<table>
<thead>
<tr>
<th>Title</th>
<th>New Family of Integral Operators of Meromorphic Functions (On Schwarzian Derivatives and Its Applications)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Author(s)</td>
<td>Mohammed, Aabed; Darus, Maslina</td>
</tr>
<tr>
<td>Citation</td>
<td>数理解析研究所講究録 (2013), 1824: 14-20</td>
</tr>
<tr>
<td>Issue Date</td>
<td>2013-02</td>
</tr>
<tr>
<td>URL</td>
<td>http://hdl.handle.net/2433/194730</td>
</tr>
<tr>
<td>Type</td>
<td>Departmental Bulletin Paper</td>
</tr>
<tr>
<td>Textversion</td>
<td>publisher</td>
</tr>
</tbody>
</table>

Kyoto University
New Family of Integral Operators of Meromorphic Functions

Aabed Mohammed1 and Maslina Darus2

1,2School of Mathematical Sciences, Faculty of Science and Technology, Universiti Kebangsaan Malaysia
43600 Bangi, Selangor D. Ehsan, Malaysia
1aabedukm@yahoo.com
2maslina@ukm.my

Abstract. We define here an integral operator $I_{n}(f_{i},g_{i})(z)$ for meromorphic functions in the punctured open unit disk. Some properties for this operator are derived.

Keywords: analytic function, meromorphic function, starlike function, convex function, integral operator.

AMS Mathematics Subject Classification: 30C45

2-corresponding author

1 Introduction

Let Σ denote the class of functions of the form

$$f(z) = \frac{1}{z} + \sum_{n=0}^{\infty} a_{n}z^{n},$$ \hspace{1cm} (1.1)

which are analytic in the punctured open unit disk

$$U^{*} = \{z \in \mathbb{C}: 0 < |z| < 1\} = \cup \{0\},$$ \hspace{1cm} (1.2)

where \cup is the open unit disk $U = \{z \in \mathbb{C}: |z| < 1\}$.

We say that a function $f \in \Sigma$ is meromorphic starlike of order $\delta (0 \leq \delta < 1)$, and belongs to the class $\Sigma^{*}(\delta)$, if it satisfies the inequality

$$-\Re\left(\frac{zf'(z)}{f(z)}\right) > \delta.$$ \hspace{1cm} (1.3)

A function $f \in \Sigma$ is a meromorphic convex function of order $\delta (0 \leq \delta < 1)$, if f satisfies the following inequality

$$-\Re\left(1 + \frac{zf''(z)}{f'(z)}\right) > \delta,$$ \hspace{1cm} (1.4)

and we denote this class by $\Sigma_{k}(\delta)$.
For $f \in \Sigma$, Wang et al. [13] (see also [14]) introduced and studied the subclass $\Sigma_N(\lambda)$ of Σ consisting of functions $f(z)$ satisfying

$$-\Re \left(\frac{zf''(z)}{f'(z)} + 1 \right) < \lambda \quad (\lambda > 1, \ z \in \mathbb{U}).$$

In the literature, several integral operators of meromorphic functions in the punctured open unit disk have been investigated and studied by many authors (cf., e.g., [1-11]).

For $i = 1, 2, \cdots, n$, $c > 0$, and $\alpha_i, \gamma_i \geq 0$, we now, introduce a generalized integral operator $I_n(f_i, g_i)(z): \Sigma^n \to \Sigma$ as follows

$$I_n(f_i, g_i)(z) = \frac{c}{z^{c+1}} \int_{0}^{z} u^{c-1} \prod_{i=1}^{n} (uf_i(u))^\alpha_i (-u^2 g_i'(u))^\gamma_i \, du,$$ \hspace{1cm} (1.5)

where $f_i, g_i \in \Sigma$. Indeed, by varying the parameters c, α_i and γ_i, the operator $I_n(f_i, g_i)$ reduces to the following well-known integral operators.

(i) for $\gamma_i = 0$, we obtain the integral operator

$$H(z) = I_n(f_i)(z) = \frac{c}{z^{c+1}} \int_{0}^{z} u^{c-1} \prod_{i=1}^{n} (uf_i(u))^\alpha_i \, du,$$ \hspace{1cm} (1.6)

introduced by Frasin [8].

(ii) For $c = 1$ and $\gamma_i = 0$, we obtain the integral operator

$$\mathcal{H}_n(z) = I_n(f_i)(z) = \frac{1}{z^2} \int_{0}^{z} \prod_{i=1}^{n} (uf_i(u))^\alpha_i \, du,$$ \hspace{1cm} (1.7)

introduced by Mohammed and Darus [9].

(iii) For $c = 1$ and $\alpha_i = 0$, we obtain the integral operator

$$\mathcal{H}_{\gamma_1, \ldots, \gamma_n}(z) = I_n(g_i)(z) = \frac{1}{z^2} \int_{0}^{z} \prod_{i=1}^{n} (-u^2 g_i'(u))^\gamma_i \, du,$$ \hspace{1cm} (1.8)

introduced by Mohammed and Darus [10].

(iv) If $n = 1$, $\alpha_1 = 1$, $f_1 = f$ and $\gamma_1 = 0$ we have the integral operator

$$I_c(f)(z) = \frac{c}{z^{c+1}} \int_{0}^{z} u^{c-1} f(u) \, du,$$
which was studied by many authors (cf., e.g., [1, 2, 6]).

For the starlikeness of the integral operator $I_n(f_i, g_i)$, we have to recall here the following Lemma.

Lemma 1.1 ([12]). Suppose that the function $\Psi : \mathbb{C}^2 \rightarrow \mathbb{C}$ satisfies the following condition:

$$\Re\{\Psi(is, t)\} \leq 0, \quad \left(s, t \in \mathbb{R}; \ t \leq \frac{-1 + s^2}{2}\right).$$

If the function $p(z) = 1 + p_1z + ...$, is analytic in \mathbb{U} and

$$\Re\{\Psi(p(z), zp'(x))\} > 0, \ (z \in \mathbb{U}),$$

then

$$\Re\{p(z)\} > 0 \ (z \in \mathbb{U}).$$

2 Main Results

In the next theorem, we place conditions for the meromorphically starlikeness of the integral operator $I_n(f_i, g_i)(z)$ which is defined in (1.5).

Theorem 2.1. For $i = 1, 2, \ldots, n$, let $f_i, g_i \in \Sigma$, $\alpha_i, \gamma_i \geq 0$ and let $c > 0$. If $f_i \in \Sigma^*$, $g_i \in \Sigma_k$, and $\sum_{i=1}^{n} (\alpha_i + \gamma_i) = 1$, then the general integral operator $I_n(f_i, g_i)(z)$ belongs to the meromorphic starlike function class.

Proof. From (1.5) it follows that

$$z^2I_n'(f_i, g_i)(z) + (c + 1)zI_n(f_i, g_i)(z) = c \prod_{i=1}^{n} \left(zf_i(z)\right)^{\alpha}(\!-\!z^2g_i'(z)\!)^{\gamma_i}$$

(2.1)

Differentiating both sides of (2.1) logarithmically and multiplying by z, we obtain

$$\frac{z^2I_n''(f_i, g_i)(z) + (c + 3)zI_n'(f_i, g_i)(z) + (c + 1)I_n(f_i, g_i)(z)}{zI_n'(f_i, g_i)(z) + (c + 1)I_n(f_i, g_i)(z)}$$

$$= \sum_{i=1}^{n} \alpha_i \frac{zf_i'(z)}{f_i(z)} + \sum_{i=1}^{n} \gamma_i \left(\frac{zg_i''(z)}{g_i'(z)} + 1\right) + \sum_{i=1}^{n} \alpha_i + \sum_{i=1}^{n} \gamma_i.$$

(2.2)

Which is equivalent to

$$\frac{z^2I_n''(f_i, g_i)(z) + (c + 2)zI_n'(f_i, g_i)(z)}{zI_n'(f_i, g_i)(z) + (c + 1)I_n(f_i, g_i)(z)}$$
\[= \sum_{i=1}^{n} \alpha_i \left(-\frac{zf_i'(z)}{f_i(z)} \right) + \sum_{i=1}^{n} \gamma_i \left(-\frac{zg_i''(z)}{g_i'(z)} - 1 \right) + 1 - \sum_{i=1}^{n} (\alpha_i + \gamma_i). \quad (2.3)\]

We can write (2.3) as the following

\[= \sum_{i=1}^{n} \alpha_i \left(-\frac{zf_i'(z)}{f_i(z)} \right) + \sum_{i=1}^{n} \gamma_i \left(-\frac{zg_i''(z)}{g_i'(z)} - 1 \right) + 1 - \sum_{i=1}^{n} (\alpha_i + \gamma_i). \quad (2.4)\]

We define the regular function \(p \) in \(\mathbb{U} \) by

\[p(z) = -\frac{zI_n'(f_i, g_i)(z)}{I_n(f_i, g_i)(z)}\]

and \(p(0) = 1 \). Differentiating \(p(z) \) logarithmically, we obtain

\[-p(z) + \frac{zp'(z)}{p(z)} = 1 + \frac{zI_n''(f_i, g_i)(z)}{I_n'(f_i, g_i)(z)}. \quad (2.6)\]

From (2.4), (2.5) and (2.6) we obtain

\[p(z) + \frac{zp'(z)}{-p(z) + c + 1} = \sum_{i=1}^{n} \alpha_i \left(-\frac{zf_i'(z)}{f_i(z)} \right) + \sum_{i=1}^{n} \gamma_i \left(-\frac{zg_i''(z)}{g_i'(z)} - 1 \right) + 1 - \sum_{i=1}^{n} (\alpha_i + \gamma_i). \quad (2.7)\]

Let us put

\[\Psi(u, v) = u + \frac{v}{-u + c + 1}. \quad (2.8)\]

From the hypothesis of Theorem 2.1, (2.7) and (2.8) we obtain

\[\Re\{\Psi(p(z), zp'(z))\} = \sum_{i=1}^{n} \alpha_i \left(-\Re\frac{zf_i'(z)}{f_i(z)} \right) + \sum_{i=1}^{n} \gamma_i \left\{ \Re \left(-\frac{zg_i''(z)}{g_i'(z)} - 1 \right) \right\} + 1 - \sum_{i=1}^{n} (\alpha_i + \gamma_i)\]

\[> 1 - \sum_{i=1}^{n} (\alpha_i + \gamma_i) = 0. \quad (2.9)\]

Now we proceed to show that

\[\Re\{\Psi(is, t)\} \leq 0, \quad \left(s, t \in \mathbb{R}; \; t \leq \frac{-(1 + s^2)}{2} \right).\]

Indeed, from (2.8), we have

\[\Re\{\Psi(is, t)\} = \Re \left\{ is + \frac{t}{-is + c + 1} \right\} = \frac{t(c + 1) \leq -(1 + s^2)(c + 1)}{s^2 + (c + 1)^2} \leq -\frac{(1 + s^2)(c + 1)}{2 [s^2 + (c + 1)^2]} < 0. \quad (2.10)\]

Thus, from (2.9), (2.10) and by using Lemma 1.1, we conclude that \(\Re\{p(z)\} > 0 \), and so

\[-\Re \left\{ \frac{zI_n'(f_i, g_i)(z)}{I_n(f_i, g_i)(z)} \right\} > 0.]
that is $I_n(f_i, g_i)(z)$ is starlike.

Next, we place conditions for the integral operator $I_n(f_i, g_i)$ to be in the class $\Sigma_N(\lambda)$.

Theorem 2.2. For $i = 1, 2, \ldots, n$, let $f_i, g_i \in \Sigma$, $\alpha_i, \gamma_i \geq 0$ and let $c > 0$. If $f_i \in \Sigma^*(\delta)$, $g_i \in \Sigma_k(\delta)$, and

$$\sum_{i=1}^{n} (\alpha_i + \gamma_i) > \frac{c+1}{1-\delta}, \quad (2.11)$$

then $I_n(f_i, g_i)(z) \in \Sigma_N(\lambda)$, $\lambda > 1$.

Proof. Equivalently, (2.3) can be written as

$$- \frac{(z f_i'(s) + s f_i''(s))}{z f_i'(s) + s f_i''(s)} - c = \sum_{i=1}^{n} \alpha_i \left(- \frac{zf_i'(s)}{f_i(s)} \right) + \sum_{i=1}^{n} \gamma_i \left(- \frac{sg_i''(s)}{g_i(s)} - 1 \right) + 1 + \sum_{i=1}^{n} (\alpha_i + \gamma_i). \quad (2.12)$$

Therefore

$$- \left(\frac{z f_i'(s) + s f_i''(s)}{z f_i'(s) + s f_i''(s)} + 1 \right) = \sum_{i=1}^{n} \alpha_i \left(- \frac{zf_i'(s)}{f_i(s)} \right) + \sum_{i=1}^{n} \gamma_i \left(- \frac{sg_i''(s)}{g_i(s)} - 1 \right) + 1 + \sum_{i=1}^{n} (\alpha_i + \gamma_i) \quad (2.13)$$

Taking real part of both sides of (2.13), we obtain

$$- \Re \left(\frac{z f_i'(s) + s f_i''(s)}{z f_i'(s) + s f_i''(s)} + 1 \right) = \Re \left\{ \sum_{i=1}^{n} \alpha_i \left(- \frac{zf_i'(s)}{f_i(s)} \right) + \sum_{i=1}^{n} \gamma_i \left(- \frac{sg_i''(s)}{g_i(s)} - 1 \right) + 1 \right. \quad (2.14)$$

\[\left. - \sum_{i=1}^{n} (\alpha_i + \gamma_i) \right\| + \sum_{i=1}^{n} \alpha_i \left(- \Re \left(\frac{zf_i'(s)}{f_i(s)} \right) \right) + \sum_{i=1}^{n} \gamma_i \Re \left(- \frac{sg_i''(s)}{g_i(s)} - 1 \right) + c + 2 \]

\[\left. - \sum_{i=1}^{n} (\alpha_i + \gamma_i) \right\| + \sum_{i=1}^{n} \alpha_i \left(- \Re \left(\frac{zf_i'(s)}{f_i(s)} \right) \right) + \sum_{i=1}^{n} \gamma_i \Re \left(- \frac{sg_i''(s)}{g_i(s)} - 1 \right) + c + 2 \]

\[\left. - \sum_{i=1}^{n} (\alpha_i + \gamma_i) \right\| + \sum_{i=1}^{n} \alpha_i \left(- \Re \left(\frac{zf_i'(s)}{f_i(s)} \right) \right) + \sum_{i=1}^{n} \gamma_i \Re \left(- \frac{sg_i''(s)}{g_i(s)} - 1 \right) + c + 2 \]

\[\left. - \sum_{i=1}^{n} (\alpha_i + \gamma_i) \right\| + \sum_{i=1}^{n} \alpha_i \left(- \Re \left(\frac{zf_i'(s)}{f_i(s)} \right) \right) + \sum_{i=1}^{n} \gamma_i \Re \left(- \frac{sg_i''(s)}{g_i(s)} - 1 \right) + c + 2 \]
Let
\[
\lambda = \left| \frac{(c+1)I_n(f_{i}, g_{i})(z)}{zI_n(f_{i}, g_{i})(z)} \left[\sum_{i=1}^{n} \alpha_{i} \left(-\frac{zf_{i}'(z)}{f_{i}(z)} \right) + \sum_{i=1}^{n} \gamma_{i} \left(-\frac{zg_{i}''(z)}{g_{i}'(z)} - 1 \right) + 1 - \sum_{i=1}^{n} \left(\alpha_{i} + \gamma_{i} \right) \right] \right|
\]
\[+ \sum_{i=1}^{n} \alpha_{i} \left(-\Re \frac{zf_{i}'(z)}{f_{i}(z)} \right) + \sum_{i=1}^{n} \gamma_{i} \Re \left(-\frac{zg_{i}''(z)}{g_{i}'(z)} - 1 \right) + c + 2 - \sum_{i=1}^{n} \left(\alpha_{i} + \gamma_{i} \right).\]

Since \[\left| \frac{(c+1)I_n(f_{i}, g_{i})(z)}{zI_n(f_{i}, g_{i})(z)} \left[\sum_{i=1}^{n} \alpha_{i} \left(-\frac{zf_{i}'(z)}{f_{i}(z)} \right) + \sum_{i=1}^{n} \gamma_{i} \left(-\frac{zg_{i}''(z)}{g_{i}'(z)} - 1 \right) + 1 - \sum_{i=1}^{n} \left(\alpha_{i} + \gamma_{i} \right) \right] \right| > 0, f_{i}, g_{i} \in \Sigma^{*}(\delta),\]
then we have
\[
\lambda > c + 2 - (1 - \delta) \sum_{i=1}^{n} \left(\alpha_{i} + \gamma_{i} \right).
\]

Then, by the hypothesis (2.11), we have \(\lambda > 1\). Therefore, \(I_{n}(f_{i}, g_{i})(z) \in \Sigma_{N}(\lambda), \lambda > 1\).

If we set \(\gamma_{i} = 0\) in Theorem 2.2, then we have [8, Theorem 2.6].

Further, putting \(c = 1, \gamma_{i} = 0\) in Theorem 2.2, we get

Corollary 2.3. For \(i = 1, 2, \ldots, n\), let \(f_{i} \in \Sigma, \alpha_{i} \geq 0\). If \(f_{i} \in \Sigma^{*}(\delta)\), and
\[
\sum_{i=1}^{n} \alpha_{i} > \frac{2}{1 - \delta},
\]
then \(\mathcal{H}_{n}(z) \in \Sigma_{N}(\lambda), \lambda > 1\).

In addition, taking \(c = 1, \alpha_{i} = 0\) in Theorem 2.2, we receive

Corollary 2.4. For \(i = 1, 2, \ldots, n\), let \(g_{i} \in \Sigma, \gamma_{i} \geq 0\). If \(g_{i} \in \Sigma_{k}(\delta)\), and
\[
\sum_{i=1}^{n} \gamma_{i} > \frac{2}{1 - \delta},
\]
then \(\mathcal{H}_{\gamma_{1}, \ldots, \gamma_{n}}(z) \in \Sigma_{N}(\lambda), \lambda > 1\).

Acknowledgement:
The work here is supported by UKM-DLP-2011-050 and LRGS/TD/2011/UKM/ICT/03/02.

References

