
ON THE REPRESENTATION AND THE RESIDUE
OF CONCAVE FUNCTIONS
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ABSTRACT. In [2] we introduced several integral representation formulas for concave
functions. Using those, we gave a general formula to describe the residue of $\infty ncave$

functions with a pole at $p\in(0,1)$ . In the present article we will present alternate
versions of the formulas, as weil as a shortcut for the calculation to obtain the range of
the residue.
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1. INTRODUCTION

Let $\mathbb{C}$ be the complex plane, $\hat{\mathbb{C}}$ the Riemann sphere and $\mathbb{D}=\{z\in \mathbb{C} : |z|<1\}$ be the
unit disk. $A$ univalent function $f$ : $\mathbb{D}arrow\hat{\mathbb{C}}$ is said to be concave, if $f(\mathbb{D})$ is concave, i.e.
$\mathbb{C}\backslash f(\mathbb{D})$ is convex. Commonly there are several types of concave functions, which map $\mathbb{D}$

conformally onto a simply connected, concave domain in $\hat{\mathbb{C}}$:
(1) meromorphic, univalent functions $f$ with a simple pole at the origin and the nor-

malization $f(z)= \frac{1}{z}+\sum_{n=0}^{\infty}a_{r}z^{n}$ , said to belong to the class $\mathcal{C}0_{0},$

(2) meromorphic, univalent functions $f$ with a simple pole at the point $p\in(O, 1)$ and
the normalization $f(z)=z+ \sum_{n=2}^{\infty}a_{m}z^{n}$ , said to belong to the class $Co_{p}$ and

(3) analytic, univalent functions $f$ satisfying $f(1)=\infty$ with the normalizations $f(z)=$
$z+ \sum_{n=2}^{\infty}a_{n}z^{n}$ and an opening angle of $f(\mathbb{D})$ at $\infty$ less or equal to $\alpha\pi$ with
$\alpha\in(1,2], said to$ belong $to the$ class $Co(\alpha)$ .

A detailed discussion of these classes has already been done in [2]. We therefore concen-
trate on the class $Co_{p}$ for the present article.

2. ALTERNATIVE FORMULAS

In [2] we introduced the following integral representation fomula for functions of $Co_{p}.$

Theorem 1. [2] Let $p\in(0,1)$ . For a meromorphic function $f$ : $\mathbb{D}arrow\hat{\mathbb{C}}$ of class $\mathcal{C}0_{p},$

there exists a function $\varphi$ : $\mathbb{D}arrow \mathbb{D}$, holomorphic in $\mathbb{D}$ utth $\varphi(p)=p$ , such that the concave
junction can be represented as

(1) $f’(z)= \frac{p^{2}}{(z-p)^{2}(1-zp)^{2}}\exp\int_{0}^{z}\frac{-2\varphi(\zeta)}{1-\zeta\varphi(\zeta)}d\zeta$

for $z\in \mathbb{D}$ . Conversely, for any holomorphic function $\varphi$ mapping $\mathbb{D}arrow \mathbb{D}$ with $\varphi(p)=p,$

there enists a concave function of class $\mathcal{C}0_{p}$ described by (1).

Howcvcr, a fixcd point of thc function $\varphi$ at $p$ is not very useful for further discussions.
Using several transformations we obtain an altemate version of Theorem 1.
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Corollary 2. Let $p\in(O, 1)$ . For a meromorphic function $f$ : $\mathbb{D}arrow\hat{\mathbb{C}}$ of class $\mathcal{C}0_{p}$ , there
exists a function $\Psi$ : $\mathbb{D}arrow \mathbb{D}$ , holomorphic in $\mathbb{D}$ with $\Psi(0)=0$ such that the $\omega ncave$

function can be represented as

(2) $f’(z)= \frac{p^{2}}{(z-p)^{2}(1-zp)^{2}}\exp(2\int_{p}^{\succ_{-pz}^{-\iota}}\frac{p}{1-\gamma)\zeta}-\frac{\Psi(\zeta)}{1-\zeta\Psi(\zeta)}d\zeta)$

for $z\in \mathbb{D}$ . Conversely, for any holomorphic function $\Psi$ mapping $\mathbb{D}arrow \mathbb{D}$ with $\Psi(0)=0,$

there exists a concave function of class $Co_{p}$ described by (2).

Proof. Let $p\in(O, 1)$ and $z\in \mathbb{D}$ . Applying the transformation $\zeta=L_{\frac{x}{px}}^{-}1-$ and $\Phi(x)=\varphi(\zeta)$

we obtain

$\int_{0}^{z}\frac{-2\varphi(\zeta)}{1-\zeta\prime p(\zeta)}d\zeta=l^{\frac{p-z}{1-pz}}\frac{-2\Phi(x)}{1-RI\frac{x}{px}\Phi(x)}\cdot\frac{p^{2}-1}{(1-px)^{2}}dx$

$= \int_{p^{-pz}}^{\succ^{-}}\frac{-2\Phi(x)(p^{2}-1)}{(1-px)^{2}-(p-x)\Phi(x)(1-px)}dx.$

Here the function $\Phi$ is holomorphic in $\mathbb{D}$ with $\Phi(0)=p$ . Therefore there exists a function
$\Psi$ : $\mathbb{D}arrow \mathbb{D}$ holomorphic in $\mathbb{D}$ with $\Psi(0)=0$ , such that $\Phi(x)=\frac{p-\Psi(x)}{1-p\Psi(x)}$ . Then

$\int_{0}^{z}\frac{-2\varphi(\zeta)}{i-\zeta\varphi(\zeta)}d\zeta=\int_{p^{\underline{A=}\frac{z}{pz}}}^{1}\frac{-2\frac{p-\Psi(x)}{1-p\Psi(x)}(p^{2}-1)}{(1-px)^{2}-(p-x)\frac{p-\Psi(x)}{1-p\Psi(\omega)}(1-px)}dx$

$= \int_{p}^{\frac{p-z}{1-pz}}\frac{-2(p-\Psi(x))(p^{2}-1)}{(1-px)((1-p^{2})-x\Psi(x)(1-p^{2}))}dx$

$= \int_{p}^{\frac{p-z}{1-pz}}\frac{-2(\Psi(x)-p)}{(1-px)(1-x\Psi(x)}dx$

$=2 \int_{p}^{\frac{r-z}{1-pz}}\frac{p}{1-px}-\frac{\Psi(x)}{1-x\Psi(x)}dx.$

Changing the variable inside the integration and replacing the integral in (1) leads to the
statement. $\square$

The formula for the residue derived from the integral representation in [2] was g\’iven as
follows.
Theorem 3. [2] Let $f(z)\in Co_{p}$ be a concave function with a simple pole at some point
$p\in(O, i)$ . Then the residue of this function $f$ can be described by some function $\varphi$ : $\mathbb{D}arrow$

$\mathbb{D}$ , holomorphic in $\mathbb{D}$ and $\varphi(p)=p$ , such that

(3) ${\rm Res}_{p}f=- \frac{p^{2}}{(1-p^{2})^{2}}exp.\int_{0}^{p}\frac{-2\varphi(z)}{1-x\varphi(z)}dz.$

Applying the alternative representation from Corollary 2, we obtain
Corollary 4. Let $f(z)\in Co_{p}$ be a concave function with a simple pole at some point $p\in$

$(0,1)$ . Then the residue of this function $f$ can be described by some function $\Psi$ : $\mathbb{D}arrow \mathbb{D},$

holomorphic in $\mathbb{D}$ and $\Psi(0)=0$, such that

(4) ${\rm Res}_{p}f=- \frac{p^{2}}{(1-p^{2})^{2}}\exp 2\int_{0}^{p}\frac{\Psi(x)}{1-x\Psi(x)}-\frac{p}{i-px}dx.$
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The advantage of Corollary 4 $ov\epsilon r$ the original presentation is the fixed point of $\Psi a\dagger$

the origin. This provide much easier means for the construction, than a fixed point at
$p$ . Furthermore, the Schwarz Lemma can be applied directly without any complicated
analysis, giving a way for the estimate of special values. We will show an application in
the next section.

3. RANGE OF THE RESIDUE

Wirths proved the following statement in [3] using the inequality

$| \frac{1}{f(z)}-\frac{1}{z}+\frac{1+p^{2}}{p}|\leq 1$

provided by Miller in [1].

Theorem 5. [3] Let $p\in(0,1)$ . For $a\in \mathbb{C}$ there exists a function $f\in Co_{p}$ such that
$a={\rm Res}_{p}f$ if and only if
(5) $|a+ \frac{p^{2}}{1-p^{4}}|\leq\frac{p^{4}}{1-p^{4}}.$

Let $\theta\in[0,2\pi).$ $A\mu$nctionf $\in \mathcal{C}0_{p}$ has the residue

$a=- \frac{p^{2}}{1-p^{4}}+e^{:\theta}\frac{p^{4}}{1-p^{4}}$

if and only if

(6) $f_{\theta}(z)= \frac{z_{1+p}-+(1+e^{i\theta})z^{2}}{(1-\frac{z}{p})(1-pz)}.$

The established representation formula for the residue can be useri for a differen$\dagger$ ap-
proach of the same statement as described in [2]. For the present discussion we will use
Corollary 4, which provides a shortcut for the proof. We also present some details, omitted
in [2]

Proof. Let $p\in(0,1)$ and $\Psi$ : $\mathbb{D}arrow \mathbb{D}$ be holomorphic in $\mathbb{D}$ with fixed point at the origin.
For $a={\rm Res}_{p}f$ with $f\in Co_{p}$ we obtain with the use of Corollary 4

$|a+ \frac{p^{2}}{1-p^{4}}|^{(4)}=\frac{p^{2}}{1-p^{4}}|\frac{1+p^{2}}{1-p^{2}}\exp(2\int_{0}^{p}\frac{\Psi(x)}{1-x\Psi(x)}-\frac{p}{1-px}dx)-1|.$

Some basic calculations yield

$\frac{1+p^{2}}{1-p^{2}}=\exp 2(\frac{1}{2}\log\frac{1+\emptyset}{1-p^{2}})=\exp\int_{0}^{p}\frac{2p}{1-p^{2}x^{2}}dx$

and therefore

$|a+ \frac{p^{2}}{1-p^{4}}|$ $=$ $\frac{p^{2}}{1-p^{4}}|\exp\int_{0}^{p}2(\frac{p}{1-p^{2}x^{2}}-\frac{p}{1-px}+\frac{\Psi(x)}{1-x\Psi(x)})dx-1|$

$= \frac{\emptyset}{1-p^{4}}|\exp\int_{0}^{p}2\frac{\Psi(x)-p^{2_{X}}}{(1-x\Psi(x))(1-p^{2}x^{2})}dx-1|.$

From the triangle inequality, we know that

$|e^{w}-1|=| \sum_{n=1}^{\infty}\frac{w^{n}}{n!}|\leq\sum_{n=1}^{\infty}\frac{|w|^{n}}{n!}=e^{|w|}-1.$
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Hence
$|a+ \frac{p^{2}}{1-p^{4}}|\leq\frac{p^{2}}{1-p^{4}}(\exp\int_{0}^{p}2|\frac{\Psi(x)-p^{2_{X}}}{(1-x\Psi(x))(i-p^{2}x^{2})}|dx-1)$ .

Due to $t1_{1}e$ fixed point at $t1_{1}e$ origiil, we $CdJ\downarrow$ apply the $Sd_{lWalZ}$ Lemma and have
$|\Psi(x)|\leq x$ for $0<x<p$ . Furthermore, since $| \frac{w-p^{2}x}{i-xw}|\leq\frac{(1-p^{2})x}{1-x^{2}}$ for $|w|\leq x$ , we have

(7) $| \frac{\Psi(x)-p^{2_{X}}}{1-x\Psi(x)}|\leq\frac{(1-p^{2})x}{1-x^{2}}.$

Using the above, we finally obtain

$|a+ \frac{p^{2}}{1-p^{4}}| (7)\leq \frac{p^{2}}{i-p^{4}}(\exp\int_{0}^{p}2\frac{(1-p^{2})x}{(1-x^{2})(1-p^{2}x^{2})}dx-1)$

$= \frac{p^{2}}{1-p^{4}}(\exp(\log(1+p^{2}))-1)$

$= \frac{p^{4}}{1-p^{4}}.$

The rest of the proof goes according to the way described in [2].
$\square$
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