’s condition, i.e., for a sequence {z,} of H such
that z, — = and = # y,
liminf ||z, — z|| < linm i£f |z — yll- (2.3)

Let C be a nonempty closed convex subset of H and let T: C — H be a mapping. We denote
by F(T) be the set of fixed points of T. A mapping T : C — H with F(T) # 0 is called
quasi-nonexpansive if ||z — Ty|| < ||z = y|| for all z € F(T) and y € C. It is well-known
that the set F(T') of fixed points of a quasi-nonexpansive mapping T is closed and convex;
see Ito and Takahashi [10]. Since a generalized hybrid mapping T defined in Introduction is
quasi-nonexpansive, F(T) is closed and convex.

Let [* be the Banach space of bounded sequences with supremum norm. Let p be an
element of (I°)* (the dual space of I°°). Then, we denote by u(f) the value of p at f =
(z1,x2,73,...) € I®°. Sometimes, we denote by pn,(x,) the value p(f). A linear functional p
on [ is called a mean if u(e) = ||u|| = 1, where e = (1,1,1,...). A mean p is called a Banach
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limit on {%° if pp(Tnt1) = pn(2n). We know that there exists a Banach limit on [%. If 4 is a
Banach limit on [*°, then for f = (21,2, z3,...) € I,

liminf z, < p,(z,) < limsup z,.

n—oo n—00
In particular, if f = (x1,22,23,...) € [ and z, — a € R, then we have u(f) = pn(z,) = a.
For the proof of existence of a Banach limit and its other elementary properties, see [24]. Using
Banach limits, Kocourek, Takahashi and Yao [11] proved the following fixed point theorem for
generalized hybrid mappings in a Hilbert space.

Theorem 2.1 ([11]). Let C be a nonempty closed convex subset of a Hilbert space H and let
T :C — C be a generalized hybrid mapping. Then T has a fized point in C if and only if
{T™z} is bounded for some z € C.

Let C be a nonempty closed convex subset of H and x € H. Then, we know that there
exists a unique nearest point z € C such that ||z — z|| = infyec ||z — y||. We denote such a
- correspondence by z = Pox. The mapping Pc is called the metric projection of H onto C. It
is known that Pg is nonexpansive and ‘ '

(x — Pocx,Pcx —u) >0
for all z € H and u € C; see [27] for more details. We also know the following lemma.

Lemma 2.2 ([30]). Let F be a nonempty closed convex subset of a Hilbert space H, let P be
the metric projection of H onto F' and let {z,} be a sequence in H such that ||z,41 — uf| <
xrn — ul| for allu € F and n € N. Then {Pz,} converges strongly.

3 New Class of Extended Hybrid Mappings

Let H be a real Hilbert space and let C be a nonempty subset of H. A mappingU : C — H
is called extended hybrid [8] if there exist a, 3,7 € R such that

ol )IUz - Uyl? + (1 - o+ )z - Uyl? (3.1)
S@+aNUz —yl*+ (1~ (B+av))llz — y|f?
= (a=B)yllz — Uz|® —lly - Uyl
for all z,y € C and such a mapping U is called (a, 3, 7)-extended hybrid. In [8], the authors

derived a relation between the class of generalized hybrid mappings and the class of extended
* hybrid mappings in a Hilbert space.

Theorem 3.1 ([8]). Let C be a nonempty closed convex subset of a Hilbert space H and let
a, B and vy be real numbers with v # —1. Let T and U be mappings of C into H such that
U = l—j;;T-FﬁqI, where Ix = x for all x € H. Then, for 14+~ > 0, T : C — H is an
(a, B)-generalized hybrid mapping if and only if U : C — H is an (o, 3, )-estended hybrid
mapping. In this case, F(T) = F(U).

A mapping U : C — H is called a widely strict pseudo-contraction if there exists a real
number k£ € R with & < 1 such that

WUz = Uy)? < lle — yl* + KI(I - V) — (I - U)yll?, Va,yeC.
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Such a mapping U is called a widely k-strict pseudo-contraction. A widely k-strict pseudo-
contraction [5] is a strict pseudo-contraction if 0 < k < 1. It is also nonexpansive if & = 0.
Conversely, if T : C — H is a nonexpansive mapping, then for any n € N, '

1 n

= T I
v 14+n +1+n

is a widely (—n)-strict pseudo-contraction. The following result is in (32]:

Proposition 3.2 ([32]). Let H be a Hilbert space and let C be a nonempty closed convez
subset of H. Let a > 0 and let A,U and T be mappings of C into H such that U =I— A and
T =2a U+ (1 —2a)I. Then, the following are equivalent:

(a) A is an a-inverse-strongly monotone mapping, t.e.,
of|Az — Ay|® < (z -y, Az — Ay), Vz,y € C;
(b) U is a widely (1 — 2a)-strict pseudo-contraction, t.e.,
Uz —Uy|* < llz - yl* + (1 - 2)|(I = V)z — (I = U)yl*, Vz,y €C;
(c) U is a (1,0,2a — 1)-extended hybrid mapping, i.e.,
2a||lUz - Uyl* + (1 - 2a)|lz — Uy|®
< (2a - 1)Uz — yl* +2(1 ~ o)z - y||*
- Qa-1)|le - Uz|® ~ 2a -y - Uyl?’, Vz,y€C;

(d) T is a nonexpansive mapping.
In this case, Z(A) = F(U) = F(T), where Z(A) = {u € C: Au = 0}.

Let @ > 0 and let A: C — H be a-inverse-strongly monotone. Then for any § € R with
0<pB<2a, A is 8 _inverse-strongly monotone. Thus

2
T=I1-BA=I1-BI-U)=8U+@1-p)1
is nonexpansive. Using Proposition 3.2, we can get the following resuit:

Proposition 3.3. Let H be a Hilbert space and let C be a nonempty closed convex subset of
H. Let k be a real number with k < 1 and let A,U and T be mappings of C into H such that
U=I-AandT = (1-k)U+kI. Then, the following are equivalent:

(a) Aisa L;—"’-inverse-str‘ongly monotone mapping;

(b) U is a widely k-strict pseudo-contraction;
(c) U is a (1,0, —k)-extended hybrid mapping;
(d) T is a nonexpansive mapping.
In this case, Z(A) = F(U) = F(T).
Let k < 1 and let U be a widely k-strict pseudo-contraction. Then for any ¢ € R with
k<t<1,U is a widely t-strict pseudo-contraction. Thus
T=Q1-t)U+tl

is nonexpansive. We also have the following important result [31] for extended hybrid mappings
in a Hilbert space.
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Theorem 3.4 ([32]). Let H be a Hilbert space and let C be a nonempty closed convex subset
of H. Let a, 3,7 be real numbers and let U : C — H be an (a, 3,7)-extended hybrid mapping
with 1+~ > 0. Then, I — U is demiclosed, i.e., T, — z and &, — Uz, — 0 imply z € FU)..

Using Theorem 3.5, we have the following result for k-strict pseudo-contractions obtained
by Marino and Xu [15]; see also [1].

Corollary 3.5 (Marino and Xu [15]). Let H be a Hilbert space and let C be a nonempty
closed conver subset of H. Let k be a real number with 0 < k <1 and U : C — H be a
k-strict pseudo-contraction. Then, I —U is demiclosed, i.e., T, — z and z,, — Uz, — 0 imply

z € F(U). |

4 Weak Convergence Theorems

Motivated by Propositions 3.2 and 3.3, we are interested in weak and strong cbnvergence
theorems for extended hybrid mappings in a Hilbert space. In this section, we first state the
following weak convergence theorem of Baillon’s type [2] by using Lemma 2.2.

Theorem 4.1 ([8]). Let H be a Hilbert space and let C be a nonempty closed convex subset
of H. Let o, 8 and y be real numbers with0 < —y < 1. Let S : C — C be an (o, 83, v)-extend
hybrid mapping with F(S) # 0 and let P be the mertic projection of H onto F(S). Then, for
any z € C, »

S,z =

B~ I

S (@ +m)S ~Dkz
k=1

converges weakly to z € F(S), where z = limp—,0o PT"z and T = (14 v)S — 1.
The following weak convergence theorem was proved by Takahashi, Wong and Yao [31].

Theorem 4.2 ([31]). Let H be a Hilbert space, let C be a nonempty closed convexr subset of
H and let Pc be the metric projection of H onto C. Let o, 3 and v be real numbers. Let
U:C — H be an (o, B, v)-extended hybrid mapping such that 1+~ > 0 and F(U) # 0. Let
{an} be a sequence of real numbers such that 0 < a,, < 1 and liminf,_ o an(l —a,) > 0.
Suppose {z,} is the sequence generated by x, =z € C and

Tn+1 = Po{antn + (1 - an)(1 4 7)Uzn — y2,)}, neN.

Then, {x,} converges weakly to an element v of F(U), where v = lim,_,o Pruyzn and Ppgy,)
is the metric projection of H onto F(U). \

As direct consequences of Theorem 4.2, we obtain the following results.

Corollary 4.3. Let H be a Hilbert space, let C be a nonempty closed conver subset of H and
let Pc be the metric projection of H onto C. Let v be a real number with 1+~ > 0 and let
U:C — H bean (2, 1, v)-extended hybrid mapping, i.e.,
20 +)lUz - Uy|?* = (1 + 2v)llz - Uy|?
< 1+ 29)|Uz — yl* - 29)jz - y|?
— Yz~ Uz|? - ~lly - Uy|?
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1 and
zeC

for all z,y € C. Let {a,} be a sequence of real numbers such that 0 < on
liminfp oo 0n(1 — @n) > 0. Suppose that {x,} is the sequence generated by
and

A

Tpt1 = Pc{anzn +(1—a,)((1 +'7)Ux,; - 'ymn)}, n € N.

If F(U) # 0, then the sequence {z,} converges weakly to an element v of F(U), where v =
limy 00 Pru)Tn and Pr(yy is the metric projection of H onto F(U).
Corollary 4.4. Let H be a Hilbert space, let C be a nonempty closed convex subset of H and
let Pc be the metric projection of H onto C. Let v be a real number with 1+ > 0 and let
U:C — H bean (3, §, v)-extended hybrid mapping, i.e.,

3(1L+)lUz - Uyl* — (1 +3)lle — Uyll?

< (1+3)[Uz —yl* + (1 = 37))llz - yl®
- 29llz - Uz|* ~ 2vlly - Uyll?

for all z,y € C. Let {a,} be a sequence of real numbers such that 0 < a, < 1 and
liminf, o0 0n(1 — &) > 0. Suppose that {z,} is the sequence generated by x; = z € C

and
Tnt1 = Po(anzn + (1 — on) (1 +7)Uzp - vzn)), mn€EN.

If F(U) # 0, then the sequence {T,} converges weakly to an element v of F(U), where v =
limp—o0 Pru)®n and Pryy is the metric projection of H onto F(U )-

Taking v = ——% in Corollaries 4.3 and 4.4, we obtain two mappings such that
2|Uz — Uy|l? < 2|le — yl* + ll= — Uz|| + |ly — Uyll®
and
3|Uz — Uyl*+llz — Uyl® + lly - Uz|)®
< 8llz -yl + 2l|z ~ Uz|® + 2|ly — Uyll?

for all z,y € C, respectively. We can apply Corollaries 4.3 and 4.4 for such mappings and
then obtain weak convergence theorems in a Hilbert space.

5 Strong Convergence Theorems

Using an idea of mean convergence, we can prove the following strong convergence theorem
31] of Halpern’s type for extended hybrid mappings in a Hilbert space.
Yy P

Theorem 5.1 ([31]). Let C be a nonempty closed convez subset of a real Hilbert space H and
let a, B and k be real numbers. Let U : C — C be an (o, B, —k )-extended hybrid mapping such
that 0 < k < 1 and F(U) # 0 and let P be the metric projection of H onto F(U). Suppose
that {z,} is a sequence generated by x; =x € C, u € C and

Tnt1 = apu+ (1 ~ an)zn,

2= % i (1= KU + kI)™z,

m=1
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for alln =1,2,..., where 0 < o, < 1, 0, — 0 and Yoo = 0o. Then {zn} converges
strongly to Pu.
Using the hybrid method by Nakajo and Takahashi [17], we can prove the following strong

convergence theorem for extended hybrid non-self mappings in a Hilbert space. The method
of the proof is due to Nakajo and Takahashi [17] and Marino and Xu [15]. )

Theorem 5.2 ([31]). Let H be a Hilbert space and let C be a nonempty closed convez subset
of H. Let a, B and k be real numbers and let U : C — H be an (a, B, —k)-extended hybrid
mapping such that k < 1 and F(U) # 0. Let {z,} C C be a sequence generated byz1 =z €C,
and

Yn = nZn + (1 — an){(1 - k)Uz, + kz,}, ’

Cn=1{2€C: lyn — 2|? < llan — 2l — (1 - k)?an(1 — an)[lTn — Uz, %},
Qn={2€C:(z,— 2,2z —z,) >0},

Tpi = Pc,ng.xz, VneN,

where Pc,nq, is the metric projection of H onto C, N Q,, and {an} C (—00,1). Then, {z,}
converges strongly to zo = Rp()x, where Py is the metric projection of H onto FU).

Using Theorem 5.2, we can prove the following theorem obtained by Marino and Xu [15].

Theorem 5.3 (Marino and Xu [15]). Let H be a Hilbert space and let C be a nonempty closed
convez subset of H. Let k be a real number with 0 < k <1 and let U : C — C be a k-strict
pseudo contraction such that F(U) # 0. Let {z,} C C be a sequence generated by 7; = z € C
and .

Yn = /ann + (1 - ,Bn)any

Cn={2€C:|lyn —2|> < |lzn — 2>~ (Bn — k)1 - Br)llzn — Uzn|l?},

Qn={2€C:(zn — 2,2 —z,) >0},

Tp+1 = PC"nQnQI, Vn € N,

where Pc,nq, 1s the metric projection of H onto C,, N Q,, and {B8,} C (—00,1). Then, {z,}
converges strongly to 20 = Rp )z, where Pp(vy is the metric projection of H onto F(U).
Proof. We first know that a'(l,O,—k)-extended hybrid mapping with 0 < k < 1 is a k-strict
pseudo contraction. We also have that for any n € N, '

Yn = BnTn + (1 - ﬂn)an

_ Bk B —k ’
=37 ZTn + (1 1% QA —-k) Uz, + kx,}.
Putting a,, = 51"_}", we have from 1 > (3, that 1 — k > 8, — k and hence 1 > ﬂl"_‘k’“ = ap.

Furthermore, we have that for any n € N and z € C,
flyn — Z”2 < llzn — 2”2 = (Bn — k)1~ Bp)|lzn — U‘En”2
= lyn — 2[” < [lzn — 2)I> - (1 —k)an (1 —k)(1 - an)”xn — Uz,
= |lyn — 3”2 < [lzn - 2”2 -(1- k)2an(1 = an)||Tn — anuz-
From Theorem 5.2, we have the desired result. ' O

‘Next, we prove a strong convergence theorem by the shrinking projection method [29] for -
extended hybrid non-self mappings in a Hilbert space.
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Theorem 5.4 ([31]). Let H be a Hilbert space and let C be a nonempty closed convex subset
of H. Let a, B and k be real numbers and let U : C — H be an (a, 8, —k)-extended hybrid
mapping such that k < 1 and F(U) # 0. Let C1 = C and let {zs} C C be a sequence generated
byxy =z €C and :

Yn = ann + (1 — an){(1 — k)Uzn + kzn},
Crny1={2€Cy: lyn — 2“2 <llzn — 2“2 —(1- k)zan(l —an)||[Uzn — wn"2}>
Tntl = Pcn+1$, Vn € N,

where Pc,,, is the metric projection of H onto Cry1, and {an} C (—00,1). Then, {z,}
converges strongly to zo = Pr)x, where Ppu) 18 the metric projection of H onto F(U).
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