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Navier-Stokes Equations with Random Forcing

Nobuo Yoshida!
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0 Introduction
We would like to analyze the turbulence of a viscous fluid in R? (physically, d = 3). Let

u = (wit,e))i, €R? (0.1)
0 = I(tz) €R (0.2)
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be the velocity and the pressure of the fluid at time ¢ > 0 at the position z € R?. For fluids like
air and water, it is accepted in hydrodynamics that they satisfy the Navier-Stokes equation:

divu = 0, (0.3)
Owu+ (u-V)u=—-VII+vAu+ F, (0.4)

where u - V = E;l=1 u;0;, v > 0 is a constant, called kinematic viscosity, and F = Fy(x),
(t,z) € [0,00) x T¢ is a given external force. Physical interpretation of (0.3) is the mass
conservation, while (0.4) is the motion equation.

On the other hand, since the turbulence is a random phenomenon, we need to bring a certain
random factor into the model. To do so, we consider a colored noise , which is “time derivative”
of a certain function space valued Brownian motion W = W;(z) and take Fy(z) = 0;W;(z) in
(0.4). This may look too much of an idealization of the real turbulence. However, this way of
modeling is common in literatures [F108] and references therein.

Based mainly on [F108], we explain the construction of the weak solution to (0.3)-(0.4)
globally in time in the case Fy(x) = 0;Wi(z).

1 Physical derivation of the Navier-Stokes equation

We review the heuristic argument to “derive” (0.3)—(0.4) from the physical assumptions. Let
ei, .., eq be the canonical basis of R%:

e = (1,0, ...,0), €y = (0, 1, 0, ...,0), vy B4 = (0, ...,0, 1). (1.1)

Also, it is convenient to introduce the following small box and plaquettes:
5 81" :
0= —53] O,={z€0;z;=0}, i=1,.,d, (1.2)

where the side-length & > 0 of the box O and the plaquette O; is supposed to be very small,
eventually tending to zero. Let

u= (ut, 7)), p=p(t,z) 20 (1.3)

be the velocity and the density of the fluid at time-space (t, z).

1.1 The mass conservation

We first derive (0.3) for a constant density fluid p = const. To do so, however, we do not
assume that p = const. for a moment and consider the mass m(z + O) of the fluid on the cube
z + O centered at z (cf. (1.2)):

m(x+D)=/

p = p(x)8 (1.4)
z+0

Here and often in what follows, we omit the time ¢ in the notation. The time derivative of the
mass is given as follows:

d
om(z+0) = ij(x), (1.5)
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where

my(x) = (pu;) (x - geﬂ) 541 - (ou;) (w + _g_ej) i1

(. 7 N v

inward ﬂux‘(;f the mass outerward ﬂu§ of the mass
through the face (z — $e;) + 0;  through the face (z + $e;) + O,

By Taylor expanding (pu;) (z ¥ Ze;) above, we see that

mi@) = ((w)a) = Biou)(0)5 + 0@ ) 6+

- ((Puj)(a:) + Bj(puj)(x)g. + 0(52)) 51
= —0;(puy)()8? + O(6™*).

By this and (1.5), we get:

5d8tm z+0) = Za pu;)(z) + O(8) (1.6)
Note that

p(z) = hm 6—1dm(a: +0).

If we believe that the above limit commutes with 0O, we see from (1.6) that

d
Bip+ > 0,(pu;)(@) = . (17)
j=1
In particular, for a constant density flow: p = const, (1.7) is reduced to (0.3). Note also that
the interchange of the order of lims\ o and §; assumed above is perfectly correct in this case.

1.2 Force exerted on fluids: the stress tensor

The notion of stress can be thought of as actions, like pushing, pulling and rubbing a door.
Then, the action has obviously different effects depending on the side of the door which the
action is made on. Therefore, we distinguish the side of the plaqutte O;: let

Of = “the z; > 0-side” of 0; = {x € O ; z; = 0}

T

O, = the “opposite side” of O;.

Imagine that the plaquette O; is put in a stream with the velocity u. Then forces are exerted
on plane O;, e.g., pulling, pushing, or rubbing. With this in mind, we introduce:

TiD (z) = (Ti? (@)?:1

the force exerted on z + O by the stream (1.8)
= —the force exerted on z + O; by the stream, (1.9)
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where the second equality is, of course, the principle of action-reaction. We then define the
stress tensor T(z) = (1;5(x))¢;=1 by:
.1 g
Tij(a'?) = ¢1$1\I,I(1) (sd—_l-Tij (.’E) (110)
7:5(x) is the j-th component of the force exerted on x by the stream from the side z;+. We
will assume that

e 7 is of the form:
7(z) = -O(z)] + ¥ (z), (1.11)

where II(z) = II(t, ) is the the pressure (a real function), I is the identity matrix, and
7F(x) is the the friction term of 7(x).

e T is symmetric, i.e., T;; = Tj;, or equivalently, 7'}; = ’r}';. .

The symmetry assumption above is based on the conservation of the angular momentum. A
typical example of the friction term is provided by the following Stokes law:

Til;' = p (Oiu; + Ojus), (1.12)
where the constant u > 0 is the coefficient of friction, and the tensor (a‘—“-"—?ﬁl) is called the
symmetrized velocity gradient tensor.

Let

P =) = (ff (:t:));.i=1 the force exerted on the outer boundary of z + O by the stream.

Here, the outer boundary is the union of
é N 0 _ .
(z + Ee,-) +0f, (z- §e,~) +0; i=1,.d.
Then, it turn out to be reasonable to define the force exerted to a point z by the stream by:
_ d T 1 a
f(.'E) - (f](x))1=1 ) where f](x) - ‘lsl\I‘I(l) S'Ef] (.’E) (113)

It may appear at first sight that “9d§4=1” is more appropriate in place of §¢ above. However,
we will see later on that 6% is indeed the right normalization. We will prove that

d
fi= Z Qiij. (1.14)

i=1
Before we prove (1.14), we make some remarks. By (1.11), (1.14) reads:

d

d
f=-VI+ (Z 8¢Ti§> . (1.15)
i=1

Jj=1



Moreover, if we suppose that the fluid is of constant density and the Stokes law (1.12) holds,
then, since divu = 0,

d d
Z aiTz’I; =4u Z (0:03u; + 3¢8jui) = plAu;.
=1 =1
Thus, (1.15) becomes:
flz) = =VII + pAu. (1.16)

We turn to the proof of (1.14). We have , by (1.8)—(1.10) that

: ) : 5
fJD('T) - Z 7'5 <ZI3 + 561) +Z —7’5 (113 - 561)
————

i=1 i=1

the force exerted on the forc% exerted on
(.'13 + %61) + D;-F (I - 5e¢) + D'L_
J .
= Z (Tij (33 -+ g&) — Tij (Q’J — '(2'S'BZ>> (Sd_l. (117)

3=1

On the other hand, by Taylor expanding 7;; (x + %ei) above, we have that

) )
Tij (CE + 561) — Tij (.’II - 56¢)
5 2 5 2
= ’Tij(.’lﬁ) + 81’7'”(23)5 + O((S ) - Tij(x) - 8,7'@_7(93)5 + 0(6 )
Plugging this into (1.17), we have
7 (z) = 0;m;(2)8¢ + O(541)

J

Thus, if we believe that the approximation 2 is good enough, we have (1.14).

1.3 The motion equation

To derive the motion equation (0.4), we introduce the stream line z(t) € R?, t > 0 define by:

z(t) = z(0) + /Otu(s,x(s))ds.

The curve z(-) is the integral curve of the velocity u, hence, roughly speaking, it is a position
of a particle moving on the stream. The classical Newton’s motion equation is:

mass X acceleration = force,

which, in our case, takes the following form:

plalt)) ot a(0)) = [(a(t), (1.18)



where the force f is given by (1.15). We have by the chain rule that

dz;(t)

d
%u(t,x(t)) = Btu(t,x(t))+zaju(t,x(t))

CZ] (tlz(t))

= (Ou+ (u-V)u)(t,z(2)).
By the above identity, together with (1.15) and (1.18), we get
d d
p(Bu+ (u- V)u) = -VII + (Z 8,-7'5-) . (1.19)
i=1 j=1

If we suppose that the fluid is of constant density and the Stokes law (1.12) holds, then, by
(1.16), we have that

1
Bu+ (u- V)u=—-VII + LA, (1.20)
p p
where the constant v % % is the kinematic viscosity.

2 The mathematical framework in the case of non-random forcing term
From here on, we assume that the container of the fluid is the d-dimensional torus:
T = (R/Z)? = [0, 1)

This is a part of idealization. The unknown functions of the Navier-Stokes equation (NS) are
» velocity of fluid u = w(z) € RY, (¢,z) € [0,00) x T? with suitable regularity, say C? in (t, z).

» pressure I1 = I,(z) € R, (t,z) € [0,00) x T¢ with suitable regularity, say C* in (t,z).
Given an initial velocity ug : T¢ = R¢,

divu =0, (2.1)
Su+ (u-V)u=—-VII+vAu+F, (2.2)

where v > 0 is a constant, called kinematic viscosity and F = Fy(z), (¢t,z) € [0,00) x T? is a
given external force. Physical interpretation of (2.1) and (2.2) were explained in section 1.
2.1 A weak formulation

Let V be the set of R%valued divergence free, mean-zero trigonometric polynomials, i.e., the
set of v : T¢ — R? of the following form:

v(z) = Z T.(z), z €T, (2.3)
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where ©,(z) = exp(2riz - z) and the coefficients 7, € R? satisfy

U, = 0 for z=0 and except for finitely many z # 0, (2.4)
v, = v, forall z, (2.5)
z:U, = 0 forall 2. (2.6)

Note that (2.6) implies that:
divv =0 forallveV.

We equip the torus T¢ with the Lebesgue measure and denote by ||f||, the usual L,-norm of
J € Ly(T%. For a € R and v € V we define

(1-A)% = Z(l + 472| 22?5 4,

2€Z4
We then introduce:
Va,o = the completion of V with respect to the norm || - |20, @ €R, (2.7)
where
lvll3.6 = / (1= A) 0 =Y (14 4n°|2 )5 (2.8)
Td

26724
Here are some basic properties of the space V, 4:

e Any v € V3, is identified with a summation of the form (2.3) with (2.4) replaced by the
condition that the last summation in (2.8) converges.

e V5 _, is identified with the set of continuous linear functional on V, 4.

Voutp > Voo, for o €Rand 8> 0. (2.9)
cf. Definition 2.1.1 and Exercise 2.1.1 below.

Definition 2.1.1 Let Ey, E; be normed vector spaces.

» Ey — E; means that Fy is continuously imbeded into Ey, i.e., Ey C E; with the inclusion
map being continuous.

» Ey —<— Ey means that Ey is compactly imbeded into F1,i.e., By C E; with the inclusion
map being a compact operator.

Exercise 2.1.1 Recall that any v € V,, is identified with a summation of the form (2.3) with
(2.4) replaced by the condition that the last summation in (2.8) converges. Let o € R, 8> 0
and v € V3 q44. Prove that

v — Lv|l2e < (1 +47°n2)~2||v| 2445, where Iv = Z U,

lz|<n
Then, conclude (2.9) from this.
Exercise 2.1.2 Prove the following interpolation inequality:
Ivll260+0-8)8 < IlI2llv]l55 for @, 8 € R and 6 € [0, 1], (2.10)



For v,w : T¢ - R¢, with w supposed to be differentiable (for a moment), we define a vector
field:

d
(v-Vw= Zviaiw, (2.11)
which is bilinear in (v,w). Later on, we will generalize the definition of the above vector field
(cf. (2.18)).
Lemma 2.1.2 Forv € V, w,p € C}(T¢ = R?),

(¢, (v Vw) =—(w, (v V)p), (2.12)
In particular, {w,(v- V)w) =0.
Proof: Since divv = 0, we have that

1) Z 9; (QO,UJ Z J‘Pz)v] + @i Z 0; V5«

J
0

Therefore,

LHS (2.12) = Z( <pi,v,-3,-w,~ > = - Z( 0; ((P;’UJ) wz)

3,j
Y —Z( djpi)vj,w; ) = RHS (2.12).
O

Suppose that u, IT, F' in (NS) ((2.1)—(2.2)) have suitable regularity. Then, for a test function
pev,

*) at(cp,u)=—(<p,(ro)u)+u(<p,Au)—(<p,VH)+(<p,F).
1 2 (3
(212) . _ . . _
(1) =" =(u,(u- V)p), (2)=(Ap,u), (3)=—(divy,II)=0.

Thus, *) becomes '
O u) = (u,(u-V)p)+v{Ap,u)+ (o, F).

By integration, we arrive at:

(so,uz>=(w,%>+/0t(<us,(us-V)<P>+V(Aso,ua>+(90,Fs>)d8- (2.13)

This is a standard weak formulation of (NS) ((2.1)—(2.2)).



2.2 Bounds on the non-linear term

Lemma 2.2.1 Suppose oy, s, a3 > 0 with at least two of them being non-zero, and that
01 + oz + a3 > %, Then, there exzists C € (0,00) such that:

{w, (v V)p)| < Cllvllz,e lwll2,ell®ll2mas (2.14)

for v,w, p € C®(T¢ — RY).

Proof: Since the norm || - ||z, is increasing in «, it is enough to prove (2.16) with o; replaced
by o; = a{%. Therefore, we may assume without loss of generality that

(a1, a,03) €[0,%)® and a1 + o+ a3 = &

Let ¢; € [2,00), i = 1,2,3 be defined by - = 1— %> (. Since

> lwivydyeil < fulol| Vel
i’j

we have

1
q1

1
92
(w, (- V)p) < vllg[wlleVelle-
We then use the following Sobolev imbedding theorem (e.g.[Ta96, p.4, (2.11)]):

1
a3

def

Vaa = Lg(T* = RY), if 1S > 0. (2.15)

O

MI*—‘
alR

We have the following variant of Lemma 2.2.1, which is applicable even when as = a3 = 0:

Lemma 2.2.2 Let oy, a3, a3 > 0 be such that oy + g > O and oy + ag +az > > £, Then, there
exists C € (0,00) such that:

(w, (v V)p)| < Cllollzi+as \/Ilvliz,al [V]l2, 1wll2,0: 1wz, (2.16)

for v,w, o € C®(T? — RY).
Proof: Note that

(2.10)
1) “u”z,ﬂﬁzl’il < V ||U“2,a1||U”2,a2 for u € Voo, N Vo,

On the other hand, by (2.14) with (%322 @tez ) in place of (a1, 2, @3), we have

(2.14) 1)
w, - V)p)| < Cllvll avsen [l exsea [6llaaas < RES (2.16).

Remark: (2.16) gives a generalization of [Te79, p.292, Lemma 3.4]

Let
oy, 00 >0, oy +ay>0, and a3 def. (g—al—a2)+. (2.17)

9
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Then, a;’s (i = 1,2, 3) satisfy conditions for Lemma 2.2.2. Let also v, w € Va,4,va,- In view of
(2.12), we think of (v - V)w as the following linear functional on V:

def.
P> (90»(v'v)w> = —(w,(v~V)<p),
which, by (2.16), extends continuously on V5114,. This way, we regard

(U ° V)w 6 ‘/27—1—(13, (2 18)
with [|(v - V)wllz,-1-as < Cv/ 0]z [10]l20z [wll2.es [0l2.00-

Let us consider the case v = w and a; > ay (Although v and w are identical, it is convenient
to take a; > ap, as we will see later on). Note that:

Av € Vao,-2 With [|Av[|ga,-2 < [Vl
By this and (2.18), we have that:
def
b(v? = vAv — (v- V)V € Vo, _g(a1,02)» (2.19)
with ”b(v)“Z—ﬁ(al,Om) < V“U”2,01 + C“”“zal”‘)”zaz,

where
ﬁ(al, ag) = (1 + (‘2—1 -1 — (12)+) \% (2 - al). (220)

With this notation, (2.13) takes the form:

t

((p,ut)=(ga,uo)+/0(<p,b(us))ds+/0(cp,Fs)ds.

ie.,
t t
U = Up +/ b(us)ds+/ Fyds (2.21)
0 0
as linear functionals on V.

Lemma 2.2.3 Let a; > 0 and oy > ag > 0 for which B(ay, ) is defined by (2.20). Then,
there exists C € (0,00) such that:

T T
/0 1S g oyt < / (v + Cllvnllzea)llvrll Lo, dt (2.22)

for any measurable v : [0,T] — Voo, and q € [1,00). Moreover, for a > 0, the following map
18 continuous:

v. = / b(vs)ds; La([0,T] = Va,u) — C([0,T] = V2,—g(aa))
0

Proof: (2.22) is a direct consequence of (2.19). For the rest of this proof, we write 8 = B(a, a)
for simplicity. Let v,w € Ly([0,T] — Va4). Then,

/0 (b(vs) — blawy))ds

1) sup

0<t<T

T
< [ 1) = bwl g ds
2,—-f8 0

10
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On the other hand, for ¢ € V5 _g,

( 2 b(vs) - b(ws) >

v (Apv—w) (v (00 D)) + (w0 (- Vo),

@ 3)
< “<P“2,2—aHU3 - wsu2,a < ”‘P“Q,B”vs - w3”2,a:
B < Kvs—ws, (vs- V)@ )|+ [(ws, ((vs — ws) - V) )]

< Cllvs = wsllaallvsll2ell@llzs + Cllvs = wsllzallwsllzallellzs,

which implies that:
16(vs) = b(ws)ll5, 5 < (v + Cllvsllza + Cllwsll2,a)lvs — wsl2a-

Plugging this into 1), we arrive at:

/ (B(vs) — b(w,))ds
2,-8

< va( / (1 + Pl + CPlus B, )1/2(/ s wsllzads) ,

which implies the desired continuity. ]

sup
0<t<T

Remark: By (2.22) for ¢ =1 and (ay, a2) = (1,1), we see that

v E Lg([O,T] — %’1) = b(’U) € Ll([O,T] — %,-—B(l,l)) (223)
On the other hand, by (2.22) for ¢ = 2 and (a1, a2) = (1,0), we see that
v € Ly([0,T] = V2,1) N Loo([0, T] = Va0) == b(v.) € Lo([0,T] = Vo, p010)).  (2.24)

Note also that:

if d =2,

ifd>3 (2:25)

5(1,1>={§_1 Lesy ﬁ(1,0)={

N,

3 The stochastic Navier-Stokes equation

The construction of a weak solution to the Navier-Stokes equation (2.1)—(2.2) goes back to
classical results by J. Leray [Le33, Le34a, Le34b] and E. Hopf [Ho50]. Here, following [F108],
we consider the case in which the external force is given by a colored noise.

3.1 Introduction of the noise

Throughout this subsection, let H be a separable Hilbert space, and I : H — H be a bounded
self-adjoint, non-negative definite operator. We suppose in addition that I' is of trace class,
that is, the following summation converges for any CONS {p}n>1 of H:

t(T) € S pn, Tpn ). (3.1)

n>1

The number defined above is called the trace of I" and is independent of the choice of the
CONS [RS72, p.206, Theorem VI.18].

11
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Definition 3.1.1 Let (2, F, P) be a probability space.

a) Ar.v. B = (B;)i»o with values in C([0,00) — R?) is called a standard d-dimensional
Brownian motion (abbreviated by BM? below) if, for each § € R? and 0 < s < ¢,

E [exp (i - (B; — B,)) |GF] = exp (—t ; S.|0|2) , as. (3.2)

where G2 denotes the o-field generated by (By)u<s. (cf. the complement at the end of
this subsection for a definition of the conditional expectation.)

b) Arv. W = (W,)»0 with values in C([0,00) — H) is called a H-valued Brownian
motion with the covariance operator I' (abbreviated by BM(H,T") below) if, for each
pe Hand 0 <s<t,

E [exp (i{ @, W, = W, )) [G)Y] = exp (—%S—(w, T'p )) , a.s. (3.3)

where GV denotes the o-field generated by (W,,)u<s.

Remark: The distributional time derivative 9;W; of a BM(H,I") W;is sometimes called the
colored noise.

Exercise 3.1.1 Let W; be as in Definition 3.1.1 b) and Hy C H be a d-dimensional subspace
of H such that 'Hy C Hy with the orthogonal projection my. Then, conclude from (3.3) that

(moWt)e>0 and (0 B:)s>o have the same law,

where (B;)s>0 is BM® on H, (identified with R?) and o : Hy — Hy is a square root of I'|g,. In
particular, for each ¢ € H, the process (¢, W; ), t > 0 is of the following form:

(o, W) =V (o, Tp)B;, 120,

where B. is a BM!.

Complement: Let X € L, (P) and G be a sub o-field of F. We define the conditional ezpectation
E[X|G] of X, given G. An implicit definition is given by declaring that Y = E[X|G] is the unique
G-measurable r.v. in L!(P) such that:

1) E[Y1¢] = E[X1g) forany G €G.

Another definition is given by explicitly writing down E[X|G] as a certain Radon Nikodym derivative,
which proves that the r.v. Y as referred to above does exist. To do so, we introduce the following
signed measure:

def

EX(F) € E[X1F), Fe F.

Since EX|g is absolutely continuous with respect to P|g, we can define:

dEX|g

where the RHS stands for the Radon Nikodym derivative. Then, it is clear that Y = E[X|G] satisfies
1).

12
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Let us relate the above abstract definition with the elementary conditional expectation of X €
L1(P), given an event A € F with 0 < P(4) < 1:
E [X 1 A]
P(4) -

E[X]4] =

For the o-field G = {4, A<, 0,0}, it is clear that
E[X|G] = E[X|A]14 + E[X|A%|1 4.

3.2 The existence theorem for the stochastic Navier-Stokes equation

We recall (2.19)—(2.21).

Theorem 3.2.1 Let _

> I': Voo — Voo be a self-adjoint, non-negative definite operator of trace class, AT =TA and;
» 1o be a Borel probability measure on Vao such that mg = S lv]3duo(v) < .

Then, there exist a process (X,Y) = ((X¢,Y:))i>0 defined on a probability space (Q2, F, P),
where

o X = (Xi)i>0 takes values in

Lajoc([0,00) = V2,1) N Loo,1oc([0, 00) — V2,0) N C([0,00) = Vo,—p1,1)), (3.4)
with B(1,1) =1 for d <4 and B(1,1) = — 1 for d > 5. cf. (2.25);
oY = (Y.)i>0 ts a BM(Va,T") (¢f. Definition 8.1.1).

The couple (X,Y) is a weak solution to the Navier-Stokes equation with the initial law po in
the sense that:

P(Xo € -) = po; (3.5)
Yir. =Y and {{p, X, ) ; s <t,0 € V} are independent for any t > 0; (3.6)

(<p,Xt)=(<p,X0)+/t(g0,b(Xs))ds+(go,Yt>, forallp eV andt>0. (3.7)
0

Moreover, the following a priori bounds hold true: for any T > 0,

T
BIxalz 4w [ x| < mo+umr (38)
0
Blsuplxl] < a+1)0 <o (39)
t<T

with C € (0,00) depending only on tr(T), and mq.

Remark: 1) The integral fot (p,b(X;) )ds in (3.7) is well defined because of (2.23) (or (2.24))
and (3.4). '

2) The bound (3.8) is sometimes referred to as the energy balance inequality. The interpretation
is that

Y| X7ll3 = the kinetic energy,
T
v /0 | X¢||3,dt = the energy dissipated by the friction,

str(I)T = the energy injected from outside (by the colored noise).
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Although the validity of the equality is not known in general, the equality does hold at the
level of finite dimensional approximation (see (5.10) below).

Theorem 3.2.2 For d = 2, the weak solution in Theorem 3.2.1 is pathwise unique in the
sense: if (X,Y) and (X,Y) are two solutions on a common probability space (Q, F, P) with a
common BM(V3,T) Y such that Xo = X a.s., then,

P(X; = X, forallt >0)=1.

4 The It6 theory for beginners

In this section, we will explain elements in Itd’s stochastic calculus without going much into
proofs. In what follows, (2, F, P) is a probability space and B = (B);>o denotes a BM".

4.1 Stochastic integrals with respect to the Brownian motion

We fix some notation and terminology:

» A family X = (X;)s>o of r.v.’s indexed by ¢ > 0 (most commonly interpreted as “time”) is
called a process. A process X is said ti be continuous if t — X; is continuous a.s.

» Let (F;)i>0 be a family of sub o-fields which are increasing in ¢ > 0, as such a filtration. We
assume that it is right-continuous in the sense that:

() Fere=Fi, t20. (4.1)

e>0

» In general, a process X = (X;):>o is said to be (F;)-adapted, if X, is F;-measurable for all
t>0.
» We assume that B = (B;);>o is a BM" with respect to (F;), that is, B is (F;)-adapted and

E[exp(if - (B; — B,)) | Fs] = exp (—t ; s|9|2) , a.s. (4.2)
for each # € R™ and 0 < s < t. We also assume that
NBCF, t>0, (4.3)

where AVB is the null-set with respect to B define as follows:

GB = (B, s<t), 0<t<oo, GZ=0(UpeGP),
NB = {NcQ, ;3NegGE NcN, P(N)=0},

An example of such (F;):>0 is given by the argumented filtration defined by:
Fi=0(GEUNP). 0<t <. (4.4)

See [KS91,pp.90-91] for the proof the properties (4.1)—(4.2) of the argmented filtration. On
the other hand, G2 is not right-continuous [KS91,p.89, Problem 7.1].
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Definition 4.1.1 (Stopping times) A r.v. 7:Q — [0,00] is called a stopping time if
{r<t}eF forallt>0. (4.5)
Example 4.1.2 Let I' C R" and define
7(T) =inf{t >0; B; €T}

It is known that 7(T') is a stopping time if I' C R" is a Borel set. This is not difficult to prove
if T is either open or closed. Here, in the proof, one sees how the right continuity of F; is used.
Consider the following condition? for a r.v. 7: Q — [0, 00];

{r<t}eFforalt>0. (4.6)
Then, this is equivalent to (4.5). In fact, we have
1) {r <t} =Up{r<t-1},
2) {7 >t} =Nz Unom {7 2t — 1}

We see from 1) that (4.5) implies (4.6), while the converse can be seen from 2) and the right
continuity of F;.

The observation above can be used to prove that 7(I") defined in Example 4.1.2 is a stopping
time for an open set I'. We prove that 7(I") satisfies (4.6) as follows:

{rM <t}y= J{B.eT}= |J {B.eT}er,

s€(0,2) s€QN(0,t)

where, to get the second equality, we have used that I" is open and that s — By is continuous.

Exercise 4.1.1 Prove that 7(I") defined in Example 4.1.2 is a stopping time if I" is closed.
Hint: There is a sequence of open sets G; D G2 D ... such that I' = Np>1 G,

We now define some classes of integrands for the stochastic integral.

Definition 4.1.3 (Integrands for stochastic integral) We define a function space ® as
the totality of ¢ : [0,00) x Q = R ((s,w) — @s(w)) such that:

©|pgxa is B([0,t]) ® F; measurable for all ¢ > 0.
We also define

0, = {p€®; E [;|ps|ds < oo for all t > 0}, (4.7)
oY = {ped; jg lps|?ds < oo, P-a.s. for all t > 0}. (4.8)

Clearly, ®; C ®b* C @.

2A r.v. 7 with this condition is called an optional time. We see from the argument of this remark that a
stopping time is always an optional time, and that the converse is true when the filtration is right continuous.
3This property is called progressive measurability

15



Example 4.1.4 Let g : R” — R be Borel measurable and
@s(w) = g(Bs(w)).
Then,
e If g is bounded, then ¢ € ®,.

16

o If supy |g| < oo for any bounded set K C R” (in particular, if g € C(R")), then ¢ € ®F°.

Theorem 4.1.5 For p € &%, there are continuous processes (called the stochastic integral

with respect to the Brownian motion)

t
(/ <p3dB§) i=1,.,r
0 t>0

with the following properties;

a) If
Ps(w) = €a(w)1(a,p(8)

where 0 < a < b and &, is a bounded, F,-measurable r.v., then
[ 0B = ) (Bl - B
b) Fort >0, a,8 €R and p,¢ € k<
/Ot(a% + Bys)dB; = & /ot @.dB: + ,B/Ot YedB',

c) If o, € &3 andt > 0, then,

t t i
E[( / <psdB§) ( / zpsng‘)] = 6;E / Psthsds < 00,
0 0 0
t
E [/ ‘Pude
0

(4.9)

(4.10)

(4.11)

(4.12)

(4.13)

]-‘s} = / 0udB: whenever 0 <s<t. (4.14)
0

We now indicate how the construction of the integrals (4.9) goes (See [KS91, Section 3.2] for

details).

Step 1: Let ®, be the set of linear combinations of r.v.’s of the form (4.10). We proceed as

follows:

1) For ¢ € &y, define the integral (4.9) by (4.11) and (4.12).
2) Properties (4.13)—(4.14) hold for ¢, 9 € @, (not difficult to see).

Step 2: We define the integral (4.9) for ¢ € ®;. To do so, we note that ®, is a Fréchet space

generated by the semi-norms:

T 1/2
(E/ |<ps|2ds) , T=1,2,..
0

16
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Definition 4.1.6 A process M = (M;);>o is said to be a martingale, if:

(Ft)-adapted, My € L, (P) for all t > 0;
E[M;|Fs] = M, whenever 0 < s < t. (4.15)

A martingale M is said to be square integrable, if E[MZ] < oo for all T > 0.

Let
M = the set of continuous, square-integrable martingales.

Then, M, is a a Fréchet space generated by the semi-norms:

1/2
E[supMsz] , T=1,2,..

s<T

(cf. (4.16) below). We define:

t
H@ﬁi/¢ﬂ&’¢€®mt20
0

We make the following observations:

1) From what we saw in Step 1.2,
T
EW@Q:E/|M%&M@EM%%Wm¢0
0

2) ® is dense in @, (cf. [IW89, p.46, Lemma 1.1]). Thus, by 1) above, I extends uniquely
to a uniformly continuous mapping I : ®; — Mpy. This justifies the definition of the
integral (4.9) for ¢ € ®,:

t
/wﬂﬁﬂw,ua
0
Properties (4.12)—(4.14) for ¢ € ®, is then automatic from the construction.

Step 3: We define the integral (4.9) for ¢ € ®¥°. For ¢ € ®¥*, we consider

t
7™ = pAinf {t >0; / lps|?ds > n}
0
(W) = s(w)grem(s)-
Then, 7™ 7 0o and (™ € ®,. We then define the integrals (4.9) by

t ¢
/ sdB: = / O™MdBE. fort < 7.
0 0

This finishes the construction.

Finally, we mention the following useful inequality:
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Theorem 4.1.7 (Doob’s L?*-maximal inequality) For a square-integrable martingale M,

E [sup Mf] < 4E[M3). (4.16)

0<s<t

In particular, if p € ®,, then

2

E | sup

0<s<t

t
< 4E / s |2ds. (4.17)
0

/ SoudBf;
0

For a proof, see e.g.[IW89, p.33, Theorem 6.10], [KS91, p.13, 3.8 Theorem].

4.2 Ité’s formula for semi-martingales

Definition 4.2.1 Let (F;) be a right-continuous filtration and B = (By);»o be a BM" with
respect to (F) (cf. (4.1)—(4.3)).

» An Ré-valued process X = (X;);>0 is said to be a semi-martingale* if it is of the following
form:

t 11
X: = Xo +/ 0dB, +/ bsds, (4.18)
0 0
or more precisely,

r t t
X;‘.—.X:',+Z/O a;i-"‘ng'+/0 b, i=1,..d
j=1

where
e X, is a Fp-measurable r.v.;
e 0 = (oY) is a matrix with 0¥/ € ®¥° (cf. (4.8));
e b= (bt);>0 is an (F;)-adapted process such that ¢ — b; is continuous.

» For the semi-martingale (4.18) and a process (¢:);>0, we define:

t Tt ¢
/ . dX: = Z/ 0,09dB? +/ pobids, i=1,..d, (4.19)
0 pall) 0

if each integral on the RHS is well defined, i.e.,
.. t .
0o € ¥ and / lpsbslds < o0 as. 4,5 =1,...,d.
0

The integral (4.19) is called the stochastic integral with respect to the semi-martingale (4.18).
» For a semi-martingale (4.18), we define the bracket processes by:

T t
(X4 X7 ), = Z/ ofolkds, i,j=1,...,d. (4.20)
k=10

4Here, we only consider a limited class of what is usually referred to as the “semi-martingale” cf. {IW89,
p.64, Definition 4.1]
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Theorem 4.2.2 (It6’s formula for semi-martingales) Suppose that X is a semi-martingale
gwen by (4.18) and f € C*(R%). Then, P-a.s.,

f(Xe) — f(Xo)
i iy LY? 0Ht>0. (421
= ;/o aif(Xs)dX3+§Z/0 0;0; f(Xs)d( X", Y7 )s, forallt > 0. (4.21)

ig=1
The proof goes along the following line (e.g.[IW89, pp.67-71], [KS91, pp.150-153)). Let d =
r = 1 forsimplicity, and 0 =ty < t; < ... < t, = t be the division for which 6, & maxi<k<n (tk—
tk—1) = 0 (n = oc). For the indices to be read easily, we write X; = Xt,. Then, by Taylor
expanding f around X;_;, we have:

~

F(Xx) = f(Xic1) = F(Ke1) Ak + 3" (Kiy + 6,0) A2

where Ay = )?k — )?k_l and 6 € (0,1). This implies that:
FX) = f(Xo) =D F' (K1) Dk +5 D f(Xior + 6D6) AL

= . ¥
=:I, =:Jp

7

By verifying
t ¢
lim I, =/ f(Xs)dX, and lim J, =/ F(X)d{ X, X )s,
n—oe 0 n—oo 0

in an appropriate sense, one obtains (4.21) for d = r = 1. The extension to general d,r is
straightforward.

Example 4.2.3 For the semi-martingale (4.18), we have:

i t
1X:2 = | Xo|? = 2M, + / (2X, - bs + |os|?) ds, with M, = Z /0 Xio¥dBI.  (4.22)
0 1<i<d

155%r

Here, and in what follows, |o|2 = 3 1<ica (6¥)2. Suppose in particular that
1<j<r

E(|Xol ] <mo< o0, X0, <C, |ou2?<C, (4.23)

where mo and C' is a non-random constant. Then, for any ¢ > 0,

B[X[] = E[|X0|2]+E/0t (2X, - by + |0|2) ds, (4.24)
E[Slgt)!XsIQ] < BlxP+ o, (4.25)

where the constant C’ depends only on my and C.
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Proof: Note that .
('9,-[:1:[2 = 2(1?1, 8i8j|x|2 = 25,‘,3'.

Thus, we see from It6’s formula that:

>

d t d t
|Xt|2—lX0|2=Z/ 2Xg-dxg+§z:/ 26, ;d( X*, X7 )5,
j=1"0 0

,j=1

N e

=:I =:J

with

t
I = 2M,+2 / X, - b(X,)ds,
0

t d
. (4.20) :
J = E (X X)) = /0 E (ogk)zds.

1<i<d ik=1

=|o,[2

This proves (4.22). We next assume (4.23) to show (4.24)(4.25). This will be straightforward,
once we know that M. is a square-integrable martingale. However, we have to settle this
technical point first. We start by showing that:

1) E[|X:|] < mo + 3Ct,
Since X. is continuous and | Xp| < 0o a.s., we have that:
en & inf{t; |X,| > n} N oo, asn N oo.

Note also that:

tAen t
- 5 1 __1j - § 1 17 j
Mt/\en = XBO's]ng = / 1{ssen}XsUsde§
1<i<d Y0 1<i<d VO
1<j<r 1<5<r

and that 1{,<.,} Xi0% € ®,. These and (4.14) imply that E[Mipe,] = 0. Combining this with:

, (422), (423

)
2) |1X,| | Xol? + 2M, + 3Ct,

we have that:
E[Xf,\en] < mgy + 3Ct.

Thus, 1) follows from Fatou’s lemma. 1) and (4.23) imply that:
Xiod € @,

Then, E[M,] = 0 by (4.14). Thus, (4.24) follows from (4.22) taking expectation. We next
show that

3) E [sup |M3|2] < Cy(t+t3).

8<t

To do so, we start by noting that:
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4) 225 (20 X508)" =10 X,* < losl?| X%
Then,

2
(4.16) t o
E[sup(MSF] < 4B[MP) P4y E / (Zx;ay> ds
. 0
7

s<t i

4) i 1), (4.23)
2 4B / 0PI X,2ds < 4C(mot + 328).
0
we then get (4.22) as follows:

2) 1/2 3)
E [sup |XS‘2} <my+2FE [sup lMslz] +3Ct < my + Cat.

s<t s<t
O

Example 4.2.4 (Ité’s formula for the Brownian motion) Suppose that f € C%(R").
Then, P-a.s.,

F(B) = £(0) = / 5 f(B,)dBi + / Af(By)ds, forallt>0.  (4.26)

1<ir

Proof: A special case of (4.21) with d = r, 0¥ = §%, and b= 0. ]

4.3 Stochastic differential equations: an existence and uniqueness theorem

Let 0 € C(R* - RY@R"), b € C(R? - R? and ¢ be an Ri-valued r.v. We consider a
stochastic differential equation (SDE):

=£+ / .)dB, + / b(X, (4.27)

or more precisely,

X! = 51+2/ BJ+/ b(X,), i=1,..,d.

We define:
8B = G(€,B,, s<t), 0<t< oo, G =0 (utzogf”3> ,
N¢B = (INcCQ,;3NegGi® NcN, P(N)=0},
and

FEP =g (gf*B uNf»B) L 0<t< oo (4.28)

We now state the following existence and uniqueness theorem:
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Theorem 4.3.1 Referring to (4.27), suppose that
mo & B[€P°] < oo
and that there exist K, L, € (0,00), n =1,2,... such that:

lo(z) — o) + |b(z) = b@)P < Lalz—yl* iflel, |yl <m, (4.29)
lo(z)? +2z-b(z) < K(+|z*), zeR% (4.30)

Then, there exists a unique process X. such that:
a) X, is Fo'®-measurable for allt > 0 (cf. (4.28));
b) the SDE (4.27) is satisfied.

Proof: By [IW89, p.178, Theorem 3.1], the condition (4.29) ensures existence of the unique
solution admitting the possibility of explosion at finite time:

li/r‘n | X¢] = oo, for some T < co.
t A/

However, such possibility is excluded by the condition (4.30) [IW89, p.177, Theorem 24].

0
5 The Galerkin approximation
5.1 The approximating SDE
For each z € Z#\{0}, let {e.;}5=; C R be an orthonormal basis of the hyperplane:
{zxeR%; z-2 =0}
and let: Y )
N _ 2e,jcos(2mz-x), j=1,..,d—1, d
Ves(2) = { V2e,sin2rz-z), j=-1,..,—~(d—-1) ’ zeT (5.1)
Then,
{.;; z€Z7\{0}, j ==1,..,£(d— 1)}
is an orthonormal basis of V2. We also introduce:
V., = the linear span of {1, ; (2,5) with z € [-n,n]%}, (5.2)
P, = the orthogonal projection : L(T¢ — R%) — V. '

Using the orthonormal basis (5.1), we identify V,, with RY, N =dimV,. Let ypand I' : Voo —
Va0 be as in Theorem 3.2.1. Let also { be a r.v. such that P(§ € ) = wo. Finally, let W;
be a BM(V,,T') defined on a probability space (R, F, P). Then, P,W; is identified with an
N-dimensional Brownian motion with covariance matrix I'P,,. Then, we consider the following
approximation of (3.7):

t
X = XP+ / Pob(XP)ds + PaWe 2> 0, (5.3)
0
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where X' = P,€. Let:

X0 = (45, X7 ) and W = (4,5, Wi) (5.4)
be the (z, j)-coordinates of X and W;. Then, (5.3) reads:
t .
XPAI = Xmad / b1 (X™)ds + Wi, (5.5)
0
where .
b (v) = (v, (v- V), ) + (v, A%, ), v €E V. (5.6)
Let v,; > 0 be such that 'Y, ; = v, ¢, ; and I, = {(2,7) ; |2| <n, 7,; > 0}. Then,
2,5
Vz.4

are independent BM'’s and

PaWe= D Wilhuy= 3 vHgBi'vus

(z.9)€l, (z,5)Eln
Thus, the SDE (5.3) can be thought of as a special case of (4.27), where
o(-) is a constant diagonal matrix with |o(+)|? = tr(T'P,). (5.7)
Also by (5.6),
the drift P,b(v) is a polynomial in v € V, of degree two. (5.8)

Moreover, for v € V,,
(0,Pab(v) ) = (v, vAv + (v V)v ) 2212 40y Av) = —u|| V|2 < 0. (5.9)

We see from (5.7)—(5.9) above that the SDE (5.3) satisfies the assumptions (4.29)—(4.30) of
Theorem 4.3.1, and hence admits a unique solution. The solution is then a semi-martingale of
the form (4.18) for which the assumption (4.23) of Example 4.2.3 is valid. Therefore, for any
T>0,

T
E[uxgumu / uxrnz,ldt] — EIX3IE + (TP, (5.10)
E’[sup”Xt"H%J < (1+7%C < o, (5.11)
<T

where C' = C(T", mg) € (0, 00).
We will summarize the above considerations as Theorem 5.1.1 below. To do so, we define:
G = o(E,Ws, s<t), 0<t<oo, G&V =0 (Utzogf’w) ,
NV = (NcQ,;INegt¥, NcN, P(N)=o0},

and

FY =o (G UN), 0t < oo, (5.12)

Theorem 5.1.1 Let W, £, and ]-'f’W as above. Then, for each n, there exists a unique process
X" such that:

a) X7 is " -measurable for all t > 0;

b) (5.8), (5.10) and (5.11) are satisfied;
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5.2 Compact imbedding lemmas

We will need some compact imbedding lemmas from [FG95]). We first introduce:
Definition 5.2.1 Let p € [1,00), T € (0,00), and E be a Banach space.

a) We let L,,([0,7] — E) denote the Sobolev space of all u € Ly([0, T} — E) such that:

t
u(t) = u(0) +/ u'(s)ds, for almost all ¢ € [0,T)
0

with some u(0) € E and v/(-) € L,([0,T] — E). We endow the space Ly;([0,T] — E)
with the norm ||ul|z, (0,115 defined by

T
Il oy = | (O + o)
b) For a € (0,1), we let L,a([0,T] — E) denote the Sobolev space of all u € Ly([0,T] — E)

such that: . ’
/ |-“—()—_%dsdt < 0.
o<s<t<T |t — s|itor

We endow the space Ly o([0,T] — E) with the norm ||u||z, .(jo,r1~E) defined by
T |u(t) — u(s)[’
el om0 = u(t)] I e ==
Remark: Note that:
dsdt 00 ifA>0,
JEYTE LTS 5.13
/O‘<s<t<T [t — st { (1l+|z\[T\—| ifA<0 ( )

Therefore, roughly speaking, a function in L, ([0,7] — E) is, “Holder continuous with the
exponent bigger than o”.

Exercise 5.2.1 Prove that L, 5([0,T] = E) = Lyo([0,T7] » E) f 0 <a< B < 1.

Lemma 5.2.2 [FG95, p.370, Theorem 2.1] Let:

» E,,...,E, and E be Banach spaces such that each E; -— E, i=1,..,n.
» p1,...,Dn € (1,00), aa,...,0n € (0,1) are such that pijo; > 1,i=1,...,n.
Then, for any T > 0,

Lpy .0, ([0, T] = E1) + ... + Lp, 0, ([0, T] = Ep) = C([0,T) = E).
Lemma 5.2.3 [FG95, p.372, Theorem 2.2/ Let:
Ey—>— E— F;

be Banach spaces such that the first imbedding is compact, and Ey, E, are reflexible. Then, for
any p € (1,00), a € (0,1) and T > 0,

Ly([0,T] = Eo) N Ly ([0, T] = Er) == Lyp([0,T] = E).
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5.3 Regularity of the noise

Let H be a separable Hilbert space, and I : H — H be a non-negative self-adjoint operator of
trace class, as in section 3.1. By the Hilbert-Schmidt theorem [RS72, p.203, Theorem VI.16],
there exist a CONS (¢, )n>1 of H and numbers v, > 0 such that:

Lo = Yopn, n > 1. (5.14)
Let W be a BM(H,T"). Then, the processes:

B* S (W, o)/ vk, kel ¥ {keN; >0}

are independent BMYs. Let {B* }kenys be independent BM"s which are independent of
{B*}ter. Then, (W, ) = /7&BF for all k € N, and thus,

o0 o0
W = Z< Wi, ok Y = Z VeBfor, t>0.
k=0 k=0

Let us consider the finite summation:
n n
Wi =3 (Wion)on = ViBigr t20, (5.15)
k=0 k=0

Lemma 5.3.1 Referring.to (5.15), for any p € [1,00), a € [0,1/2) and T > 0, there exists
C = Cupr € (0,00) such that:

sup E([WIIZ, _ jo21-,m) < Ctr(T)y" (5.16)
nz2

Proof: We first prepare an exponential moment bound. Let € € (0,1), A,¢ > 0 be such that
0< My <1—¢forall k€ N. Then,

1) £ e (F19717)] - H S <o (Sum).
Since W7 = S5 wlBE,

 [ow (212 =TT oo (152P)]

e Lo () 9)- oo

~
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Vo
We next observe for any 6 € [0,1 — ] that
1 ) )
—_— = — < < E
T 1+1—5 1+ e

 Hence, considering § = Aty and taking the square root, and then the product over k = 0,..,n,
we have

;II m exp(Attr(F)).

Thus, we get 1). Then, it is not difficult (Exercise 5.3.1 below) to see from 1) that
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2) BIW]IP] < G, (tx(T)t)"*  for any p € (0,00),
with C, € (0, 00) depending only on p. Noting that

2)
B[|WP - WrIP) = E [IWE,IP] < Gy (tr(D)(t = )%, s <t,

we get
E Mdsdt < Cptr(T)P/? / ——ﬁft—-—l-
o<sct<r (t— 8)1HP 0<s<t<T (¢ — g)l+(@=3)
< C,otr(D)PRTHHG2,
This and 2) imply (5.16). O
Exercise 5.3.1 Conclude 2) from 1) in the proof of Lemma 5.3.1. Hint: Take A = Et'r%r')i in
1).

5.4 A digression on tightness

Let X™ = (XI')i>0 € V be the unique solution of (5.3) for the Galerkin approximation. In
section 5.5, we will find a “convergent subsequence”, the limit of which eventually solves (3.7).
This can be done by showing that the laws of X™, n € N are tight (see Definition 5.4.1). This
subsection serves as a collection of notions and facts regarding the tightness, which we will use
in section 5.5.

Throughout this subsection, let S = (S, p) be a separable metric space and (22, F, P) be a
probability space.
Definition 5.4.1 A sequence {X, : = S}pen of r.v.’s (or more precisely, the laws of these
r.v.’s) are said to be tight, if, for any e € (0,1), there exists a relatively compact set K C S
such that:

'rizlellf;IP(X” eEK)>1~-e

Here is a common way to check the tightness:

Lemma 5.4.2 Let {X,, : Q = S}en be 1.v.’s. Suppose that there exists a function F : S —
[0,00) such that:

the set Kgp def {z € S; F(z) < R} is relatively compact for all R > 0;
sup E[F(X,)] < C < oo.
neN
Then, { X, }nen are tight.
Proof: We then have that:
sup P(X, & Kg) = sup P(F(X,)> R)

neN neN
EF(X,)] _ C
< sup———>= < = —0.
= W~ R R
This proves the tightness. a

Once we are able to check that a sequence of r.v.’s is right, we have the following conse-
quence:
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Lemma 5.4.3 Suppose that S is complete and that a sequence {X, : @ = S}pen of 1.0.7s are
tight. Then, there exrist a probability space (ﬁ, F, fN’), a sequence n(k) / 0o of integers, and a
sequence o

{Xk : Q@ = Stienuvioo}

of r.v.’s such that:

P(Xye) = P(Xpme€-) foralkeN;

lim )?k = X, P-a.s.

k—o0
Proof: This is a consequence of Prohorov’s theorem [IW89, p.7, Theorem 2.6] and Skorohod’s
representation theorem [IW89, p.9, Theorem 2.7]. ]

Lemma 5.4.4 Suppose that (S;,p;) (7 = 1,..,m) are complete separable metric spaces such
that all of S; (j = 1,...,m) are subsets of a common set. Let (Xn)nen be a sequence of
random variables with values in S = ﬂ;’;l S; which is tight in each of (Sj,p;), j = 1,..,m
separately. Then, there exist a probability space (ﬁ,]? , I~’), a sequence n(k) 7 oo of integers,
and a sequence o

{Xk : Q@ = Stkenuioo}

of r.v.’s such that:

P(Xy €)= P(Xppy €-) for allk €N;

m

,cli_{rgozlpj(X, Xe) =0 as.
J:

Proof: By induction, it is enough to consider the case of m = 2. Let £ > 0 be arbitrary. Then,
for j =1, 2, there exists a compact subset K; of S; such that:

P(X,eK;)>1—¢, forallj=1,2andn=1,2,..

Now, a very simple, but crucial observation is that K7 N K> is compact in S; N Sy with respect
to the metric p; + p2. Also,

P(X,€e KiNKy))>1-2¢, forallj=1,2andn=12,..

These imply that (X,,) is tight in S; NS, with respect to the metric p; + po. Thus, the lemma
follows from Lemma 5.4.3. a

5.5 Convergence of the approximation along a subsequence

Let X™ = (X["):>0 € V be the unique solution of (5.3) for the Galerkin approximation. Recall

the notation from (2.25):
1 ifd=2,

Proposition 5.5.1 For o € [0,1) and 8 > B(1,0) (cf. (2.25)), Then, there exist a process
X and a sequence (X*)x>1 of processes defined on a probability space (Q, F, P) such that the
following properties are satisfied:
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a) The process X takes values in

C([O, OO) - ‘/2,_/3) N L2,10c([0, OO) - VQ,Q). (517)

b) For some sequence n(k) /* 00, X* has the same law as X™® and

lim X* = X in the metric space (5.17), P-a.s. (5.18)

k—o00

We divide the proof of Proposition 5.5.1 into the series of lemmas: To prepare the proof of
these lemmas, we write (5.3) as:

t
XP = X7+ JP + W) with JP = / Pab(X™)ds. (5.19)
0
Lemma 5.5.2 Let 5(1,0) and J? be as in (2.25) and (5.19). Then, there exists Cr € (0,00)
such that:
igll)E [HJ.”IlLQ’I([O,T]_,VZ’_W’O))] < Cr < 0o0. (5.20)
Proof: It is not difficult to see that:

T
1) “J'n”2Lz,1([0,T]—>V2,_5(1'0)) < CT/o ||Pnb(X?)||%’z,_ﬁ(1,0)ds' (cf. Exercise 5.5.1)

By (2.22) for ¢ = 2 and (o, a2) = (1,0), we see that

T T
/0 IX)E ot < / (v + CIIXT 221 X7 3, ds

2) o [T ot
< (v+Csup [ X7]) / | X2]3,ds.
8<T 0

Since P, is contraction on V4, for any a € R, we can combine the above bounds and (5.10)—
(5.11) to obtain n (5.20) as follows:

) 1)-2)
E [”J “Lz,l([O,T]—’Vz,—ﬂ(LO))] = Crb

T 1/2
(v + Csup || X|l2) (/ ||X?||§,1d3> ]
s<T 0

1/2 T 1/2
< orslvrospixty] B[ IxIB.
s< 0

(5.10)(5.11)
Cr < 00.

]

Exercise 5.5.1 Let everything be as in Definition 5.2.1 a) and suppose that u(0) = 0. Prove
then that

T
Il o < Cr [ I/ (6) s
Lemma 5.5.3 Let > $(1,0). Then, {X™}, are tight on C([0,00) = Va,_g).
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Proof: 1t is enough to prove the following for each fixed T > 0:
1) (XM)icr n=1,2,... are tight on C([0,T] — Vo _3).
To see this, we set:
S = Ly1([0,T] = Va_p(1,0) + Lp,a([0,T] = Vap), with a € (0,1/2),p > 1/c.

The idea is to take || - ||s as the function F in Lemma 5.4.2. We have that

(5.20)
2) sup, El||X§ + J*| o1 011-va _s00)] < Cr <00
On the other hand,
(5.16)
3) sup Ef[|W?| L, 4011120 < Cr < o0
n

We conclude from 2)-3) and the decomposition (5.19) that

sup E[|| X"||s] £ Cr < o0

On the other hand, we see from Lemma 5.2.2 that
S == C([0,T] = Vo _p),

hence that the set:
{X.; IX™ls < R}

is relatively compact in C([0,T] — V3,—g). Thus, we have the tightness 1) by Lemma 5.4.2. O
Lemma 5.5.4 Suppose that a € [0,1). Then, { X"}, are tight on Lajoc([0,00) = Vo q).
Proof. 1t is enough to prove the following for each fixed T' > 0:
1) (XP)i<r, n=1,2,.. are tight on Ly([0,7] = Va,q)-
To see this, we set:

Z = Ly([0,T] = Va1) N Ly ([0, T] = Vo _ga0)), With + € (0,1/2).

The idea is to take || - ||z as the function F in Lemma 5.4.2. We have that

(5.10)
T
2) Supy, E[”X-n”%g([o,T]_)V?'l)] = Sup, E[fo HX?Hildt] < Cr<o
On the other hand,
Sup E[”X:n”L2,1([0,T]—>V2__g(110))]
< sup E[|X§ + I |22 (0,71Va,s,00)] T+ sup E[W | Lor(o.11-12,0)]
(5.16),(5.20)

< CT<OO.
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We conclude from this and 2) that

sup E[|| X"||z] £ Cr < <.

On the other hand, we will see from Lemma 5.2.3 that
T —— Ly([0,T] = Vo),

hence that the set :
{X.; IX"|z £ R}

is relatively compact in Ly([0,T] — Vz,o). Thus, we have the tightness 1) by Lemma 5.4.2. O

Finally, Proposition 5.5.1 follows from Lemma 5.5.3-Lemma 5.5.4 and Lemma 5.4.4.

6 Proof of Theorem 3.2.1 and Theorem 3.2.2

6.1 Proof of Theorem 3.2.1

Let X and X* be as in Proposition 5.5.1. We will verify that X takes values in the metric
space (3.4) as well as properties (3.5)—(3.9) for X. (3.5) can easily be seen. In fact,

)?6‘ — Xo as.in Vo _g,
)?{f -4 Xg(k) =Puré — € as. in Vo

Thus the laws of X, and £ are identical. To see (3.8)—(3.9), note that:

T
Jortd, supllod, | Mool iat
t<T 0

are lower semi-continuous functions of v. on the metric space (5.17). Thus, (3.8)—(3.9) follow
from (5.10)—(5.11) and Proposition 5.5.1 via Fatou’s lemma.
To show (3.6)—(3.7), we prepare the following:

Lemma 6.1.1 Let o € V and T > 0. Then,

T - - T )
lim [ (o, (XF.-V)XF)dt = / (@, (X;- V)X, )dt in probability, (6.1)
° T - OT
klim/ (Ap, XF)dt = / (Ap, Xy )dt a.s., (6.2)
T ° - O’I‘
lim / (0, Pab(X5) )it = / (,b(X,))dt in probability. (6.3)
©Jo 0

Proof: (6.1): Since,
Xk.VXE- X, VX, = (XF - X;) VXF+ X, - V(X - Xy),
we have

T —~
/ (o, XE-VXF— X, - VX )dt < I + I,
0
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where
T - - T -
11=/ (@, (XF — X;) - VXE)|dt, and 12=/ (o, X; - V(XF — X,) )|dt.
0 0

To bound I, we take
m=a€(0,1AE), a3=0, as=¢-a€(0,9).
in Lemma, 2.2.1. Then, by (2.14), we have that
(o, (XE = X0) - VX)) < CIUXE = Xilloal XElla ol 140
and hence that,

T
I < Cll@llansas sup |51l / 1F — X, |lpad.
t<T 0

By (5.11) and Proposition 5.5.1,
~ T ~
sup Efsup | X[ |3] < oo and lim / | XF - X;||2,dt =0 P-as.
k>1  t<T k—oo Jo ’

Then, it is easy to conclude from these that limy .o [; = 0 in probability (Exercise 6.1.1
below). To bound I, we take

=0, ca=0€(0,1Ad), ag=2%~0ae(0,%)
in Lemma 2.2.1. On the other hand, we have by (2.14) that
(o, X - V(XE = X)) < ClIXl2l XF — Xillzalloll21ras

and hence that,
T
I < Cll@llasas sup | Xz / IXE = X, pad
t<T 0

By (3.9) and Proposition 5.5.1,
T o~
Elsup || X;||3] < oo and lim / | XF = Xill2.0dt =0 P-as.
tST k—00 0

Then, it is easy to conclude from these that limy ,., I, = 0 in probability (Exercise 6.1.1
below).

(6.2): This is an easy consequence of Proposition 5.5.1.

(6.3) follows from (6.1) and (6.2). Since ¢ € V is fixed and k is tending to 0o, we do not have
to care about Ppx) here. O

Exercise 6.1.1 Let X,,,Y, be r.v.’s such that {Xn}n>1 are tight and Y;, — 0 in probability.
Prove then that X,Y,, — 0 in probability.

We see (3.6)—(3.7) from the following:
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Lemma 6.1.2 Let: .
Y, = Yi(X) = X, — Xo— / b(X\)ds, t > 0. (6.4)
0

Then, Y. is a BM(Va,T). Moreover, Yyt — Y, and {{ ¢, X, ) ; s <t,¢ € V} are independent
for any t > 0.

It is enough to prove that for each ¢ € V and 0 < s < ¢,
. t—s
D BlealeYi-nig=ew (-5 (0T, as

where G, = 0({ 0, Xy ) ; u < s, € V). We set

F(X) = f(( ‘plaXm >> ,< ‘panun >)s

where f € C(R"), 0 < u; < .. < u, < sand ¢y, ..., 0n € V are chosen arbitrary in advance.
Then, 1) can be verified by showing that

) Blexo(i{ Y- Y )) F(X)] = exp (—t——;—s< o.Tp >) EIF(X)].
Let: .
YF=XF- Xk - / Preyb(XE)ds, t > 0.
0

We then see from Theorem 5.1.1 that

5 Blew e - v0) FE] = e (550 TP ) EFCE)

Moreover, we have for any ¢ € V,
lim (p, ¥ - ) %9 (5,¥, - ¥,) in probability,
—+00

and hence
klim LHS of 3) = LHS of 2).
—00

On the other hand,
. (5.18)
lim RHS of 3) "=

k—o0

These prove 2). |

RHS of 2).

Finally, we prove that X takes values in the metric space (3.4). It follows from (3.9) that
X € L2,loc([0)oo) - VZ,I) n LOO,IOC([O>OO) - V2,0)'
Thus, it remains to show that X € C([0,00) = V5,_g(1,1)). We see from Lemma 2.2.3 that:
/ b(X,)ds € C([0,00) = Va,_p,1)) if X € La([0,00) = V3,1).
0
On the other hand, Y € C([0,00) — Vo). These show that X € C([0,00) = V3_g1,y). O
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6.2 Proof of Theorem 3.2.2

Here, we can follow the argument of [Te79, p. 294, Theorem 3.2] almost verbatim. We will
present it for the convenience of the readers.
We need technical lemmas:

Lemma 6.2.1 [Te79, pp. 6061, Lemma 1.2] Let H and and V' be a Hilbert spaces such that:
Ve Ho V.
Suppose that f € Ly([0,T] — V) has derivative f' in Ly([0,T] — V*). Then,
L\ =20 (£, 7 e (65)
in the distributional sense on (0,T).

Lemma 6.2.2 For any T > 0, there exists Cr € (0,00) such that:

E [/OT ||b(Xt)H:>,—ﬁ(1,0)] < Cr <oo. (6.6)

Proof: Using (3.9), the lemma can be shown in the same way as Lemma 5.5.2. O

Let X and X be as in the assumptions of Theorem 3.2.2 and

Zy=X,— X, = /Ot (b(XS) - b()?s)) ds.

Then,

1) Z. € Lyjoc([0,00) — Va1)

and by Lemma 6.2.2,

2) BZ. = b(X.) = b(X.) € Laioo([0,00) = Va,-s(1.0))

Since 5(1,0) = 1, we see from 2) and Lemma 6.2.1 (applied to f = Z. and V = V) that

6. >
3) 14213 (2,b0x) - b(X)) = ~L— J;
in the distributional sense, where
L = ( Zt, (Xt : V)Xt - (X:t : V>Xt >,
Jt = I/< VZt,VXt — VXt > = V“VZt”g
On the other hand, since X’t = X; — Z;, we see that
(20, (Xe-V)Xe) "R ( 24, (X, VX)) = (2o, (X = Z0) - V)Xo ),

and hence that
It == ( Zt, (Zt . V)Xt >

We now apply Lemma 2.2.2 with (a;, a9, @3) = (1,0,0). Note that these ¢; satisfy the as-
sumption of Lemma 2.2.2 only when d = 2.
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4) || < Csl Zellaall Zellal| Xellza < wI1Zel31 + Call Xelz | Zell3:

We see from 3)—4) that
1) 7,112 < Cll Xell2 11 Zel3-

This implies, via Gronwall’s lemma (We need an appropriate generalization, since the derivative
above is in the distributional sense.) that

t
120 < 2ol (G [ 1XulEuds ).
This proves that || Z;||2 = 0. o

7 Appendix

Lemma 7.0.3 Suppose that a CONS {@n}n>1 of H and numbers v, > 0 satisfy (5.14).
a) Let {B*}ren be independent standard BM!’s. Then, the process
n
wp =S VwBfer t>0, (7.1)
k=0

converges to a BM(H,T") W. in the sense that:

lim F [sup |Wy — Wt||2] =0 foranyT > 0. (7.2)

n—o00 t<T

b) For any BM(H,T') W., there are independent standard BM!’s such that (7.2) holds with
the process defined by (5.15).

Proof: a): Let us show that
1) (W™)nen is a Cauchy sequence with respect to seminorms:

1/2
11l = B [suplW.I?] . te 0,00)

8

In fact, for m < n,
Iwr Wi = wlBH

m<k<n

By this and Doob’s L2-maximal inequality,

(4.16)
> %E [suplB::PJ <4t Yy, w0
8<t

m<k<n m<k<n

B [supwz - Wy <
s<t

By 1), there exists a random variable W with values in C([0,00) — H) such that (7.2) holds.
It is easy to see from this that for 0 < s < t:

Jim exp (0, W7 = W) = exp (0, We = W, )) in IX(P),
and hence
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) lim Efexp (o, W~ W) 6] = E [exp (i 0, W = W,)) [67] in LX(P).
On the other hand,
Elexp (i, W~ W)IGY] = Elexp(i{p, W] —W))]

= ] E [exp (ivA{ ¢, 1 )(BE — BY))]

k=0
= [lew (——5nlp.0)?) = exp (~——(0.Tp) ).
k=0

By this and 2), we have (3.3).
b): Processes:

B* (W, o)k keI Z{keN; v >0}

are independent BM'’s. Let {B*}kens be independent BM'’s which are independent of
{B*}ter. Then, (W, ¢y ) = \/3BF for all k € N, and hence (5.15) holds. o
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