<table>
<thead>
<tr>
<th>Title</th>
<th>An extension of Nunokawa lemma (On Schwarzian Derivatives and Its Applications)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Author(s)</td>
<td>Shiraishi, Hitoshi</td>
</tr>
<tr>
<td>Citation</td>
<td>数理解析研究所講究録 (2013), 1824: 96-99</td>
</tr>
<tr>
<td>Issue Date</td>
<td>2013-02</td>
</tr>
<tr>
<td>URL</td>
<td>http://hdl.handle.net/2433/194721</td>
</tr>
<tr>
<td>Right</td>
<td></td>
</tr>
<tr>
<td>Type</td>
<td>Departmental Bulletin Paper</td>
</tr>
<tr>
<td>Textversion</td>
<td>publisher</td>
</tr>
</tbody>
</table>

Kyoto University
An extension of Nunokawa lemma

Hitoshi Shiraishi

Abstract
Let $\mathcal{H}[a_0,n]$ be the class of functions $p(z) = a_0 + a_n z^n + \cdots$ which are analytic in the open unit disk U. For functions $f(z)$ which are analytic in U with $f(0) = 1$, M. Nunokawa (Proc. Japan Acad., Ser. A 68 (1992), 152–153) have shown some theorems. The object of the present paper is to discuss Nunokawa lemma for the class $\mathcal{H}[a_0,n]$.

1 Introduction

Let $\mathcal{H}[a_0,n]$ denote the class of functions $p(z)$ of the form

$$p(z) = a_0 + \sum_{k=n}^{\infty} a_k z^k$$

which are analytic in the open unit disk $U = \{z \in \mathbb{C} : |z| < 1\}$ for some $a_0 \in \mathbb{C}$ and a positive integer n.

The basic tool in proving our results is the following lemma due to S. S. Miller and P. T. Mocanu [1] (also [2]).

Lemma 1. Let the function $w(z)$ defined by

$$w(z) = a_n z^n + a_{n+1} z^{n+1} + a_{n+2} z^{n+2} + \cdots \quad (n = 1, 2, 3, \cdots)$$

be analytic in U with $w(0) = 0$. If $|w(z)|$ attains its maximum value on the circle $|z| = r$ at a point $z_0 \in U$, then there exists a real number $m \geq n$ such that

$$\frac{z_0 w'(z_0)}{w(z_0)} = m.$$

2 Main result

Applying Lemma 1, we derive the following result.

2010 Mathematics Subject Classification: Primary 30C45
Keywords and phrases: analytic, univalent, Jack's lemma, Nunokawa lemma
Theorem 1. Let \(p(z) \in \mathcal{H}[a_0, n] \) for some real \(a_0 > 0 \) and suppose that there exists a point \(z_0 \in \mathbb{U} \) such that
\[
\operatorname{Re}(p(z)) > 0 \quad \text{for} \quad |z| < |z_0|
\]
and \(p(z_0) = \beta i \) is a pure imaginary number for some real \(\beta \neq 0 \).

Then we have
\[
\frac{z_0 p'(z_0)}{p(z_0)} = il
\]
where
\[
l \geq \frac{n}{2} \left(\frac{a_0}{\beta} + \frac{\beta}{a_0} \right) \geq n
\]
if \(\beta > 0 \) and
\[
l \leq \frac{n}{2} \left(\frac{a_0}{\beta} + \frac{\beta}{a_0} \right) \leq -n
\]
if \(\beta < 0 \).

Proof. Let us put
\[
w(z) = \frac{a_0 - p(z)}{a_0 + p(z)} = c_n z^n + c_{n+1} z^{n+1} + c_{n+2} z^{n+2} + \cdots \quad (z \in \mathbb{U}).
\]

Then, we have that \(w(z) \) is analytic in \(|z| < |z_0| \), \(w(0) = 0 \), \(|w(z)| < 1 \) for \(|z| < |z_0| \) and
\[
|w(z_0)| = \left| \frac{a_0^2 - \beta^2 - 2a_0 \beta i}{a_0^2 + \beta^2} \right| = 1.
\]

From Lemma 1, we obtain
\[
\frac{z_0 w'(z_0)}{w(z_0)} = \frac{-2a_0 z_0 p'(z_0)}{a_0^2 - \{p(z_0)\}^2} = \frac{-2a_0 z_0 p'(z_0)}{a_0^2 + \beta^2} = m \quad (m \geq n).
\]

This shows that
\[
z_0 p'(z_0) = -\frac{m}{2} \left(\frac{a_0 + \frac{\beta^2}{a_0}}{a_0} \right) \quad (m \geq n).
\]

From the fact that \(z_0 p'(z_0) \) is a real number and \(p(z_0) \) is a pure imaginary number, we can put
\[
\frac{z_0 p'(z_0)}{p(z_0)} = il
\]
where \(l \) is a real number.
For the case $\beta > 0$, we have

$$l = \text{Im} \left(\frac{z_0 p'(z_0)}{p(z_0)} \right)$$
$$= \text{Im} \left(-z_0 p'(z_0) \frac{1}{\beta} i \right)$$
$$= \frac{m}{2} \left(a_0 + \frac{\beta^2}{a_0} \right)$$
$$\geq \frac{n}{2} \left(a_0 + \frac{\beta^2}{a_0} \right) \frac{1}{\beta}$$
$$= \frac{n}{2} \left(\frac{a_0}{\beta} + \frac{\beta}{a_0} \right) \geq n$$

and for the case $\beta < 0$, we get

$$l = \text{Im} \left(\frac{z_0 p'(z_0)}{p(z_0)} \right)$$
$$= \text{Im} \left(-z_0 p'(z_0) \frac{1}{\beta} i \right)$$
$$= \frac{m}{2} \left(a_0 + \frac{\beta^2}{a_0} \right)$$
$$\leq \frac{n}{2} \left(a_0 + \frac{\beta^2}{a_0} \right) \frac{1}{\beta}$$
$$= \frac{n}{2} \left(\frac{a_0}{\beta} + \frac{\beta}{a_0} \right) \leq -n.$$

This completes our proof.

Putting $a_0 = 1$ in Theorem 1, we have Corollary 1.

Corollary 1. Let $p(z) \in \mathcal{H}[1, n]$ and suppose that there exists a point $z_0 \in \mathbb{U}$ such that

$$\text{Re}(p(z)) > 0 \quad \text{for} \quad |z| < |z_0|,$$

$$\text{Re}(p(z_0)) = 0 \quad \text{and} \quad p(z_0) \neq 0.$$

Then we have

$$\frac{z_0 p'(z_0)}{p(z_0)} = il$$

where l is a real and $|l| \geq n$.
References

Hitoshi Shiraishi
Department of Mathematics
Kinki University
Higashi-Osaka, Osaka 577-8502
Japan
E-mail: step_625@hotmail.com