<table>
<thead>
<tr>
<th>Title</th>
<th>On the Cyclicity of finite CM abelian varieties (Automorphic forms and automorphic L-functions)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Author(s)</td>
<td>Virdol, Cristian</td>
</tr>
<tr>
<td>Citation</td>
<td>数理解析研究所講究録 (2013), 1826: 163-167</td>
</tr>
<tr>
<td>Issue Date</td>
<td>2013-03</td>
</tr>
<tr>
<td>URL</td>
<td>http://hdl.handle.net/2433/194755</td>
</tr>
<tr>
<td>Type</td>
<td>Departmental Bulletin Paper</td>
</tr>
<tr>
<td>Textversion</td>
<td>publisher</td>
</tr>
</tbody>
</table>

Kyoto University
On the Cyclicity of finite CM abelian varieties

Cristian Virdol
Graduate School of Mathematics
Kyushu University
virdol@imi.kyushu-u.ac.jp

July 17, 2012

Abstract

Let A be an abelian variety over a number field F of dimension r, where $r \geq 1$ is an integer. Assume that $\text{End}_F A \otimes \mathbb{Q} = K$, where K is a CM-field such that $[K : \mathbb{Q}] = 2r$. For \wp a finite prime of F, we denote by \mathbb{F}_\wp the residue field at \wp. If A has good reduction at \wp, let \overline{A} be the reduction of A at \wp. Under GRH, we obtain ([V]) an asymptotic formula for the number of primes \wp of F, with $N_{F/\mathbb{Q}} \wp \leq x$, for which $\overline{A}(\mathbb{F}_\wp)$ has at most $2r-1$ cyclic components.

1 The Main result

Consider A an abelian variety defined over a number field F, of conductor N, and of dimension r, where $r \geq 1$ is an integer. Let Σ_F be the set of finite places of F, and for \wp a prime of F, let \mathbb{F}_\wp be the residue field at \wp. Let \mathcal{P}_A be the set of primes $\wp \in \Sigma_F$ of good reduction for A, (i.e. $(N_{F/\mathbb{Q}} \wp, N_{F/\mathbb{Q}} N) = 1$). For $\wp \in \mathcal{P}_A$, we denote by \overline{A} the reduction of A at \wp.

We have that $\overline{A}(\mathbb{F}_\wp) \subseteq \overline{A}[m](\overline{\mathbb{F}}_\wp) \subseteq (\mathbb{Z}/m\mathbb{Z})^{2r}$ for any positive integer m satisfying $|\overline{A}(\mathbb{F}_\wp)||m$. Hence

$$\overline{A}(\mathbb{F}_\wp) \cong \mathbb{Z}/m_1\mathbb{Z} \times \mathbb{Z}/m_2\mathbb{Z} \times \cdots \times \mathbb{Z}/m_s\mathbb{Z},$$

where $s \leq 2r$, $m_i \in \mathbb{Z}_{\geq 2}$, and $m_i|m_{i+1}$ for $1 \leq i \leq s - 1$. Each $\mathbb{Z}/m_i\mathbb{Z}$ is called a cyclic component of $\overline{A}(\mathbb{F}_\wp)$. If $s < 2r$, we say that $\overline{A}(\mathbb{F}_\wp)$ has at most $(2r - 1)$ cyclic components (thus if $r = 1$ this means that $\overline{A}(\mathbb{F}_\wp)$ is cyclic). For $x \in \mathbb{R}$, define

$$f_{A,F}(x) = \{\wp \in \mathcal{P}_A | N_{F/\mathbb{Q}} \wp \leq x, \overline{A}(\mathbb{F}_\wp) \text{ has at most } (2r-1) \text{ cyclic components}\}.$$

Let $F(A[m])$ be the field obtained by adjoining to F the m-division points $A[m]$ of A.

We obtain (this is the main result of [V]; when $F = \mathbb{Q}$ and $r = 1$, i.e. when A is a CM elliptic curve over \mathbb{Q}, Theorem 1.1 is similar to Theorem 1.2 of [CM]):
Theorem 1.1. Let A be an abelian variety over a number field F of dimension $r \geq 1$, of conductor \mathcal{N}, such that $\text{End}_{\bar{F}} A \otimes \mathbb{Q} = K$, where K is a CM-field satisfying $[K : \mathbb{Q}] = 2r$. Assume that the Generalized Riemann Hypothesis (GRH) holds for the Dedekind zeta functions of the division fields for A. Then we have

$$f_{A,F}(x) = c_{A,F} li x + O_{A,F}(x^{\frac{5}{6}}(\log x)^{25}),$$

where $li x := \int_{2}^{x} \frac{1}{\log t} dt$, and

$$c_{A,F} = \sum_{m=1}^{\infty} \frac{\mu(m)}{[F(A[m]) : F]}.$$

Here $\mu(\cdot)$ is the Mobius function, and the implicit $O_{A,F}$-constant depends on A and F.

2 Odds and ends

If F is a number field, we denote $G_{F} := \text{Gal}(\bar{F}/F)$. Let A be an abelian variety over F of dimension $r \geq 1$, and of conductor \mathcal{N}. We denote by \mathcal{P}_{A} be the set of primes $\wp \in \Sigma_{F}$ of good reduction for A, (i.e. $(N_{F/\mathbb{Q}}\wp, N_{F/\mathbb{Q}}\mathcal{N}) = 1$). For $m \geq 1$ an integer, let $A[m]$ be the m-division points of A in \bar{F}. Then

$$A[m] \simeq (\mathbb{Z}/m\mathbb{Z})^{2r}.$$

If $F(A[m])$ is the field obtained by adjoining to F the elements of $A[m]$, then we have a natural injection

$$\Phi_{m} : \text{Gal}(F(A[m])/F) \hookrightarrow \text{Aut}(A[m]) \simeq GL_{2r}(\mathbb{Z}/m\mathbb{Z}).$$

For l a rational prime, define

$$T_{l}(A) = \lim_{\arrow} A[l^{n}].$$

The Galois group G_{F} acts on

$$T_{l}(A) \simeq \mathbb{Z}_{l}^{2r},$$

where \mathbb{Z}_{l} is the l-adic completion of \mathbb{Z} at l, and we obtain a representation

$$\rho_{A,l} : G_{F} \to \text{Aut}(T_{l}(A)) \simeq GL_{2r}(\mathbb{Z}_{l}),$$

which is unramified outside $lN_{F/\mathbb{Q}}\mathcal{N}$. If $\wp \in \mathcal{P}_{A}$, let σ_{\wp} be the Artin symbol of \wp in G_{F}, and let l be a rational prime satisfying $(l, N_{F/\mathbb{Q}}\wp) = 1$. We denote by $P_{A,\wp}(X) = X^{2r} + a_{2r-1,A}(\wp)X^{2r-1} + \ldots + a_{1,A}(\wp)X + N_{F/\mathbb{Q}}\wp \in \mathbb{Z}[X]$ the characteristic polynomial of σ_{\wp} on $T_{l}(A)$. Then $P_{A,\wp}(X)$ is independent of l. One can identify $T_{l}(A)$ with $T_{l}(\bar{A})$, where \bar{A} is the reduction of A at \wp, and the action of σ_{\wp} on $T_{l}(A)$ is the same as the action of the Frobenius π_{\wp} of \bar{A} on $T_{l}(\bar{A})$.
We say that an abelian variety A defined over a number field F of dimension r is CM (or has many complex multiplications) if $\text{End}_F(A) \otimes \mathbb{Q} = \mathcal{F}$, where \mathcal{F} is a CM-field satisfying $[\mathcal{F} : \mathbb{Q}] = 2r$. We denote by \mathcal{F} the maximal totally real number field contained in K, and let $O_\mathcal{F}$ be the ring of integers of \mathcal{F} and let O_K be the ring of integers of K. Let $\phi_1, \ldots, \phi_r, \overline{\phi}_1, \ldots, \overline{\phi}_r$, be the set of embeddings of K into \mathbb{C}, where $\overline{\phi}_i$ is the complex conjugate of ϕ_i. Then we have $[K : \mathcal{F}] = 2$, and $K = \mathcal{F}(\sqrt{-D})$ for some totally positive $D \in O_\mathcal{F}$.

Lemma 2.1. (Ribet [R]) Let A be a CM abelian variety defined over a number field F, of dimension r, of conductor \mathcal{N}, and let m be a positive integer. Then

1. $\phi(m)^2 \ll [F(A[m]) : F]$, where $\phi(m)$ is the Euler function,
2. the extension $F(A[m])/F$ is ramified only at places dividing $m\mathcal{N}$.

Lemma 2.2. (Shimura [SH]) Let A be a CM abelian variety defined over a number field F, of dimension r, and of conductor \mathcal{N}. Then for all $\wp \in \mathcal{P}_A$, the characteristic polynomial $P_{A,\wp}(X)$ has roots $\pi_1(\wp), \ldots, \pi_r(\wp), \overline{\pi}_1(\wp), \ldots, \overline{\pi}_r(\wp)$, where $\overline{\pi}_i(\wp)$ is the complex conjugate of $\pi_i(\wp)$, and $\pi_i(\wp)\overline{\pi}_i(\wp) = N_{\mathcal{F}/\mathbb{Q}}(\wp)$, for all $i = 1, \ldots, r$. Moreover one can assume that $\pi_1(\wp) \in \text{End}_\mathcal{F}(A) \subseteq O_K$, and that for any $i = 1, \ldots, r$, we have $\pi_i(\wp) = \phi_i(\pi_1(\wp))$.

On can prove the following results (see [V]):

Lemma 2.3. Let A be an abelian variety over a number field F, of conductor \mathcal{N}. Let $\wp \in \mathcal{P}_A$, and let p be a rational prime. Then $A(\mathbb{F}_p)$ contains a (q, \ldots, q)-type subgroup (q appears 2r-times), i.e. a subgroup isomorphic to $\mathbb{Z}/q\mathbb{Z} \times \ldots \times \mathbb{Z}/q\mathbb{Z}$, iff \wp splits completely in $F(A[q])$.

Lemma 2.4. Let A be a CM abelian variety defined over a number field F, of dimension r, and of conductor \mathcal{N}. Let m be a positive integer. Then $\wp \in \mathcal{P}_A$, with $(N_{\mathcal{F}/\mathbb{Q}}(\wp), m) = 1$, splits completely in $F(A[m])$ iff $\pi_1(\wp) - 1 \in \text{End}_\mathcal{F}(A)$, where $\pi_1(\wp)$ appears in Lemma 2.2.

Lemma 2.5. Let A be an abelian variety over a number field F, of conductor \mathcal{N}. Let $\wp \in \mathcal{P}_A$, and let p be the rational prime below \wp. Then $A(\mathbb{F}_p)$ contains at most $(2r - 1)$-cyclic components iff \wp does not split completely in $F(A[q])$ for any rational prime $q \neq p$.

Lemma 2.6. With the same notations as above, for any $m \in \mathbb{N}^*$ and any $x \in \mathbb{R}$, we have that

$$S_m := |\{\wp \in \Sigma_F | N_{\mathcal{F}/\mathbb{Q}} \leq x, N_{\mathcal{F}/\mathbb{Q}} = (\alpha m + 1)^2 + D\beta^2 m^2, \text{ for some } \alpha + \sqrt{-D}\beta \in O_K, \text{ where } \alpha, \beta \in \mathcal{F}\}| \ll \frac{x^{\frac{3}{2}}}{m^3} + 1.$$
3 Chebotarev

Consider L/F a Galois extension of number fields, with Galois group G. We denote by n_L and d_L the degree and the discriminant of L/\mathbb{Q}, and by d_F the discriminant of F/\mathbb{Q}. Let $\mathcal{P}(L/F)$ be the set of rational primes p which lie below places of F which ramify in L/F.

Lemma 3.1. (Serre [SE]) If L/F is Galois extension of number fields, then

$$\log d_L \leq |G| \log d_F + n_L(1 - \frac{1}{|G|}) \sum_{p \in \mathcal{P}(L/F)} \log p + n_L \log |G|.$$

Let C be a conjugacy class in G. For a positive real number x, let

$$\pi_C(x, L/F) := \left| \{ \wp \in \Sigma_F \mid N_{F/\mathbb{Q}}\wp \leq x, \ \wp \text{ unramified in } L/F, \ \sigma_{\wp} \in C \} \right|,$$

where σ_{\wp} is a Frobenius element at \wp. The Chebotarev density theorem says that

$$\pi_C(x, L/F) \sim \frac{|C|}{|G|} \text{li} x \sim \frac{|C|}{|G|} x \log x,$$

and moreover:

Lemma 3.2. (Serre [SE]) Let L/F be a Galois extension of number fields. If the Dedekind zeta function of L satisfies the GRH, then

$$|\pi_C(x, L/F) - \frac{|C|}{|G|} \text{li} x| \ll |C| x^{\frac{1}{2}} \left(\log x + \frac{\log |d_L|}{|G|} \right),$$

where the implied O-constant depends only on F.

4 Sketch of the proof of Theorem 1.1

Using §2 one obtains (see §4 of [V]), for $y = y(x)$ any real number with $y \leq 2x^{\frac{1}{2}}$, that

$$f_{A,F}(x) = \sum_{m \leq y} \mu(m) \pi_1(x, F(A[m])/F) = \sum_{m \leq y} \mu(m) \pi_1(x, F(A[m])/F) + \sum_{y < m \leq 2x^{\frac{1}{2}}} \mu(m) \pi_1(x, F(A[m])/F)$$

$$= \text{main} + \text{error}. \quad (4.1)$$

Using §2 and Chebotarev, under GRH, one obtains (see §4 of [V])

$$\text{main} = \sum_{m \leq y} \frac{\mu(m)}{n(m)} \text{li} x + \sum_{m \leq y} O(x^{\frac{1}{2}} \log(mN_{F/\mathbb{Q}}N_{x}))$$
\[= \sum_{m \leq y} \frac{\mu(m)}{n(m)} \text{li} x + O(yx^{\frac{1}{2}} \log(N_{F/\mathbb{Q}}N x)), \] (4.2)

where \(n(m) := [F(A[m]) : F] \), and

\[
\text{error} \ll \sum_{y < m \leq 2x^{\frac{1}{2}}} \frac{x^{\frac{3}{2}}}{m^3} \ll \frac{x^{\frac{3}{2}}}{y^2}.
\]

For
\[
y := \frac{x^{\frac{1}{2}}}{(\log(N_{F/\mathbb{Q}}N x))^{\frac{1}{3}}},
\]
from \(\S 2 \) one gets (see \(\S 4 \) of [V])
\[
\sum_{m > y} \frac{\mu(m)}{n(m)} \text{li} x \ll \sum_{m \text{ square-free}} \frac{(\log \log m)^2}{m^2} \text{li} x \ll \frac{(\log \log y)^2}{y} \text{li} x \ll x^{\frac{5}{6}}.
\]

Hence
\[
f_{A,F}(x) = \sum_{m=1}^{\infty} \frac{\mu(m)}{n(m)} \text{li} x + O(x^{\frac{5}{6}}(\log(N_{F/\mathbb{Q}}N x))^{\frac{2}{3}}).
\]

References

