<table>
<thead>
<tr>
<th>Title</th>
<th>A Report on Studies of Relative Randomness (Proof theory and complexity)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Author(s)</td>
<td>Peng, NingNing</td>
</tr>
<tr>
<td>Citation</td>
<td>数理解析研究所講究録 (2013), 1832: 154-157</td>
</tr>
<tr>
<td>Issue Date</td>
<td>2013-04</td>
</tr>
<tr>
<td>URL</td>
<td>http://hdl.handle.net/2433/194845</td>
</tr>
<tr>
<td>Type</td>
<td>Departmental Bulletin Paper</td>
</tr>
<tr>
<td>Textversion</td>
<td>publisher</td>
</tr>
</tbody>
</table>

Kyoto University
A Report on Studies of Relative Randomness

NingNing Peng *
Mathematical Institute, Tohoku University
Sendai-shi, Miyagi-ken, 980-8578, Japan
sa8m42@math.tohoku.ac.jp

Abstract

We report some results of our recent studies. Let Γ be a set of (Turing) oracles. A set Z is called Γ-random if Z is ML-random relative to A for all $A \in \Gamma$. We use L and G to denote the set of low sets and the set of 1-generic sets, respectively. In [7], Yu proved that L-randomness is equivalent to \emptyset'-Schnorr randomness, where \emptyset' denotes the halting problem. We show that $(L \cap G)$-randomness is still equivalent to \emptyset'-Schnorr randomness. We also proved that $(L \cap MLR)$-randomness is equivalent to \emptyset'-Schnorr randomness.

1 Introduction

For a definition of random sequences, many approaches have been made until a definition was proposed by Martin-Löf [3] in 1966, which for the first time included all standard statistical properties of random sequences. The relativized randomness was first studied by Gaifman and Snir. We say that a set is n-random if it is ML-random relative to $\emptyset^{(n-1)}$. So it is 1-random if it is ML-random. 2-random if it is ML-random relative to \emptyset'. 2-randomness was first studied by Kurtz [6]. He also considered weak 2-randomness, an interesting notion lying strictly between Martin-Löf randomness and 2-randomness. In this report, we will introduce other randomness notions which between Martin-Löf randomness and 2-randomness.

Γ-randomness was first studied in [9], and is strongly connected with Yu’s research [7]. The Γ-randomness notion could sometimes produce alternative proofs of existing results. For instance, some properties of \emptyset'-Schnorr randomness are proved more easily by the characterization due to L-randomness than the usual methods. In section 3, we will report some new characterizations of L-randomness. The detail proof of these results will be published in the future literature.

*This research was partially supported by RIMS. The author would like to thank Prof. Toshio Suzuki for many helpful remarks. The full version of this paper will appear soon.
2 Preliminaries

The collection of binary strings is denoted by $2^{<\mathbb{N}}$, i.e., the set of all functions from $\{0, \ldots, n\}$ to $\{0, 1\}$ for some $n \in \mathbb{N}$. We use σ, τ, \cdots to denote the elements of $2^{<\mathbb{N}}$. Let $2^\mathbb{N}$ denote the set of infinite binary sequences. Subsets of \mathbb{N} can be identified with element of $2^\mathbb{N}$. These are also called reals. For sets A, B, Let $A \oplus B = \{2x : x \in A\} \cup \{2x + 1 : x \in B\}$, namely the set which is A on the even bit positions and B on the odd positions.

For $\sigma \in 2^{<\mathbb{N}}$, we write $|\sigma|$ for the length of σ. Equivalently, $|\sigma| = \#\text{dom}(\sigma)$. Here the cardinality of a set A is denoted by $\#A$. The empty string is denoted by λ. For strings σ and τ, let $\sigma \preceq \tau$ denotes that σ is a prefix of τ, i.e., $\text{dom}(\sigma) \subseteq \text{dom}(\tau)$ and $\sigma(m) = \tau(m)$ holds for each $m \in \text{dom}(\sigma)$. The concatenation of two strings σ and τ is denoted by $\sigma\tau$. For a set A, $A \mid n$ is the prefix of A of length n. A topology of $2^\mathbb{N}$ is induced by basic open sets $[\sigma] = \{X \in 2^\mathbb{N} : X \succeq \sigma\}$ for all strings $\sigma \in 2^{<\mathbb{N}}$. So each open set of $2^\mathbb{N}$ is generated by a subset of $2^{<\mathbb{N}}$, that is $[S]^\ast = \{X \in 2^\mathbb{N} : \exists \sigma \in S \sigma \preceq X\}$.

With this topology, $2^\mathbb{N}$ is called the Cantor space.

The Lebesgue measure on $2^\mathbb{N}$ is induced by giving each basic open set $[\sigma]$ measure $\mu([\sigma]) := 2^{-|\sigma|}$. for each string σ. If a class $G \subseteq 2^\mathbb{N}$ is open then $\mu(G) = \sum_{\sigma \in B} 2^{-|\sigma|}$ where B is a prefix-free set of strings such that $G = \bigcup_{\sigma \in B} [\sigma]$. A class $C \subseteq 2^\mathbb{N}$ is called null if $\mu(C) = 0$. If $2^\mathbb{N} - C$ is null we say that C is conull.

3 Γ-randomness

ML-randomness is a central notion of algorithmic randomness for subsets of \mathbb{N}, which defined in the following way.

Definition 1 (Martin-Löf [3]).

(i) A Martin-Löf test, or ML-test for short, is a uniformly c.e. sequence $(G_m)_{m \in \mathbb{N}}$ of open sets such that $\forall m \in \mathbb{N} \mu(G_m) \leq 2^{-m}$.

(ii) A set $Z \subseteq \mathbb{N}$ fails the test if $Z \in \bigcap_m G_m$, otherwise Z passes the test.

(iii) Z is ML-random if Z passes each ML-test. Let MLR denote the class of ML-random sets. Let non-MLR denote its complement in $2^\mathbb{N}$.

Following Schnorr [10], we will look at other natural notion of randomness, which refine the notion of Martin-Löf randomness.

Definition 2 (Schnorr [10]). A Schnorr test is a ML-test $(G_m)_{m \in \mathbb{N}}$ such that μG_m is computable uniformly in m. A set $Z \subseteq \mathbb{N}$ fails the test if $Z \in \bigcap_m G_m$, otherwise Z passes the test. Z is Schnorr random if Z passes each Schnorr test.

We recall some definitions in [9].

Definition 3. Let $\Gamma \subset \omega^\omega$. A set Z is Γ-random if Z is ML-random relative to f for all $f \in \Gamma$. Any ML-test relative to $f \in \Gamma$ is called a Γ-test.
For \(f \in \omega^\omega \), we say \(f \)-random and \(f \)-test instead of \(\{ f \} \)-random and \(\{ f \} \)-test, respectively. Recall that a set \(A \) is low if \(A' \leq_T \emptyset' \). In particular, \(\Gamma \)-randomness is called \(\text{L-randomness} \) if \(\Gamma \) is the set of low sets.

Since a ML-test is a uniformly c.e. sequence \((G_m)_{m \in \mathbb{N}} \) of open sets such that \(\forall m \in \mathbb{N} \mu G_m \leq 2^{-m} \). Thus, we can define an \(\text{L} \)-test to be a sequence \((G_m)_{m \in \mathbb{N}} \) of open sets, which is uniformly c.e in some low set, such that \(\forall m \in \mathbb{N} \mu G_m \leq 2^{-m} \).

The randomness notions between ML-randomness and 2-randomness have been extensively investigated in the literature by many researchers. In 2012, Yu [7] show that L-randomness lying strictly between Martin-Löf randomness and 2-randomness.

Theorem 1 (Yu [7]). **L-randomness is equivalent to \(\emptyset' \)-Schnorr randomness.**

In [8], we also give another characterization of \(\text{L} \)-randomness. Let \(\text{PA} \) denote the set of all functions of \(\text{PA} \) degrees.

Proposition 1 (Peng, Higuchi, Yamazaki and Tanaka [8]). **L-randomness is equivalent to \(\text{L} \cap \text{PA} \)-randomness.**

Let \(\mathbb{G} \) denote the set of all 1-generic elements of \(2^\omega \). Here, recall that an element \(Z \) of \(2^\omega \) is 1-generic if for any c.e. subset \(W \) of \(2^{<\omega} \), there exists \(\sigma < Z \) such that either \(\sigma \in W \) or \([\sigma] \cap W = \emptyset \) holds. It is well-known that any 1-generic element \(Z \) of \(2^\omega \) is generalized low, i.e., \(Z \oplus \emptyset' \) computes \(Z' \). Thus a 1-generic element of \(2^\omega \) is computable relative to \(\emptyset' \) if and only if it is low.

Now we have the following theorem.

Theorem 2. **(\(\text{L} \cap \mathbb{G} \))-randomness is equivalent to \(\emptyset' \)-Schnorr randomness.**

The following answer a question in [8].

Theorem 3. **(\(\text{L} \cap \text{MLR} \))-randomness is equivalent to \(\emptyset' \)-Schnorr randomness.**

A natural of Turing reducibility from the point of view of ML-randomness is the LR-reducibility which was introduced in [5].

Definition 4 (Nies [5]). For any \(A, B \subseteq \mathbb{N} \), we say that \(A \) is \(\text{LR} \)-reducible to \(B \), abbreviated \(A \leq_{LR} B \), if

\[
\forall X (X \text{ is } B-\text{random} \Rightarrow X \text{ is } A-\text{random})
\]

Intuitively this means that if oracle \(A \) can identify some patterns on some real \(x \), oracle \(B \) can also find patterns on \(x \). In other words, \(B \) is at least as good as \(A \) for this purpose.

Theorem 4 (David, [2]). **For any low real \(X, Y \), there exists a low c.e. real \(Z \) such that \(X, Y \leq_{LR} Z \).**
We also show some similar results as follows.

Theorem 5. For any low real X, Y, there exists a low 1-generic real Z such that $X, Y \leq_{LR} Z$.

The above can be shown from theorem 2.

Theorem 6. For any low real X, Y, there exists a low Martin-Löf random real Z such that $X, Y \leq_{LR} Z$.

This follows from theorem 3.

Acknowledgments

We would like to thank Prof. Kazuyuki Tanaka and Prof. Takeshi Yamazaki, Dr. Kojiro Higuchi for their valuable comments and discussions.

References

