<table>
<thead>
<tr>
<th>Title</th>
<th>WEAK AND STRONG CONVERGENCE THEOREMS FOR UNIFORMLY ASYMPTOTICALLY REGULAR NONEXPANSIVE SEMIGROUPS (Nonlinear Analysis and Convex Analysis)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Author(s)</td>
<td>ATSUSHIBA, SACHIKO</td>
</tr>
<tr>
<td>Citation</td>
<td>数理解析研究所講究録 (2013), 1821: 115-122</td>
</tr>
<tr>
<td>Issue Date</td>
<td>2013-01</td>
</tr>
<tr>
<td>URL</td>
<td>http://hdl.handle.net/2433/194678</td>
</tr>
<tr>
<td>Right</td>
<td></td>
</tr>
<tr>
<td>Type</td>
<td>Departmental Bulletin Paper</td>
</tr>
<tr>
<td>Textversion</td>
<td>publisher</td>
</tr>
</tbody>
</table>

Kyoto University
1. Introduction

Let H be a real Hilbert space with inner product $\langle \cdot, \cdot \rangle$ and norm $\| \cdot \|$ and let C be a nonempty closed convex subset of H. Then, a mapping $T : C \to C$ is called nonexpansive if $\|Tx - Ty\| \leq \|x - y\|$ for all $x, y \in C$. We denote by $F(T)$ the set of fixed points of T. We know iteration procedures for finding a fixed point of a mapping T: Let x be an element of C and for each t with $0 < t < 1$, let x_t be a unique element of C satisfying $x_t = tx + (1 - t)Tx_t$. In 1967, Browder [7] proved the following strong convergence theorem.

Theorem 1.1. Let H be a Hilbert space, let C be a nonempty bounded closed convex subset of H and let T be a nonexpansive mapping of C into itself. Let x be an element of C and for each t with $0 < t < 1$, let x_t be a unique element of C satisfying

$$x_t = tx + (1 - t)Tx_t.$$

Then, $\{x_t\}$ converges strongly to the element of $F(T)$ nearest to x as $t \downarrow 0$.

This research was supported by Grant-in-Aid for Scientific Research (C), Japan Society for the Promotion of Science.

2010 Mathematics Subject Classification. Primary 47H09, 47H10.

Key words and phrases. Fixed point, iteration, nonexpansive mapping, nonexpansive semigroup, strong convergence, weak convergence.
On the other hand, Xu and Ori [25] studied the following implicit iterative process for finite nonexpansive mappings T_1, T_2, \ldots, T_r in a Hilbert space: $x_0 = x \in C$ and

$$x_n = \alpha_n + x_{n-1} + (1 - \alpha_n)T_nx_n$$

for every $n = 1, 2, \ldots$, where α_n is a sequence in $(0, 1)$ and $T_n = T_{n+r}$. And they proved the weak convergence of the iterative process defined by (1) in a Hilbert space. Motivated by [25], author and Takahashi [6] introduced an implicit iterative process for a nonexpansive semigroup and then prove a weak convergence theorem for the nonexpansive semigroup by using the idea of mean (see also [2, 3, 4]).

In this paper, we study the implicit iterations (1) for one-parameter nonexpansive semigroups and prove a weak convergence theorem for a uniformly asymptotically regular one-parameter nonexpansive semigroup in a Hilbert space. We also prove a weak convergence theorem for a uniformly asymptotically regular nonexpansive semigroup (see also [22, 23]). Further, we study Browder’s type iterations for nonexpansive semigroups. Then, we prove strong convergence theorems for uniformly asymptotically regular nonexpansive semigroups in Hilbert spaces by using the idea of [1, 7, 9, 22, 23]. And we give a strong convergence theorem for the nonexpansive semigroup by the viscosity approximation method.

2. Preliminaries and notations

Throughout this paper, we denote by \mathbb{N} and \mathbb{R} the set of all positive integers and the set of all real numbers, respectively. We also denote by \mathbb{R}^+ the set of all nonnegative real numbers. Let H be a real Hilbert space with inner product $\langle \cdot, \cdot \rangle$ and norm $\| \cdot \|$ and let C be a nonempty closed convex subset of H. Then, for every point $x \in H$, there exists a unique nearest point in C, denoted by P_Cx, such that

$$\|x - P_Cx\| \leq \|x - y\|$$

for all $y \in C$. P_C is called the metric projection of H onto C. It is characterized by

$$\langle P_Cx - y, x - P_Cx \rangle \geq 0$$

for all $y \in C$. See [23] for more details. The following result is well-known; see also [23].

Lemma 2.1. Let C be a nonempty bounded closed convex subset of a Hilbert space H and let T be a nonexpansive mapping of C into itself. Then, $F(T) \neq \emptyset$.

We write $x_n \to x$ (or $\lim_{n \to \infty} x_n = x$) to indicate that the sequence $\{x_n\}$ of vectors in H converges strongly to x. We also write $x_n \rightharpoonup x$ (or $\text{w-}\lim_{n \to \infty} x_n = x$) to indicate that
the sequence \(\{x_n\} \) of vectors in \(H \) converges weakly to \(x \). In a Hilbert space, it is well known that \(x_n \to x \) and \(\|x_n\| \to \|x\| \) imply \(x_n \to x \).

Let \(S \) be a semitopological semigroup. A semitopological semigroup \(S \) is called right (resp. left) reversible if any two closed left (resp. right) ideals of \(S \) have nonvoid intersection. If \(S \) is right reversible, \((S, \leq) \) is a directed system when the binary relation "\(\leq \)" on \(S \) is defined by \(s \leq t \) if and only if \(\{s\} \cup \overline{S_s} \supset \{t\} \cup \overline{S+t} \), \(s, t \in S \), where \(\overline{A} \) is the closure of \(A \). A commutative semigroup \(S \) is a directed system when the binary relation is defined by \(s \leq t \) if and only if \(\{s\} \cup (S + s) \supset \{t\} \cup (S + t) \).

Let \(C \) be a nonempty closed convex subset of a Hilbert space \(H \). A family \(S = \{T(t) : t \in \mathbb{R}^+\} \) of mappings of \(C \) into itself is said to be a nonexpansive semigroup on \(C \) if it satisfies the following conditions:

(i) For each \(t \in S \), \(T(t) \) is nonexpansive;
(ii) \(T(ts) = T(t)T(s) \) for each \(t, s \in S \).

We denote by \(F(S) \) the set of common fixed points of \(S \), i.e., \(F(S) = \bigcap_{t \in S} F(T(t)) \).

We say that a Banach space \(E \) satisfies Opial’s condition [12] if for each sequence \(\{x_n\} \) in \(E \) which converges weakly to \(x \),

\[
\lim_{n \to \infty} \|x_n - x\| < \lim_{n \to \infty} \|x_n - y\| \tag{2}
\]

for each \(y \in E \) with \(y \neq x \). In a reflexive Banach space, this condition is equivalent to the analogous condition for a bounded net which has been introduced in [10]. It is well known that this condition is equivalent to the analogous condition of \(\lim \) (see [5]). It is well known that Hilbert spaces satisfy Opial’s condition (see [12, 23]).

Proposition 2.2 ([12]). Let \(H \) be a Hilbert space. Let \(\{x_n\} \) be a sequence in \(H \) converging weakly to \(x \in H \). Then,

\[
\lim_{n \to \infty} \|x_n - x\| < \lim_{n \to \infty} \|x_n - y\| \tag{3}
\]

for each \(y \in E \) with \(y \neq x \).

3. **Convergence Theorems for One-Parameter Nonexpansive Semigroups**

In this section, we prove a weak convergence theorem for an asymptotically regular one-parameter nonexpansive semigroup by using the idea of [1, 9, 22, 23, 25]. Let \(C \) be a nonempty closed convex subset of a Hilbert space \(H \). A family \(S = \{T(t) : t \in \mathbb{R}^+\} \) of mappings of \(C \) into itself satisfying the following conditions is said to be one-parameter nonexpansive semigroup on \(C \):

(i) for each \(t \in \mathbb{R}^+ \), \(T(t) \) is nonexpansive;
(ii) \(T(0) = I \);
(iii) $T(t + s) = T(t)T(s)$ for every $t, s \in \mathbb{R}^+$;
(iv) for each $x \in C$, $t \mapsto T(t)x$ is continuous.

We say that one-parameter nonexpansive semigroup $S = \{T(t) : t \in \mathbb{R}^+\}$ is asymptotically regular if

$$\lim_{s \to \infty} \|T(h + s)x - T(s)x\| = 0$$

for all $h \in \mathbb{R}^+$ and $x \in C$ (see also [22, 23]). The following lemma proved by Acedo and Suzuki ([1]).

Lemma 3.1 ([1]). Let H be a Hilbert space and let C be a nonempty closed convex subset of H. Let $S = \{T(s) : s \in \mathbb{R}^+\}$ be a one-parameter nonexpansive semigroup on C. Assume that $S = \{T(s) : s \in \mathbb{R}^+\}$ is asymptotically regular, that is,

$$\lim_{t \to \infty} \|T(h + t)x - T(t)x\| = 0$$

for all $h \in \mathbb{R}^+$ and $x \in C$. Then,

$$F(T(h)) = F(S)$$

for each $h \in \mathbb{R}^+$.

We say that one-parameter nonexpansive semigroup $S = \{T(t) : t \in \mathbb{R}^+\}$ is uniformly asymptotically regular if for every $h \in \mathbb{R}^+$ and for every bounded subset K of C,

$$\lim \sup_{s \in \mathbb{R}^+, x \in K} \|T(h + s)x - T(s)x\| = 0.$$

holds.

We prove a weak convergence theorem for a uniformly asymptotically regular one-parameter nonexpansive semigroup (see [1, 9]).

Theorem 3.2. Let H be a Hilbert space and let C be a nonempty closed convex subset of H. Let $S = \{T(s) : s \in \mathbb{R}^+\}$ be a uniformly asymptotically regular one-parametr nonexpansive semigroup on C such that $F(S) \neq \emptyset$. Let $\{m_n\}$ be a sequence in \mathbb{N} such that $m_n \to \infty$ or $m_n \to N$ for some $N \in \mathbb{N}$. Let $\{\alpha_n\}$ be a sequence in \mathbb{R} such that $0 < \alpha_n < 1$, and $\alpha_n \to 0$. Let $u \in C$ and let $\{x_n\}$ be the sequence defined by

$$x_n = \alpha_n x_{n-1} + (1 - \alpha_n)(T(m_n))x_n$$

for each $n \in \mathbb{N}$. Then, $\{x_n\}$ converges weakly to a common fixed point of S.
4. **Weak convergence theorems for nonexpansive semigroups**

In this section, we prove a weak convergence theorem for an asymptotically regular nonexpansive semigroup by using the idea of [1, 9, 22, 23, 25]. Let C be a nonempty closed convex subset of a Hilbert space H, let S be a commutative semigroup and let $S = \{T(t) : t \in S\}$ be a nonexpansive semigroup on C. We say that nonexpansive semigroup $S = \{T(t) : t \in S\}$ is asymptotically regular if

$$\lim_{s \in S} \|T(h)T(s)x - T(s)x\| = 0$$

for all $h \in S$ and $x \in C$ (see also [22, 23]). The following lemma plays an important role in the proof of main theorem (see [1]).

Lemma 4.1. Let H be a Hilbert space, let C be a nonempty closed convex subset of H, and let S be a commutative semigroup. Let $S = \{T(t) : t \in S\}$ be a nonexpansive semigroup on C such that $F(S) \neq \emptyset$. Assume that $S = \{T(t) : t \in S\}$ is asymptotically regular, that is,

$$\lim_{t \in S} \|T(h)T(t)x - T(t)x\| = 0$$

for all $h \in S$ and $x \in C$. Then,

$$F(T(h)) = F(S)$$

for each $h \in S$.

We say that nonexpansive semigroup $S = \{T(t) : t \in S\}$ is uniformly asymptotically regular if for every $h \in S$ and for every bounded subset K of C,

$$\lim_{s \in S} \sup_{x \in K} \|T(h)T(s)x - T(s)x\| = 0$$

holds.

We prove a weak convergence theorem for a uniformly asymptotically regular nonexpansive semigroup (see also [1, 9]).

Theorem 4.2. Let H be a Hilbert space, let C be a nonempty closed convex subset of H, and let S be a commutative semigroup. Let $S = \{T(t) : t \in S\}$ be a uniformly asymptotically regular nonexpansive semigroup on C such that $F(S) \neq \emptyset$. Let $\{m_n\}$ be a sequence in \mathbb{N} such that $m_n \to \infty$ or $m_n \to N$ for some $N \in \mathbb{N}$. Let $\{\alpha_n\}$ be a sequence in \mathbb{R} such that $0 < \alpha_n < 1$, and $\alpha_n \to 0$. Let $u \in C$, let $t \in S$, and let $\{x_n\}$ be the sequence defined by

$$x_n = \alpha_n x_{n-1} + (1 - \alpha_n)(T(t))^{m_n}x_n$$

for each $n \in \mathbb{N}$. Then, $\{x_n\}$ converges weakly to a common fixed point of S.

5. STRONG CONVERGENCE THEOREMS

Motivated by [1, 7, 9], we study Browder's type strong convergence theorems for uniformly asymptotically regular nonexpansive semigroups (see also [22, 23]).

Theorem 5.1. Let H be a Hilbert space, let C be a nonempty closed convex subset of H, and let S be a commutative semigroup. Let $S = \{T(t) : t \in S\}$ be a uniformly asymptotically regular nonexpansive semigroup on C such that $F(S) \neq \emptyset$. Let $\{m_n\}$ be a sequence in \mathbb{N} such that $m_n \to \infty$ or $m_n \to N$ for some $N \in \mathbb{N}$. Let $\{\alpha_n\}$ be a sequence in \mathbb{R} such that $0 < \alpha_n < 1$, and $\alpha_n \to 0$. Let $u \in C$, let $t \in S$, and let $\{x_n\}$ be the sequence defined by

$$x_n = \alpha_n u + (1 - \alpha_n)(T(t))^{m_n}x_n$$

for each $n \in \mathbb{N}$. Then, $\{x_n\}$ converges strongly to Pu, where P is the metric projection from C onto $F(S)$.

We know that $f : C \to C$ is said to be a contraction on C if there exists $r \in (0,1)$ such that

$$\|f(x) - f(y)\| \leq r\|x - y\|$$

for each $x, y \in C$. Using [21] and Theorem 5.1, we obtain the following strong convergence theorem by the viscosity approximation methods (see also [11]).

Theorem 5.2. Let C be a nonempty closed convex subset of a Hilbert space H, let S be a commutative semigroup and let $S = \{T(t) : T \in S\}$ be a uniformly asymptotically regular nonexpansive semigroup on C such that $F(S) \neq \emptyset$. Let f be a contraction on C. Let $\{m_n\}$ be a sequence in \mathbb{N} such that $m_n \to \infty$ or $m_n \to N$ for some $N \in \mathbb{N}$. Let $\{\alpha_n\}$ be a sequence in \mathbb{R} such that $0 < \alpha_n < 1$, and $\alpha_n \to 0$. Let $u \in C$, let $t \in S$, and let $\{x_n\}$ be the sequence defined by

$$x_n = \alpha_n f(x_n) + (1 - \alpha_n)(T(t))^{m_n}x_n$$

for each $n \in \mathbb{N}$. Then, $\{x_n\}$ converges strongly to Pu, where P is the metric projection from C onto $F(S)$.

REFERENCES

(S. Atsushiba) DEPARTMENT OF MATHEMATICS AND PHYSICS, INTERDISCIPLINARY SCIENCES COURSE, FACULTY OF EDUCATION AND HUMAN SCIENCES, UNIVERSITY OF YAMANASHI, 4-4-37, TAKEDA, KOFU, YAMANASHI 400-8510, JAPAN

E-mail address: asachiko@yamanashi.ac.jp