<table>
<thead>
<tr>
<th>Title</th>
<th>Existence of positive solution for the Cauchy problem for an ordinary differential equation (Nonlinear Analysis and Convex Analysis)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Author(s)</td>
<td>Kawasaki, Toshiharu; Toyoda, Masashi</td>
</tr>
<tr>
<td>Citation</td>
<td>数理解析研究所講究録 (2013), 1821: 26-32</td>
</tr>
<tr>
<td>Issue Date</td>
<td>2013-01</td>
</tr>
<tr>
<td>URL</td>
<td>http://hdl.handle.net/2433/194688</td>
</tr>
<tr>
<td>Type</td>
<td>Departmental Bulletin Paper</td>
</tr>
<tr>
<td>Textversion</td>
<td>publisher Kyoto University</td>
</tr>
</tbody>
</table>
Existence of positive solution for the Cauchy problem for an ordinary differential equation

New Star University, School of Science and Technology (Toshiharu Kawasaki, Graduate School of Science and Technology, Niigata University)
Niigata University (Masashi Toyoda, Faculty of Engineering, Tamagawa University)

Abstract

In this paper we consider the existence of positive solution for the Cauchy problem of the second order differential equation $u''(t) = f(t, u(t))$.

1 Introduction

The following ordinary differential equations arise in many different areas of applied mathematics and physics; see [2, 4]. In [3] Knežević-Miljanović considered the Cauchy problem

$$\begin{align*}
\begin{cases}
 u''(t) = P(t)u(t)^\sigma, & t \in (0, 1], \\
u(0) = 0, & u'(0) = \lambda,
\end{cases}
\end{align*}$$

(1)

where $a, \sigma, \lambda \in \mathbb{R}$ with $\sigma < 0$ and $\lambda > 0$, and P is a continuous mapping of $[0, 1]$ such that $\int_0^1 |P(t)| t^{a+\sigma} dt < \infty$. On the other hand in [1] Erbe and Wang considered the equation

$$u''(t) = f(t, u(t)), \quad t \in (0, 1].$$

(2)

In this paper we consider the second order Cauchy problem

$$\begin{align*}
\begin{cases}
 u''(t) = f(t, u(t)), & \text{for almost every } t \in [0, 1], \\
u(0) = 0, & u'(0) = \lambda,
\end{cases}
\end{align*}$$

(3)

where f is a mapping from $[0, 1] \times (0, \infty)$ into \mathbb{R} satisfying the Carathéodory condition and $\lambda \in \mathbb{R}$ with $\lambda > 0$.
2 Main results

Theorem 2.1. Suppose that a mapping f from $[0,1] \times (0, \infty)$ into \mathbb{R} satisfies the following.

(a) The mapping f satisfies the Carathéodory condition, that is, the mapping $t \mapsto f(t,u)$ is measurable for any $u \in (0, \infty)$ and the mapping $u \mapsto f(t,u)$ is continuous for almost every $t \in [0,1]$.

(b) $|f(t,u_1)| \geq |f(t,u_2)|$ for almost every $t \in [0,1]$ and for any $u_1, u_2 \in (0, \infty)$ with $u_1 \leq u_2$.

(c) There exists $\alpha \in \mathbb{R}$ with $0 < \alpha < \lambda$ such that
\[\int_0^1 |f(t,\alpha t)|dt < \infty. \]

(d) There exists $\beta \in \mathbb{R}$ with $\beta > 0$ such that
\[\left| \frac{\partial f}{\partial u}(t,u) \right| \leq \frac{\beta |f(t,u)|}{u} \]
for almost every $t \in [0,1]$ and for any $u \in (0, \infty)$.

Then there exist $h \in \mathbb{R}$ with $0 < h \leq 1$ such that the Cauchy problem (3) has a unique solution in X, where X is a subset
\[X = \left\{ u \left| \begin{array}{l} u \in C[0,h], u(0) = 0, u'(0) = \lambda \\ \text{and } \alpha t \leq u(t) \text{ for any } t \in [0,h] \end{array} \right. \right\} \]
of $C[0,h]$, which is the class of continuous mappings from $[0,h]$ into \mathbb{R}.

Proof. It is noted that $C[0,h]$ is a Banach space by the maximum norm
\[\|u\| = \max\{|u(t)| \mid t \in [0,h]\}. \]
Instead of the Cauchy problem (3) we consider the integral equation
\[u(t) = \lambda t + \int_0^t (t-s)f(s,u(s))ds. \]
By the condition (c) there exists $h \in \mathbb{R}$ with $0 < h \leq 1$ such that
\[\int_0^h |f(t,\alpha t)|dt < \min \left\{ \lambda - \alpha, \frac{\alpha}{\beta} \right\}. \]
Let A be an operator from X into $C[0,h]$ defined by
\[Au(t) = \lambda t + \int_0^t (t-s)f(s,u(s))ds. \]
Since a mapping $t \mapsto \lambda t$ belongs to X, $X \neq \emptyset$. Moreover $A(X) \subset X$. Indeed by the condition (a) $Au \in C[0, h]$, $Au(0) = 0$,

$$(Au)'(0) = \left[\lambda + \int_0^t f(s, u(s))ds \right]_{t=0} = \lambda$$

and by the condition (b)

$$Au(t) = \lambda t + \int_0^t (t-s)f(s, u(s))ds$$

$$\geq \lambda t - t \int_0^h |f(s, u(s))|ds$$

$$\geq \lambda t - t \int_0^h |f(s, \alpha s)|ds$$

$$\geq \alpha t$$

for any $t \in [0, h]$. We will find a fixed point of A. Let φ be an operator from X into $C[0, h]$ defined by

$$\varphi[u](t) = \begin{cases} \frac{u(t)}{\lambda}, & \text{if } t \in (0, h], \\ \lambda, & \text{if } t = 0, \end{cases}$$

and

$$\varphi[X] = \{ \varphi[u] \mid u \in X \}$$

$$= \{ v \mid v \in C[0, h], v(0) = \lambda \text{ and } \alpha \leq v(t) \text{ for any } t \in [0, h] \}.$$

Then $\varphi[X]$ is a closed subset of $C[0, h]$ and hence it is a complete metric space. Let Φ be an operator from $\varphi[X]$ into $\varphi[X]$ defined by

$$\Phi \varphi[u] = \varphi[Au].$$

By the mean value theorem for any $u_1, u_2 \in X$ there exists a mapping ξ such that

$$\frac{f(t, u_1(t)) - f(t, u_2(t))}{u_1(t) - u_2(t)} = \frac{\partial f}{\partial u}(t, \xi(t))$$

and

$$\min\{u_1(t), u_2(t)\} \leq \xi(t) \leq \max\{u_1(t), u_2(t)\}$$

for any $t \in [0, h]$. By the conditions (b) and (d)

$$|f(t, u_1(t)) - f(t, u_2(t))| = \left| \frac{\partial f}{\partial u}(t, \xi(t))(u_1(t) - u_2(t)) \right|$$

$$\leq \left| \frac{\beta f(t, \xi(t))}{\xi(t)} \right| |u_1(t) - u_2(t)|$$

$$\leq \frac{\beta f(t, \alpha t)}{\alpha t} |u_1(t) - u_2(t)|$$
for almost every $t \in [0, h]$. Therefore
\[
|\Phi \varphi[u_1](t) - \Phi \varphi[u_2](t)| = \left| \frac{1}{t} \int_0^t (t-s)(f(s, u_1(s)) - f(s, u_2(s)))ds \right|
\leq \int_0^h \left| \frac{\beta f(s, \alpha s)}{\alpha s} \right| |u_1(s) - u_2(s)|ds
\leq \frac{\beta}{\alpha} \int_0^h |f(s, \alpha s)|ds \|\varphi[u_1] - \varphi[u_2]\|
\]
for any $t \in [0, h]$. Therefore
\[
\|\Phi \varphi[u_1] - \Phi \varphi[u_2]\| \leq \frac{\beta}{\alpha} \int_0^h |f(s, \alpha s)|ds \|\varphi[u_1] - \varphi[u_2]\|.
\]
By the Banach fixed point theorem there exists a unique mapping $\varphi[u] \in \varphi[X]$ such that $\Phi \varphi[u] = \varphi[u]$. Then $Au = u$. \hfill \square

Theorem 2.2. Suppose that a mapping f from $[0, 1] \times (0, \infty)$ into \mathbb{R} satisfies the following.

(a) The mapping f satisfies the Carathéodory condition, that is, the mapping $t \mapsto f(t, u)$ is measurable for any $u \in (0, \infty)$ and the mapping $u \mapsto f(t, u)$ is continuous for almost every $t \in [0, 1]$.

(e) $|f(t, u_1)| \leq |f(t, u_2)|$ for almost every $t \in [0, 1]$ and for any $u_1, u_2 \in (0, \infty)$ with $u_1 \leq u_2$.

(f) There exists $\alpha \in \mathbb{R}$ with $0 < \alpha < \lambda$ such that
\[
\int_0^1 |f(t, (2\lambda - \alpha)t)|dt < \infty.
\]

(d) There exists $\beta \in \mathbb{R}$ with $\beta > 0$ such that
\[
\left| \frac{\partial f}{\partial u}(t, u) \right| \leq \frac{\beta |f(t, u)|}{u}
\]
for almost every $t \in [0, 1]$ and for any $u \in (0, \infty)$.

Then there exist $h \in \mathbb{R}$ with $0 < h \leq 1$ such that the Cauchy problem (3) has a unique solution in X, where X is a subset
\[
X = \left\{ u \in C[0, h], u(0) = 0, u'(0) = \lambda \right. \quad \text{and} \left. \alpha t \leq u(t) \leq (2\lambda - \alpha)t \text{ for any } t \in [0, h] \right\}
\]
of $C[0, h]$.

Proof. By the condition (f) there exists $h \in \mathbb{R}$ with $0 < h \leq 1$ such that
\[
\int_0^h |f(t, (2\lambda - \alpha)t)| dt < \min \left\{ \lambda - \alpha, \frac{\alpha}{\beta} \right\}
\]
and let A be an operator from X into $C[0, h]$ defined by
\[
Au(t) = \lambda t + \int_0^t (t - s)f(s, u(s))ds.
\]
Since a mapping $t \mapsto \lambda t$ belongs to X, $X \neq \emptyset$. Moreover $A(X) \subset X$. Indeed by the condition (a) $Au \in C[0, h]$, $Au(0) = 0$,
\[
(Au)'(0) = \left[\lambda + \int_0^t f(s, u(s))ds \right]_{t=0} = \lambda
\]
and by the condition (e)
\[
Au(t) = \lambda t + \int_0^t (t - s)f(s, u(s))ds \\
\geq \lambda t - t \int_0^h |f(s, u(s))| ds \\
\geq \lambda t - t \int_0^h |f(s, (2\lambda - \alpha)s)| ds \\
\geq \alpha t
\]
and
\[
Au(t) = \lambda t + \int_0^t (t - s)f(s, u(s))ds \\
\leq \lambda t + t \int_0^h |f(s, u(s))| ds \\
\leq \lambda t + t \int_0^h |f(s, (2\lambda - \alpha)s)| ds \\
\leq (2\lambda - \alpha)t
\]
for any $t \in [0, h]$. We will find a fixed point of A. Let φ be an operator from X into $C[0, h]$ defined by
\[
\varphi[u](t) = \begin{cases} \frac{u(t)}{t}, & t \in (0, h], \\ \lambda, & t = 0, \end{cases}
\]
and
\[
\varphi[X] = \{ \varphi[u] \mid u \in X \} = \{ v \mid v \in C[0, h], v(0) = \lambda \text{ and } \alpha \leq v(t) \leq (2\lambda - \alpha) \text{ for any } t \in [0, h] \}.\]
Then $\varphi[X]$ is a closed subset of $C[0,h]$ and hence it is a complete metric space. Let Φ be an operator from $\varphi[X]$ into $\varphi[X]$ defined by

$$\Phi \varphi[u] = \varphi[Au].$$

Then we can show just like Theorem 2.1 that by the Banach fixed point theorem there exists a unique mapping $\varphi[u] \in \varphi[X]$ such that $\Phi \varphi[u] = \varphi[u]$ and hence $Au = u$. \qed

3 Examples

In this section we give some examples to illustrate the results above.

Example 3.1. In [3] the Cauchy problem (1) is considered. Since $f(t,u) = P(t)t^{a}u^{\sigma}$, $a, \sigma, \lambda \in R$ with $\sigma < 0$ and $\lambda > 0$ and P is a continuous mapping such that $\int_{0}^{1}|P(t)|t^{a+\sigma}dt < \infty$, the conditions (a), (b), (c) and (d) are satisfied. Indeed (a), (b) and (c) are clear and since

$$\left| \frac{\partial f}{\partial u}(t,u) \right| = |P(t)t^{a}\sigma u^{\sigma-1}| = \frac{\sigma|f(t,u)|}{u},$$

(d) holds. By Theorem 2.1 the Cauchy problem (1) has a unique solution in

$$X = \left\{ u \left| \begin{array}{l} u \in C[0,h], u(0) = 0, u'(0) = \lambda \\ \text{and } \alpha t \leq u(t) \text{ for any } t \in [0,h] \end{array} \right. \right\}. $$

Example 3.2. We consider the Cauchy problem

$$\begin{cases} u''(t) = a(t) + u(t)^{\sigma}, & t \in [0,1], \\ u(0) = 0, & u'(0) = \lambda, \end{cases}$$

(4)

where a is positive and integrable, $\sigma \in R$ with $\sigma > 0$ and $\lambda \in R$ with $\lambda > 0$. Since $f(t,u) = a(t) + u^{\sigma}$, the conditions (a), (e), (f) and (d) are satisfied. Indeed (a), (e) and (f) are clear and since

$$\left| \frac{\partial f}{\partial u}(t,u) \right| = \sigma u^{\sigma-1} \leq \max\{\sigma,1\}(a(t) + u^{\sigma}) \leq \frac{\max\{\sigma,1\}|f(t,u)|}{u},$$

(d) holds. By Theorem 2.2 the Cauchy problem (4) has a unique solution in

$$X = \left\{ u \left| \begin{array}{l} u \in C[0,h], u(0) = 0, u'(0) = \lambda \\ \text{and } \alpha t \leq u(t) \leq (2\lambda - \alpha)t \text{ for any } t \in [0,h] \end{array} \right. \right\}. $$

Example 3.3. We consider the Cauchy problem

$$\begin{cases} u''(t) = a(t)u(t)^{\sigma}, & t \in [0,1], \\ u(0) = 0, & u'(0) = \lambda, \end{cases} $$

(5)
where \(\int_0^1 |a(t)| t^\sigma dt < \infty \) and \(\sigma, \lambda \in \mathbb{R} \) with \(\lambda > 0 \). Since \(f(t, u) = a(t)u^\sigma \), the conditions (a), (b), (c) and (d) are satisfied if \(\sigma < 0 \) and the conditions (a), (e), (f) and (d) are satisfied if \(\sigma \geq 0 \). Indeed (a) is clear, (b) and (c) are clear if \(\sigma < 0 \), (e) and (f) are clear if \(\sigma \geq 0 \), and since

\[
\left| \frac{\partial f}{\partial u}(t, u) \right| = \begin{cases} |a(t)\sigma u^{\sigma-1}|, & \text{if } \sigma \neq 0, \\ 0, & \text{if } \sigma = 0, \end{cases} = \frac{|\sigma||f(t, u)|}{u},
\]

(d) holds. By Theorem 2.1 if \(\sigma < 0 \) and by Theorem 2.2 if \(\sigma > 0 \) the Cauchy problem (5) has a unique solution in

\[
X = \left\{ u \left| u \in C[0, h], u(0) = 0, u'(0) = \lambda \right. \right. \\
\left. \left. \text{and } \alpha t \leq u(t) \text{ for any } t \in [0, h] \right\}
\]

and

\[
X = \left\{ u \left| u \in C[0, h], u(0) = 0, u'(0) = \lambda \right. \right. \\
\left. \left. \text{and } \alpha t \leq u(t) \leq (2\lambda - \alpha)t \text{ for any } t \in [0, h] \right\}
\],

respectively.

Acknowledgement. The authors would like to thank Professor Naoki Shioji for their valuable suggestions and comments.

References

