goooboooobgon
0 18320 20130 73-87

On fine structures between Church-style and Curry-style
A2-terms |

Ken-etsu Fujita (Gunma University)
December 14, 2012

Abstract

We introduce a class of 2nd-order A-terms with fine structures between so called Church-style
and Curry-style. Here, A-terms in the style of Curry are considered as atomic, and we adopt four
term-constructors: (i) Domains (D) for A-abstraction, (ii) Lambdas (A) for type-abstraction, (iii)
Holes ([]) for type-application, and (iv) Types ([A]) to be filled into a hole. Then applying the
term-constructors to Curry-style provides the set of 12 styles of A2-terms in total, where Church-
style can be regarded as a top and Curry-style is a bottom. We examine which term-constructor
determines decidability of type-checking and type-inference problems of A2-terms. This study
reveals fine boundaries between decidability and undecidability of the type-related problems.

1 Introduction

Second-order A-terms in the style of Church consist of variables, applications, A-abstractions, type
applications and type-abstractions [2]. :

M=z | MM | x:AM | M[A]| AX.M

On the other hand, A-terms in the style of Curry is the same as those of type-free A-calculus. As a
natural combinatorial problem, we can consider A-terms with fine structures between Curry-style and
Church-style. From the viewpoint of components of A-terms, we take (i) domains of A-abstraction,
(ii) type abstractions A, (iii) holes [| to be filled with a type, and (iv) type information (polymorphic
instance) to be inserted into a hole, as primitive term constructors for fine structures. We write D, A,
[], and [A], respectively, for the constructors. Then, based on the Curry-style, the following 12 styles
(structures) for A-terms can be defined as a combination of four constructors. We write ST for the
set of 12 styles, as follows:

o Church-style [2] denoted by Ch has constructors (D, A, [4])
¢ Domain-free style [4] denoted by Df has (A, [A4])
Type-free style [7] denoted by Tf has (A,[])

o Hole-application style [8] denoted by Hole has (D, A, [])

O, (4D, D, [D: DA), ([A), ([D, D) (A)
o Curry-style [2] denoted by Cu has ()

The fine structures between Curry-style and Church-style are presented in the following picture, see
Figure 1. Upper arrows on the cubes denote adding domains of A-abstraction, where we only depict
one upper arrow among a total of 6 upper arrows in the picture. Four right arrows on the left cube

73

74

Hole-app. Church
©A ______OAD (D, A [A)

(D

Domain-free
(AIA]

+ Domain

Curry + Hole [] ([1) +Instance ([A])

Figure 1: A2-terms with fine structures between Curry-style and Church-style

denote adding holes [], other right arrows on the right cube denote adding polymorphic instance [A],
and six back arrows denote adding type abstractions A.

An order is defined on ST: Curry-style is the bottom, Church-style is the top, and s < ¢ if we have
an arrow from s-style to t-style for s,t € ST.

The picture shows that terms on the upper plane contain domains of A-abstraction, where the set
of styles on the upper plane is denoted by UpP. On the other hand, the set of styles on the lower
plane is denoted by LwP. Terms on the back plane contain type abstractions A where the set of styles
on the back plane is denoted by BkP, and terms on the middle plane contain holes |] where the set
of styles on the middle plane is denoted by MiP. Terms on the rightmost plane contain polymorphic
instance [A], where the set of styles on the right plane is denoted by RiP. The set of styles on the
leftmost plane is denoted by LeP.

The first problem is how to define inference rules for each system. The second problem is how to
define reduction rules for each system. For this, we call a system normal, if the system contains both
A and either [] or [A], or contains neither A nor []. Namely, systems of Ch, Hole, Df, Tf, (D), and Cu
are normal.

We study decision problems parametrized by A-terms with an intermediate structure of the cubes,
and investigate critical conditions for the decidability property from the viewpoint of the constructors
(D, A, [], and [A]). In this paper, as decision problems we adopt the type checking (T'CP), type
inference (TIP), and typability (TP) problems for second-order A-terms with fine structures. Then
we examine what constructor determines essentially (un)decidability of the problems.

2 Preliminary

Definition 1 (Type-related problems parameterized with styles)

1. Type checking problem of s-style terms denoted by TCP(s) :
Given an s-style A-term M, a type A, and a context I, determine whetherI' -, M : A.

2. Type inference problem of s-style A-terms denoted by TIP(s) :
Given an s-style \-term M and a context ', determine whether I' -3 M : A for some type A.

3. Typability problem of s-style terms denoted by TP(s) :
Given an s-style A-term M, determine whether I' g M : A for some context I' and type A.

Styles TCP TIP TP |
Church yes < yes <> no [10]
Hole-application || yes <+— yes <> no [§]
Domain-free no <+ no <+— 1o [6]
Type-free no «— no ¢+ noll
Curry no <+— no <> no[l]]

Table 1: Styles of A2-terms and decidability of TCP, TIP, TP

Proposition 1 (Reductions between type-related problems)
1. TCP(s) < TIP(s) for any s € ST.
2. TIP(s) < TCP(s) for any s € LwP U MiP U LeP.
3. TIP(s) < TP(s) for any s € UpP U {Df, ([A])}.
4. TP(s) — TIP(s) for s € LwP.

Proof. . T+ M : Aifand only if I, 2: A — Z -, zM : B for some B, where z, Z are fresh variables.

2. Let s€ LwP. T+, M : B for some B if and only if I',2: Z F, (Av.2)M : Z, where z,v,Z are
fresh variables with z #Z v.

Let s€ MiP. ' -4 M : B for some B if and only if ', 2:VX.(X = Z) b, 2[|M : Z, where 2, Z are
fresh variables.

Let s € LeP. I' -3 M : B for some B if and only if I',2:VX.(X = Z) b5 zM : Z, where z,Z are
fresh variables.

3. Let s € UpP. Let I" = {ay : A1,...,a, : An} and 2 be a fresh variable. I' -, M : B for some B
if and only if ¥ 4 2(Aa1: Ay ... Aay: An.M) : B for some B and some X.

Let s € {Df,([A])}. Let I' = {ay : Ay,...,an: Ap}. T ks M : B for some B if and only if
Y s My : B for some B and some X, where My = 29(21(2[VX.X]))(z12)(2[(A1 = - 2> A, 2 Y) >
Yl(Aa; ... Aan.yM)), and 2g, 21, 2,y,Y are fresh variables.

IfT'+; M : B for some B, then Mj is typable. Because type of z is assigned to VX.X.

In turn, if My is typable then type of z should be a universal type, to say, VX.F(X), where F is a
second-order variable with arity 1. From consistent typability of the two occurrences of z;, we have
the following unification equation [5]:

F(VX.X) = VX.F(X)

Observe that the only solution to the unification equation is [F := Az.z], i.e., the identity function,
which implies that type of z is VX.X. Hence, we can recover the context I.

4. Let {z1,...,zn} = FV(M). £ +, M : B for some B and some ¥ if and only if +,
AZ1...AZpn.M : B for some B. O

We summarize already known results on the problems for A2. Table 1 shows the decidability results
and relations on the type-related problems. Here, “yes” means that a problem is decidable and “no”
undecidable. TCP and TTP have the boundaries between hole-application and domain-free. Compared
with Church-style, TIP remains decidable even after deleting polymorphic instance information on
application of (VE). However, on application of (— I), deleting polymorphic domains makes TIP
undecidable. Therefore, polymorphic domains are considered as the most essential information for
(un)decidable TIP. In this paper, we examine System (D), Curry-style with explicit domains.

75

76

3 System (D): Curry-style plus explicit domains
We introduce System (D) and study the type-inference and type-checking problems of the system.
e Types
X € TypeVars
AeTypes =X | (A— A) |[VX.A

e Terms:
MeTerms:=z | (Az:A.M) | (MM)

e Reduction rule:

(Az: AM)N —5 M|z := N]

o Inference rules:
I'z:AFbpz: A (var)
F,(B:All-DM:Ag (—)I) F’—DM1:A1—>A2 PI_DMQ:Al(
T'tp /\iEIAl.MIAl—)Az I'kp M]M2:A2
I'tpM:A (VI)* T'Fp M:VX.A
T'tp M:VX.A I'kp M[X = Ay]: A[X := A4]

where (VI)* denotes the eigenvariable condition X ¢ FV(T').

— E)

(VE)

Definition 2 (Removing vacuous-Y)
1 |zl = z, |Az: AM|| = Az: | Al | M|, | My Me|| = || My || Mz,

2. | Xl =X, |Ar = Az|| = [|Asll — ||42],
IVX.A|l = VX.|A|l for X € FV(A)
IVX.All = || A|| for X € FV(A)

3. |IT|l(z) = [IT (<)l
If |Al| = A then we say A has no vacuous V.
Lemmal 1. |A[X := B]|| = |Al[X := | BI|]
2. |M[X := B]| = |M||[X := || BIl]
3. FV(A) =FV(||A])
Proof. By induction on the structure of A or M. O
Proposition 2 1. IfT+p M : A then ||T'|| Fp || M| : || A].

2. IfT bp M : A where each application of (VI) is not vacuous in the derivation, then for any
',M' A" with |T'|| =T, |M'|| =M, and |A’|| = A we have I' Fp M’ : A'.

Proof. First observe that given A, then any B such that || B|| = A is generated by the following steps
with fresh type variables Z: (1) Case A= X: B=VZ.X, (2) Case A= (A; = A3): B=VZ.(4; -
Ab), (3) Case A =VX.A;: B=VYZ.VX.A]. By induction on the derivation, we show only the case 2.

1. Case of 'z : I'(x) :
For any I", M’, A’ with ||I’|| =T, |M’|| = z, and ||4’|| = ['(z), we have M’ = z and A’ =T"(x),
and then we have IV F ¢ : I'(z).

2.THFMN:BfromT'FM:A—- BandTHN:A:

From the induction hypotheses, we have IV + M’ : C’ for any IV, M’,C’ such that |I'| = T,
|IM'|| = M, ||C'"|| = A — B, and we have IV + N’ : A’ for any I, N’, A’ such that ||I"|| =T,
IN‘|l = N, ||A’|| = A’. Here, C’ should be in the form of VZ.(A’ — B’) where |A’|| = A and
I|B'|| = B. Then from I'" + M’ : A’ - B’ and IV - N’ : A/, we have I' - M'N’ : B’ for any
I", M'N', B' such that |['|| = I, |M'N'|| = MN, | B'|| = B.

3. THFM:AM:A—> BfromT,z:A+M:B:
From the induction hypothesis, we have I'V,z: A’ v M’ : B’ for any IV, A", M’ ,1_3" such that
IT’,A'| =T,A, |M'| =M, |B| = B. Then we have I!,z: A’ - \z: A’ .M’ : VZ.(A' —» B’)
where ||IV|| =T, ||Az: A M'|| = Az: A.M, and |VZ.(A' - B')|| = A — B.

4. TFM:VX.AfromT'+F M : A where X ¢ FV(I') and X € FV(A):

From the induction hypothesis, we have I - M’ : A’ for any IV, M’, A’ such that |I'|| = T,
|M'|| = M, and ||A’|| = A. Then from X ¢ FV(I'), we have I' - M’ : VZVX.A', where
IVZVX.A'| = VX.| 4| = VX.A.

5. TFM[X:=B]: AIX:=B]fromT+M:VX.A:

From the induction hypothesis, we have I + M’ : VZVX.A’ for any I',M’, A’ such that
IT’|| =T, ||M'|| = M, and ||A’|| = A. Take an arbitrary B’ such that ||B’|| = B. Then we have

I'F M[X = B'| : VZ.A[X := B where [M'[X := B||| = |M'|[X := |B'|] = M[X := B]
and |VZ.4'[X := B']|| = |4'|[X := | B'||] = A|X := B. | O

Lemma 2 (Permutation for bund variables) IfI'+p M : VX.YY.A then T bp M : VY.VX . A.
Lemma 3 (Substitution lemma 1) IfI'Fp M : A then I'[X := Bl Fp M[X := B] : A[X = B|.
Proof. By induction on the derivation. O

Lemma 4 (Substitution lemma 2) IfI',z:A+tp M : B andT'Fp N : A, then T bp M[z := N} :
B.

Proof. By induction on the first derivation. 0O
Definition 3 ((VI)(VE)-reduction for (D)) Let X ¢ FV(T').

I'FM:VX.A
' M[X := B]: A[X := B]

(VE) — TI'F M[X :=B]: A[X := B]

Under this definition, we consider only derivations without (VI)(VE)-redexes. This property is also

called the INST-before-GEN property {11]. From now on, we consider derivations for ' Fp M : A

with no vacuous V and the INST-before-GEN property. It is also remarked that (VE) may be applied

only after (var), (— E), or (VE).

Definition 4 (Elimination-Introduction relation) 1. A<f B &r Fp B is derived from
I' Fp A by successive application of (VE) including null application for some term.

2. A< B &ELr Fp B is derived from T bp A by successive application of (VI) including null
application for some term, where the eigenvariable condition holds w.r.t. T.

3. A 5?(1‘) B &L 4 <E C and C <y B for some type C.

7

78

For instance, VX.(X — X) <f(r‘) VXYY (X 2>Z—-Y)> (X —>Z—-Y)) where X,Y ¢ FV(T").

We also write ' Fp M : A < (r) N :B,ifT"'tp M : A derives I Fp N : B under the relation
A<E 1(r) B In this case, we have M A<E I(r) S(M) : B for some substitution S for type variables by
the effect of application of (VE).

Lemma 5 (gﬁr)) Let m,n > 0, and neither A nor B has V as a top-symbol, and Y1,...,Yn &
FVID). vX;...X,.A 5;E(F) VY7...Yn.B if and only if S(A) = B for some substitution S with
dom(S) = {Xy,...,Xn}.

Proof. (=>): SupposeVX; ... X,.A gfm VY:...Yp.B. ThenVX... Xp A<PA[X) := Ay,..., X, :=
A,] = S(A) = B for some S, since B <yr) VY ...Y,,.B. Hence, S(A) = B for some S.

(<=): Suppose that S(A) = B for some S. Then VX;...X,.A <F S(4) =B <;r) V1...Y.B
where each Y; ¢ FV(I'). a

Remark 1 Given A, B,T, then it is decidable to check whether A Sﬁr‘) B holds or not.

Lemma 6 (partial order) Let A, B,C be types with no vacuous-v.
1. A<E <ir) A

2. IfA <I(I‘) B and B <1(r) C then A <I(l”) C.
3. IfA gﬁr) B and B 51(1‘) A then A= B.

Proof. (2) IfT'+p A <I(F) BandI'+p B S;E(P) C, and then we have I' Fp A Sfj(r) C. Moreover, if
EI—D My : A<fryM;:BandTFp My : B <[Mj3:C, and then we have I' Fp My : A<Fr) Ms:

(3) Let A=VX;...Xn.A' and B =VY;...Yn.B', where X,...,Xn € FV(A) and Yi,...,Ym €
FV(B'). Then Si(A’) = B’ and S3(B’) = A’ for some S, S, with dom($;) = {X3,...,X,} and
dom(S;) = {Y1,...,Yn}. Thatis, A’ and B’ are variant, and hence S1, S2 are bijective. Thenn =m
and VX3 ...X,.A =VY;...Y,,.B’ under permutation for bound variables. m]

Note that if we have vacuous-V, then VXY.X <FVZ.Z andVZ.Z <F VXY.X,but VXY.X #VZ.Z.
Lemma 7 (Generation lemma for System (D)) 1. IfT+z: A thenI'(z) <IE(r) A.
2. IfT' - Az:A.M : B, then there exist By such thatT,z:A+ M : B, and A~ By <) B.
3. IfT'+ MyM;: A, then there exist By, By, N1 such thatT'+ Ny : By & By and ' - M, : B, and
N1M2 H Bg Sﬁl‘) M1M2 : A
Proof. By case analysis with the Elimination-Introduction property.
1. Suppose that '+ z : A.
We should start with I’ - : I'(z), and then the only way to derive I' - z : A is that I'(z) 5.?(1“) A.

2. Suppose that I' - Axz: 4. M : A,.

Under the Elimination-Introduction property, the only way to derive T' + Az : A;.M : Aj is
that T,z : A1 F M : B and Ay - B <yr) A2 for some B. Here, we cannot apply (VE) for
A - B <E <Kr) A,

3. Suppose that I' - M1 M; : A.
Under the Elimination-Introduction property, the only Way to derive I' - MM, : A is that
'Ny:By +>Byand ' M, : By and NiM; . B; < I(F) MM, . A for some Ny, B, Bs.
Here, we may apply (VE) for NyN, : By < I(P M1M2 A, if B = vX .Bj, for some Bj. Then X
cannot be free in Ny and hence Ny = Ms. 0

79

Definition 5 1. (Ax:AM)N —5 M[z := N]
2. If M =5 N then RM —3 RN, MR —3 NR, and \x:A.M —5 Az: A.N.

Lemma 8 (Abstraction) If M —3 N and S(M') = M for a substitution S for type variables, then
there exists a term N’ such that M' —g N’ and S(N') = N.

Proof. By induction on the derivation of M —4 N. O
Proposition 3 (Subject reduction) IfT'+M: A and M -5 N, then T+ N : A.

Proof. By induction on the derivation of M —4 N, together with generation lemma.

e Case of I' - (A\z: AM)N : B and (A\z:A.M)N — M[z := N]:

Iz:A'-M : B (
T-Xz:A M : A - B TN A
't (\z:AM')N : By 51?(1“) B '-Mz:=N]:B Sﬁp) B
I'(Ax:AM)N:B — ' M[z:=N]:B

= I)

(= E)

where S(M’) = M for some substitution S, and A’ = A since if B = VX.B’ for some B’ then
X cannot be free in A’.

e Caseof ' - RM : B and RM — RN from M — N:
We also have R’M — R'N from M — N where S(R’) = R for a substitution S.

IR :By— B, I'FM:B,
I'R'M: By 51}'3(1“) B
I'-RM:B
From the induction hypothesis, we have I' - N : By, and then I' - R'N : B; 5?(1“) RN : B.

(— E)

e Caseof ' MR: Band MR — NR from M — N :
Ff‘M’!Bz—)Bl FFR:BQ
'-MR:B; Sf’&r)B
'-MR:B

(— BE)

Since S(M') = M for some substitution S, we have M’ — N’ and S(N’) = N for some N'. From
the induction hypothesis, we have ' - N’ : By — By, and then ' - N'R: B; Sf(r) NR: B.
e Caseof ' Ax:AM:Band \Mx:AM — \x:A.N from M — N :
Iz:A-M: B,
T'M:AM:A— By <K B
'M:AM:B

(= 1)

From the induction hypothesis, we have I',z: A= N : By, and then ' - Az: A.N : A — B; <p)
B. |

Remark 2 If Ax:A.(Mz): A — B, then Ax:A.(Mz) —, M': A; — B, that is a contravariant such
that A <F A, and By <¥ B. For instance, we have z: (A — VX.X)F Xa:A.za : A — Z. Then we
have Aa:Axa = x: A VX.X.

80

Theorem 1 (Strong normalization) IfT'Fp M : A then M is strongly normalizing.

Proof. Suppose I' bp M : A then T ¢y |M| : A and the Curry-term |M]| is strongly normalizing,
where |-| is a forgetful mapping from (D)-terms to Curry-style terms. For (D)-terms M, N,if M —g N
then |[M| =4 |N|. O

Theorem 2 (Church-Rosser) \2-terms in the style of (D) are Church-Rosser with respect to —g.

Proof. By the use of parallel reduction. a

Remark 3 Note that Az:B.(Az: A.z)x =g Az:B.xz and Az:B.(Az:A.x)r —, Ax: A.x. This implies

that g and —», are not commutative. Note also that well-typed terms are Church-Rosser w.r.t. —»g,

from the strong normalization property, weak Church-Rosser, and Newman’s lemma. Another proof

is that type-annotated terms in the style of (D) are Church-Rosser together with the subject reduction

property.

Proposition 4 (Reductions between type-related problems) 1. TCP < TIP:
FFM:AiffTz:(A— Z)+ 2M : B for some B, where z,Z are fresh variables.

2. TIP - TCP:
I'M:B for some B iff T',2:VX.(X - Z)F zM : Z, where z, Z are fresh variables.
3. TIP «» TP: LetI' = {z1 : A;,...,Zpn : Az} and Dom(T") = FV(M).
I'M:B for some Biff S+ Ax1:Ay1...Az,:Ap. M : B for some ¥, B.
Definition 6 (Normal forms of (D)-terms)
NeNF o= V|Az:AN
V u= z|VN

Proposition 5 Let N € NF. IfT Fp M : A with the the Elimination-Introduction property, then
each application of the rule (VE) in the derivation can be restricted to the following form:

I'-N:VX.B
'N:A[X:=B

] (VE')

Proof. By induction on the derivation of normal forms, together with the generation lemma.

1. Caseof ' F \x:A.N : B
From the generation lemma, we have the following derivation:
Iz:A-N:C
'-Xz:AN:A-C<yr B
'Mx:AN:B

From the induction hypothesis, we have a derivation for I';x: A+ N : B, where the derivation
may contain only (VE’) instead of (VE).

2. Caseof ' zN;...N,: B

From the generation lemma, for some A;, Bz we have z : T'(z) <¥ A; — B, where (VE') may
be applied, and I - N : A; where each application of (VE) can be restricted to (VE') by the
induction hypothesis. Then for some Az, B3, Ni, we have I - N, : B, <F zN] : A; — B3 and
' - Ny : A;. Here, zN] : A, — Bj; is obtained from zN; : By by consecutive application of
(VE). That is, By is in the form of VX,.B} for some B}, and X, cannot appear in N as free

type variables. Hence, a chain of applications of (VE) can be replaced with (VE'), so that we
have zN{ = zN;. In addition, (VE) can be restricted to (VE') in the derivation of '+ Ny : Ay
by the induction hypothesis. Following this argument, we have a chain of applications of (VE):

I'(z) <P (A; = By), By = VX3.B, <F (A3 — Bs), ..., By =VX,.B, <F (A, = Bp41), such
that

z:D(z) <F z:(A; - VX;.B}) and Ny : A; where X, ¢ FV(Vy),

TNy : VXQBé SE’ Ny : (A2 - VX-‘.Q,BS) and Ns : Ag where Xg, & FV(N1N2),

&N1...Nn_1 : VXn.Bl <F' (An = VXpi1.Bl, ;) and Ny, : A, where Xni1 & FV(N; ... N,),
and

&Ny ... Ny :VXp41.Bjyy <Py aNi... N, : B.

Thus, each application of (VE) in the derivation of ' - zN;... N, : B can be replaced with
(VE'). 0

We divide the set of type variables into two countable sets: TVars for the usual type variables and
UVars for type variables called unification variable.

TypeVars = TVars U UVars
The syntax of output types A of type inference is defined as follows:
ABecOutput:=X|a|(A— B)|VX.A

where X € TVars is a type variable, a € UVars is a type variable also called a unification variable.
A unification procedure for the multiset E of unification equations is defined as usual by the
following transformation rules, which give a most general unifier:

1. {A=AJUE=E

2. {a = AYUE = {a = A} UEJo.:= A] if o & UVars(A)

3. {Ad; 5 Ay =B, - B))UE = {4, = B, A, = B,} UE

4. (YX.A=VXBYUE = {A=B}UE

Here, we consider type inference of terms in the style of (D) where a given term is a normal form.
Definition 7 (Type inference for (D): non-deterministic version for normal case)

1. type(T; z) = I'(z)

2. type(T;Az: A.M) = (A — B), where type(I',z: A; M) sf(F,A) B

3. type(T; M1 M2) = B,, where type(T; M) <F B; = B, and type(T'; M3) S}E(F) B, for some B;

As a shorthand, we write 7 : A for z, tAy... .z, An, and VX.A for VX;... X, A (n > 0). By

deletigg vX at strictly positive positions, we use the following notation >: .
VXi1(A1 »VXo(A2 — - 9 VX (A = A) -) = (A = VXp(A2 — - 5 VX, (4, = 4) 1))
(Ao (A2 > > VX, (4, 5 A)) == (A = (A= - = (A = A)).

Definition 8 (Type-inference for (D): deterministic version for normal case)

1. type(T';z) =I'(z)
2. type(T; /\f:A'.V) = (/I——) type(I‘,:Z":A'; V)) where Z: A denotes T1: A1 ... Tn: Ay (n>1)

81

82

3. type(T;zNy ... Ny) = A[X = E], where we set
I(z) = VX1 (A1 - YXa(dy = - o VXn(An = A)-), X = X1...Xn, and B=By... B,
(n>1)
(a) Case of Ny =
There exist some By such that type(T; V1) Sf?(r) A [Xl = El].
(b) Case of Ny = \j:C.V; where C =Cy,...,Cr (k> 1):
Let (C - type(F 7:C; V1)) be type(T'; N1). There e:mst some By, Dy such that A;[X; =

Bi) = (Cy — --- = Cx = Dy) and type(T, §:C; V1) < _I(F & Di-
(c) Case of N;=V; (1<i<n):

There exist some B; such that type(T; Vi) <1(r) A% .. =B,...B).
(d) Case of Ny =Aj:C.V; 1<i<n) where C = C4,...,C (1):

Let (C > type(F,g‘:C”;Vi)) be type(l'; N;). There exist som eﬁ D; such that A.,-[)—('l L X =

By...Bj]= (Cy— - — Cr — Dy) andtype(I‘,:z:.C',V) S?(& D;.

Remark 4 1. Although the cases of Ny are included in those of N; (i > 1), we write the first cases
for readability.

2. We use the notation A — type(l",:i:‘:/_f; V) for type(I‘;A:f:’:J.V). If a given term is in the form
of \Z: AV, then the expression A — type(T,Z: A;V) simply means that Ay — -+ = A, —
type(I‘,:E’:A'; V) where A = (Ay,...,An).

Lemma 9 1. It 18 deczdable to verify whether the condition in the case of N = V of type, i.e.,
type(I'; N) <) A[X := B for some B, holds or not.

2. It is decidable to verify whether the condition in the case of N = A\y: .C. V of type, i.e., A[)? =
Bl > (Cy = -+ = Cx — D) for some B, D such that type(T, §: C;V) < _I(F &) D, holds or not.

Proof. 1. The condition that type(I'; N) < I(F) A[X := B] for some B can be verified by first order

unification as follows, see also Lemma 5: Let V¥.C = type(T’; N) (C has no V as a top-symbol),
VZA'= A (A hasnoV as a top—symbol) and &, S be fresh unification variables. Then solve the
unification equation such that C[Y :=] = A/[X := @]. If the unification equation is solvable under
a unifier S, then we set B = S(a).

2. The condition that A[X := B] > (C; — --- = Cx — D) for some B, D can be verified by
first order umﬁcatlon as follows: Let ﬁ 4 be fresh unification variables, and A’ be obtained from A
by removing vX at strictly pos1t1ve positions just like that vX(4; — VXg(AQ o VX (4An —
A)-)) = (A — (Az -+~ = (A, = A)--)). Then solve the unification equatlon such that
A’[)—f = E] =(CL— - — Ck -+ 6). If the unification equation is solvable under a unifier S, then we

can check whether type(z:G;V) <f(1, &) S(8) as in the previous case. Let VY .E be type(T, #:C; V),

and ¥ be fresh unification variables. Then solve the unification equation E[Y = 4] = S(6). Now

suppose that the equation is solvable under a unifier T. Next, we recover vX to be removed for =
under the variable conditions I(T), I(T', &}), ..., I(T, Ch,...,Cx_1). Finally, we set B = T(S (8)) and
D =T(S5(5)).

Proposition 6 (Soundness of type) If type(I'; N) = A then we have ' - N : A.

Proof. The soundness is proved by induction on the length of a term.

1. Case N of z:
We always have I' - z : type(T';).

2. Case N of A\Z: A.V:
From the induction hypothesis, we have I',#: A - V : type(I,&: A; V). Then T - \&: AV :
(A — type(T', #: 4;V)), and type(T'; AZ: A.V) = (4 — type(T, Z: 4; V).

3. Case N of zNy ... Ny:
Let [(z) = VX (A4 = VX3(Az = - 5 VXn(4n = A)), and X = X ... X,,.

(a) Case N;of V; (1<i< n):
From the inductlon hypothe51s we have I' F V; : type(I'; V;), and from the assumption,

type(T'; V;) < I(I‘ A; [X1 ;= El...ﬁi] and we also have T' z : I'(z) <P (4; —
VXi+1(A,-+1 - VX, (A — A)-))[)?1 ... X, =B, .. E] for some B;. Then we have
F":L’Nl...Ni:VXi+1(Ai+1—)---—)VXn(An—)A)))[Xl —Bl B]

(b) Case N; of \j:C.V; (1 <i<n):
From the induction hypothesis, we have T, y o} l— Vi : type(T, 7 : 6_”; Vi), and from the
assumptlon, we also have Ai[Xl...Xi = B..] (Cy = -+ = Cx — D;) and
type(l', 7:C; Vi) < I r.d D; for some B;, D;. Then from the induction hypothesis, we have
F,y:C Vo type(F,y.é;%), and moreover I' + N; : VZl(Cl - VZk(Ck - Dy))
under the variable condition, where each VZ; is the deleted quantifiers on the condition
that A,[X]X = .El ﬁ] oy (Cl — > C}c — Dz) Here, we have VZl(Cl — =
VZk(Ck - D)) = A; [X1 i = Bl E] Hence, we have I' - zNy ... N; :VX}(Ai —

—

In this way, we have I' b Ny ... N, : A[Xl...fn = B1...]§n] and type(I';zNy...N,) =
A[Xl Xn = Bl B] O

Proposition 7 (Completeness of type) Given a contezt I’ and a normal term N, let A be a type
such that T + N : A. Then we have type(l" V) < —I(l" AifN=V,and A= (By— - — B, > C)
for some C such that type(T, &: B; V) < _I(F 5 Cif N=\z:BV.

Proof. The completeness is proved by induction on the derivation with the generation lemma and the
Elimination-Introduction property.

1. WehaveI' F 2 : T'(x) 5}3(1“) I'(z).

2.T+FxzN;...N,: A
Let [(z) = VX1(A; - VXp(Ay = - — VX (4 = Ag)), and X = X,...X,. Then
from the generation lemma, we have I' F zN; ... N, : Ag[X := B] < 1(r) A for some B, where
type(T; 2Ny ... Ny) = Ag[X := B).

3.TFAE:CV:A
From the generation lemma, we have I' - AZ: Cv: C1 — Ay <pr) A for some A;, such that

Iz::C1 + GV A;. Then we also have I',z,: C; F Mo CV Cy — A2 <ir,oy) A1
for some Ay. Following similar reasoning, we have I',21:C1,...,Zn:Cpo1 F A2y : Cp.V : Cp, —

83

84

An <1r,C1,...\Cne1) An—1 for some A, such that I', Z: C+V: A, where type(T, G V) <E
A, by the induction hypothesis. Now we have the following relations:

=r,5)

Cn — An SI([‘,Cl,-u,Cn—l) An_l

Cz — Az <ir,c) Ay
C1— A <ir) A

Namely there are some quantifiers vX;, such that 4 = V)_fl.(Cl - A)), A = VXz.(Cz —
Aj), . o and An 1 = VX,.(C, = Ap). Hence, we have A = (C; = -+ =» C, = A,) and
type(I‘ G;v) < I(I‘ &) Ap.

4 THFN:VX.AfromTH N : A where X ¢ FV(I)

(a) Case N of V:
From the induction hypothesis, we have type(F V) < 1(1‘) A and A <F(r) VX.A. Then
type([; V) SIE(F) VX.A

(b) Case N of AZ:B.V:
From the 1nductlon hypothesis, we have A > (B = - = B, — C’) for some C such that

type(T, Z: B; V) < 1(r B) C. Then we also have VX.A > (B1 == B, = C).
5, TFN:AX :=D|fromI'F N:VX.A

(a) Case N of V:
From the induction hypothesis, we have type(I'; V) <firy VX.Aand VX.A Sﬁr) A[X := D).
Then type(T’; V) < I(r) A[X := D] from the transitivity.

(b) Case N of AZ:B.V:

This case is impossible under the Elimination-Introduction property, since I' - A% BV :
VX.A should be introduced by (VI). O

Next, we define a type inference algorithm in general. For this, the notion of generalization of
types is introduced.

Definition 9 (Generalization) Given a type A, then define the set of generalization of A, denoted
by Gen(A) such that for each P € Gen(A), we have S(P) = A for some substitution S.

1. Gena(X) = {X"} if X ¢ A
2. Gena(X) ={X}if X eA
3. Gena(A — B) = {ZZ:=A-Bl}

U{P; = P2 | P, € Gena(Ay), Py € Genp(A2)} Umerge(Gena (A1), Gena (A2))
where Z is a fresh variable, if FV(A —> B) € A

4. Gena(A = B) = {P, & P2 | P, € Gena (A1), P2 € Gena(Az)} Umerge(Gena (A1), Gena (A2))
where Z is a fresh variable, if FV(A— B)C A

5. Gena (VX.A) = {ZIZ:=YX-A} U {VX.P | P € Genay(x}(A)} where Z is fresh, if FV(VX.A) £ A
6. Gena(VX.A) = {VX.P | P € Genay(x}(4)}, if FV(VX.A) C A

85

7. merge(Gena(A), Gena(B)) = {Pa — P | P, contains Z}2*=%) and P, contains z[72=C]

for some P, € Gena(A) and P, € Gena(B), and
Py 1is obtained from Py by replacing some occurrences of Zng:C] in Py with Z1%=C1 and
Ppg is obtained from P, by replacing some occurrences of Zz[Z”:C1 in Py with Z1%:=C]

where Z is a fresh variable}

Here, A in Gena(A) denotes the set of bound type-variables in FV(A), such that for each X € A we
have some context C # [| with VX.C[A].

Given a term M, and we write Atype(M) for the multiset of annotated types in M, to say
[A1, ..., An]. Then we have generalizations of each type [Gen(4;),. .., Gen(4y)].

Next define the set of terms, denoted by Gen(M), such that Gen(M) = {M[Z,...,2Z,] | Z; €
Gen(A1),...,2Z, € Gen(A,)}, where M[Zy,...,2Z,] is a term obtained from M by replacing each
occurrence A in M with Z; € Gen(4;). For each term N € Gen(M) we have S(N) = M for some
substitution S for type variables in N. That is, each term N € Gen(M) is a term where annotated
types in M are generalized.

We show some examples, where we may omit the identity substitution id.
o Gen(X —Y) = [(Xid - Yid), ZIZ=(X>Y)]]
* Gen((X 5 X) > X » X) =

(X = X)» X > X,Z220=%2X] L, x . x (X5 X)>
Z[Z::X—-)X] N Z[Z:=X_)X],Z][.Zl:=x_>X] N Z£Z2:=X->X],Z£23:=(X‘+X)—)X——>X]]

ZéZg::X—-)X],

* Gen(VX.(X — X)) = [VX.(X = X), ZIZ=YX-(X=X)])
Gen(VX.(X 5 Y 2 Y) = [VX.(X - Y = Y),VX.(X — ZIZ=YY]) ZIZ=YX.(X=Y5Y)))
¢ Let B= (VX.(X = X)) = VX.(X - X)).

Gen(B) = [(VX.(X = X)) = VX.(X - X), ZZ="XX=2X] , yx (X - X),
Z£21:=VX-X—>X] - Z£Zz==VX-X—>X] ZIZ:=vX.X>X] _, Z[z;:vx.x-»x]’

VX.(X o X) o ZL[,ZZZVX'X_)X],Z‘.EZS'.:(VX,'(X_)X))—NX'(X—’X)]]

Note that Gena(A) is a finite set of types, and then Gena (M) is also a finite set of terms. We
always have A € Gena(A) and id(A) = A, and hence M € Gena (M).

Definition 10 (Type inference for Curry with explicit domains: Non-deterministic version)

1. Type(T;z) = T'(x)
2. Type(T'; \x: A.M) = (A — B), where Type(T, z: A; N) Sf’(F 4y M : B for some N € Gen(M)

3. Type(FMle) Bz, where TyPE(F Nl) <E M1 B1 - Bz and TYPE(F N2) —-I(l") M2 B1 fOT
some By and some Ny € Gen(M;), Ny € Gen(M,)

Proposition 8 (Soundness and completeness of non-deterministic Type)
1. If Type(; M) = A then T - M : A.

2. Given a contez:t I and a term M, let A be a type such that T' + M : A. Then we have
Type(T'; N) < —I(F) M : A for some N € Gen(M).

86

Proof. The soundness is proved by induction on the length of M.

1. Type(T';z) = I'(z):
We have I' -z : I'(z).

2. Type(T; Az: A.M) = A — B, where Type(T',z: 4;N) <Fry M : B for some N € Gen(M):
From the induction hypothesis, we have I',z: A+ N : Type(T',z: A; N) 5;3(1‘) M : B, and then
T+ Ax:A.M: (A— B) =Type(T,z:A; M).

3. Type(T; My M;) = By, where Type(T'; Ni) < M; : By — B; and Type(T; N;) gfm M, : B, for
some N; € Gen(M;):
From the induction hypotheses, we have I' Nj : Type(T'; N1) <EM,:B;—Byand T+ Ny :
Type(T'; N2) Sf(r) M, : B;. Then T+ MM, : By = Type(T'; M1 Mz).

The completeness is by induction on derivation.

e Caseof 'z :T(x):

We always have Type(T; z) = I'(z) <fry I'(2)-

e I'FMt:AM:A—- BftomT,z:A+M:B:
From the induction hypothesis, we have Type(T, z: 4; N) SIE(P, aM:B for some N € Gen(M),
and then Type(['; A\z:A.M) = A - B.

e I'FMM;:ByfromT'-M,:By —+Bsand ' M : By :
From the induction hypotheses, we have Type(T’; N1) S?(r) M, : By — B; and Type(T'; No) Sf(r)
M, : B, for some N; € Gen(M;). Then we have Type(T'; M1 M) = B;.

o' M:VX.Afrom '+ M : A where X ¢ FV(I'):
From the induction hypothesis, we have Type(I'; N) 5f7(r) M : A for some N € Gen(M), and
then M : A <yry M :VX.Asince X ¢ FV(I'). Hence, we have Type(I'; N) 5?(1‘) M :VX.A for
some N € Gen(M).

e ' M[X:=B]|: A[X :=B|fromT'F M :VX.A:
From the induction hypothesis, we have Type(I'; N) S}E(F) M : VX.A for some N € Gen(M).
Then we also have M : VX.A <F M[X := B| : A[X := B], and hence Type(T'; N) <Fpy M[X :=
B]: A[X := B] for some N € Gen(M) from the transitivity. O

References

[1] H.P.Barendregt: The lambda Calculus. Its Syntax and Semantics, North-Holland, second, revised
edition, 1984.

[2] H.P.Barendregt: Lambda calculi with types, In S. Abramsky, et al. editors, Handbook of Logic in
Computer Science, Vol I, pp. 117-309, Oxford University Press, 1992.

[3] H.P.Barendregt, W.Dekkers, R.Statman: Lambda Calculus with Types, Cambridge University
Press, 2012.

[4] G.Barthe, M. H. Sgrensen: Domain-Free Pure Type Systems, Lecture Notes in Computer Science
1234, pp. 9-20, 1997.

[5] G.Dowek: Higher-Order Unification and Matching, In A.Robinson and A.Voronkov editors,
HANDBOOK OF AUTOMATED REASONING, Elsevier Science Publishers, pp. 1009-1062, 2001.

87

[6] K.Fujita, A.Schubert: Partially typed terms between Church-style and Curry-style, Lecture Notes
in Computer Science 1872, pp. 505-520, 2000.

[7] K.Fujita, A.Schubert: The undecidability of type related problems in type-free style System F,
Leibniz International Proceedings in Informatics 6, pp. 103-118, 2010.

[8] K.Fujita: T LAFHHEDOBRRMIC DT, submitted.
[9] M.Odersky, K. Laufer: Putting Type Annotations to Work, POPL ’96, pp. ;’)4—67, 1996.

[10] A.Schubert: Second-order unification and type inference for Church-style polymorphism, POPL
'98: Proc. 25th ACM Symposium on Principles of Programming Languages, pp. 279-288, 1998.

[11] J.B.Wells: Typability and type checking in system F are equivalent and undecidable, Ann. Pure
Appl. Logic 98, pp. 111-156, 1999.

