ON THE REPRESENTATION AND THE RESIDUE OF CONCAVE FUNCTIONS (On Schwarzian Derivatives and Its Applications)

Author(s)

OHNO, RINTARO

Citation

数理解析研究所講究録 (2013), 1824: 82-85

Issue Date

2013-02

URL

http://hdl.handle.net/2433/194724

Type

Departmental Bulletin Paper

Textversion

publisher

Kyoto University
ON THE REPRESENTATION AND THE RESIDUE OF CONCAVE FUNCTIONS

RINTARO OHNO

ABSTRACT. In [2] we introduced several integral representation formulas for concave functions. Using those, we gave a general formula to describe the residue of concave functions with a pole at \(p \in (0, 1) \). In the present article we will present alternate versions of the formulas, as well as a shortcut for the calculation to obtain the range of the residue.

Key words: concave univalent functions, integral representations

1. INTRODUCTION

Let \(\mathbb{C} \) be the complex plane, \(\hat{\mathbb{C}} \) the Riemann sphere and \(\mathbb{D} = \{ z \in \mathbb{C} : |z| < 1 \} \) be the unit disk. A univalent function \(f : \mathbb{D} \rightarrow \hat{\mathbb{C}} \) is said to be concave, if \(f(\mathbb{D}) \) is concave, i.e. \(\mathbb{C} \setminus f(\mathbb{D}) \) is convex. Commonly there are several types of concave functions, which map \(\mathbb{D} \) conformally onto a simply connected, concave domain in \(\hat{\mathbb{C}} \):

1. meromorphic, univalent functions \(f \) with a simple pole at the origin and the normalization \(f(z) = \frac{1}{z} + \sum_{n=0}^{\infty} a_n z^n \), said to belong to the class \(\mathcal{C}0_0 \),
2. meromorphic, univalent functions \(f \) with a simple pole at the point \(p \in (0, 1) \) and the normalization \(f(z) = z + \sum_{n=2}^{\infty} a_n z^n \), said to belong to the class \(\mathcal{C}0_p \) and
3. analytic, univalent functions \(f \) satisfying \(f(1) = \infty \) with the normalizations \(f(z) = z + \sum_{n=2}^{\infty} a_n z^n \) and an opening angle of \(f(\mathbb{D}) \) at \(\infty \) less or equal to \(\alpha \pi \) with \(\alpha \in (1, 2] \), said to belong to the class \(\mathcal{C}0(\alpha) \).

A detailed discussion of these classes has already been done in [2]. We therefore concentrate on the class \(\mathcal{C}0_p \) for the present article.

2. ALTERNATIVE FORMULAS

In [2] we introduced the following integral representation formula for functions of \(\mathcal{C}0_p \).

Theorem 1. [2] Let \(p \in (0, 1) \). For a meromorphic function \(f : \mathbb{D} \rightarrow \hat{\mathbb{C}} \) of class \(\mathcal{C}0_p \), there exists a function \(\varphi : \mathbb{D} \rightarrow \mathbb{D} \), holomorphic in \(\mathbb{D} \) with \(\varphi(p) = p \), such that the concave function can be represented as

\[
(1) \quad f'(z) = \frac{p^2}{(z-p)^2(1-zp)^2} \exp \int_0^z \frac{-2\varphi(\zeta)}{1-\zeta\varphi(\zeta)} d\zeta
\]

for \(z \in \mathbb{D} \). Conversely, for any holomorphic function \(\varphi \) mapping \(\mathbb{D} \rightarrow \mathbb{D} \) with \(\varphi(p) = p \), there exists a concave function of class \(\mathcal{C}0_p \) described by (1).

However, a fixed point of the function \(\varphi \) at \(p \) is not very useful for further discussions. Using several transformations we obtain an alternate version of Theorem 1.

2010 Mathematics Subject Classification. 30C45.

Key words and phrases. Concave functions; Integral representations.
Corollary 2. Let \(p \in (0, 1) \). For a meromorphic function \(f : \mathbb{D} \to \hat{\mathbb{C}} \) of class \(Co_p \), there exists a function \(\Psi : \mathbb{D} \to \mathbb{D} \), holomorphic in \(\mathbb{D} \) with \(\Psi(0) = 0 \) such that the concave function can be represented as

\[
f'(z) = \frac{p^2}{(z - p)^2(1 - zp)^2} \exp \left(2 \int_p^{1 - \frac{z}{px}} \frac{\Psi(\zeta)}{1 - \zeta \Psi(\zeta)} d\zeta \right)
\]

for \(z \in \mathbb{D} \). Conversely, for any holomorphic function \(\Psi \) mapping \(\mathbb{D} \to \mathbb{D} \) with \(\Psi(0) = 0 \), there exists a concave function of class \(Co_p \) described by (2).

Proof. Let \(p \in (0, 1) \) and \(z \in \mathbb{D} \). Applying the transformation \(\zeta = \frac{z - x}{px} \) and \(\Phi(x) = \varphi(\zeta) \) we obtain

\[
\int_0^z \frac{-2 \varphi(\zeta)}{1 - \zeta \varphi(\zeta)} d\zeta = \int_p^{1 - \frac{z}{px}} \frac{-2 \Phi(x)}{1 - \frac{x}{px} \Phi(x)} \cdot \frac{p^2 - 1}{(1 - px)^2} dx
\]

Here the function \(\Phi \) is holomorphic in \(\mathbb{D} \) with \(\Phi(0) = p \). Therefore there exists a function \(\Psi : \mathbb{D} \to \mathbb{D} \) holomorphic in \(\mathbb{D} \) with \(\Psi(0) = 0 \), such that \(\Phi(x) = \frac{p - \Psi(x)}{1 - p \Psi(x)} \). Then

\[
\int_0^z \frac{-2 \varphi(\zeta)}{1 - \zeta \varphi(\zeta)} d\zeta = \int_p^{1 - \frac{z}{px}} \frac{-2 (p - \Psi(\zeta))(p^2 - 1)}{(1 - px)^2 - (px - z)(1 - px)} dx
\]

Changing the variable inside the integration and replacing the integral in (1) leads to the statement.

The formula for the residue derived from the integral representation in [2] was given as follows.

Theorem 3. [2] Let \(f(z) \in Co_p \) be a concave function with a simple pole at some point \(p \in (0, 1) \). Then the residue of this function \(f \) can be described by some function \(\varphi : \mathbb{D} \to \mathbb{D} \), holomorphic in \(\mathbb{D} \) and \(\varphi(p) = p \), such that

\[
\text{Res}_p f = \frac{-p^2}{(1 - p^2)^2} \exp \int_0^p \frac{-2 \varphi(x)}{1 - x \varphi(x)} dx.
\]

Applying the alternative representation from Corollary 2, we obtain

Corollary 4. Let \(f(z) \in Co_p \) be a concave function with a simple pole at some point \(p \in (0, 1) \). Then the residue of this function \(f \) can be described by some function \(\Psi : \mathbb{D} \to \mathbb{D} \), holomorphic in \(\mathbb{D} \) and \(\Psi(0) = 0 \), such that

\[
\text{Res}_p f = \frac{-p^2}{(1 - p^2)^2} \exp 2 \int_0^p \frac{\Psi(x)}{1 - x \Psi(x)} - \frac{p}{1 - px} dx.
\]
The advantage of Corollary 4 over the original presentation is the fixed point of Ψ at the origin. This provides much easier means for the construction, than a fixed point at p. Furthermore, the Schwarz Lemma can be applied directly without any complicated analysis, giving a way for the estimate of special values. We will show an application in the next section.

3. RANGE OF THE RESIDUE

Wirths proved the following statement in [3] using the inequality

$$\left| \frac{1}{f(z)} - \frac{1}{z} + \frac{1+p^2}{p} \right| < 1$$

provided by Miller in [1].

Theorem 5. [3] Let $p \in (0, 1)$. For $a \in \mathbb{C}$ there exists a function $f \in C_0$ such that $a = \text{Res}_p f$ if and only if

$$|a + \frac{p^2}{1-p^4}| \leq \frac{p^4}{1-p^4}.$$

Let $\theta \in [0, 2\pi)$. A function $f \in C_0$ has the residue

$$a = -\frac{p^2}{1-p^4} + e^{i\theta} \frac{p^4}{1-p^4}$$

if and only if

$$f_\theta(z) = \frac{z - \frac{p}{1+p^4} (1 + e^{i\theta}) z^2}{(1 - \frac{z}{p}) (1 - pz)}.$$

The established representation formula for the residue can be used for a different approach of the same statement as described in [2]. For the present discussion we will use Corollary 4, which provides a shortcut for the proof. We also present some details, omitted in [2].

Proof. Let $p \in (0, 1)$ and $\Psi : \mathbb{D} \to \mathbb{D}$ be holomorphic in \mathbb{D} with fixed point at the origin. For $a = \text{Res}_p f$ with $f \in C_0$, we obtain with the use of Corollary 4

$$|a + \frac{p^2}{1-p^4}| = |\frac{p^2}{1-p^4}| \exp \left(\frac{2}{1-p^4} \exp \left(2 \int_0^p \frac{\Psi(x)}{1-x\Psi(x)} - \frac{p}{1-px} dx \right) - 1 \right).$$

Some basic calculations yield

$$\frac{1+p^2}{1-p^2} = \exp \left(\frac{1}{2} \log \frac{1+p^2}{1-p^2} \right) = \exp \int_0^p \frac{2p}{1-p^2x^2} dx$$

and therefore

$$|a + \frac{p^2}{1-p^4}| = \frac{p^2}{1-p^4} \exp \int_0^p \frac{2}{1-p^2x^2} \left(\frac{p}{1-p^2x^2} - \frac{p}{1-px} + \frac{\Psi(x)}{1-x\Psi(x)} \right) dx - 1 \right|$$

$$= \frac{p^2}{1-p^4} \exp \int_0^p \frac{2}{1-p^2x^2} \left(\frac{\Psi(x) - p^2x}{(1-x\Psi(x))(1-p^2x^2)} dx - 1 \right).$$

From the triangle inequality, we know that

$$|e^w - 1| = \left| \sum_{n=1}^\infty \frac{w^n}{n!} \right| \leq \sum_{n=1}^\infty \frac{|w|^n}{n!} = e^{|w|} - 1.$$
Hence
\[|a + \frac{p^2}{1-p^4}| \leq \frac{p^2}{1-p^4} \left(\exp \int_0^p \frac{\Psi(x) - p^2 x}{(1-x\Psi(x))(1-p^2 x^2)} \, dx - 1 \right). \]

Due to the fixed point at the origin, we can apply the Schwarz Lemma and have $|\Psi(x)| \leq x$ for $0 < x < p$. Furthermore, since $|\frac{w - p^2 x}{1-xw}| \leq \frac{(1-p^2)x}{1-x^2}$ for $|w| \leq x$, we have

\[|\frac{\Psi(x) - p^2 x}{1-x\Psi(x)}| \leq \frac{(1-p^2)x}{1-x^2}. \tag{7} \]

Using the above, we finally obtain
\[|a + \frac{p^2}{1-p^4}| \leq \frac{p^2}{1-p^4} \left(\exp \int_0^p \frac{(1-p^2)x}{(1-x^2)(1-p^2 x^2)} \, dx - 1 \right) \]
\[= \frac{p^2}{1-p^4} \left(\exp(\log(1+p^2)) - 1 \right) \]
\[= \frac{p^4}{1-p^4}. \]

The rest of the proof goes according to the way described in [2].

\[\square \]

REFERENCES

GRADUATE SCHOOL OF INFORMATION SCIENCES,
TOHOKU UNIVERSITY, SENDAI, 980-8579, JAPAN.
E-mail address: rohno@ims.is.tohoku.ac.jp