A Simplified Characterisation of Provably Computable Functions of the System ID₁ of Inductive Definitions (Extended Abstract)

Naohi Eguchi*
Mathematical Institute, Tohoku University, Japan

Andreas Weiermann†
Department of Mathematics, Ghent University, Belgium

Abstract
We present a simplified and streamlined characterisation of provably total computable functions of the system ID₁ of non-iterated inductive definitions. The idea of the simplification is to employ the method of operator-controlled derivations that was originally introduced by Wilfried Buchholz and afterwards applied by the second author to a streamlined characterisation of provably total computable functions of Peano arithmetic PA.

1 Introduction
As stated by Gödel’s first incompleteness theorem, any reasonable consistent formal system has an unprovable Π^0_2-sentence that is true in the standard model of arithmetic. This means that the total (computable) functions whose totality is provable in a consistent system, which are known as provably (total) computable functions, form a proper subclass of total computable functions. Hence it is natural to ask how we can describe the provably computable functions of a given system. Not surprisingly provably computable functions are closely related to provable well-ordering, i.e., ordinal analysis. Several successful applications of techniques from ordinal analysis to provably computable functions have been provided by B. Blankertz and A. Weiermann.

*The first author is generously supported by the research project Philosophical Frontiers in Reverse Mathematics sponsored by the John Templeton Foundation.
†The second author has been supported in part by the John Templeton Foundation and the FWO. Parts of the article have been written during a visit of the author at the Isaac Newton Institute, Cambridge, UK in January 2012. In 2011 the author presented the article at a talk at the Oberseminar Mathematische Logik in Bonn.
Modern ordinal analysis is based on the method of *local predicativity*, that was first introduced by W. Pohlers, cf. [10, 11]. Successful applications of local predicativity to provably computable functions contain works by Blankertz and Weiermann [12] and by Weiermann [2]. However, to the authors’ knowledge, the most successful way in ordinal analysis is based on the method of *operator-controlled derivations*, an essential simplification of local predicativity, that was introduced by Buchholz [3]. In [13] the second author successfully applied the method of operator-controlled derivations to a streamlined characterisation of provably computable functions of PA. (See also [11, Section 2.1.5].) Technically this work aims to lift up the characterisation obtained in [13] to an impredicative system ID_1 of non-iterated inductive definitions. We introduce an ordinal notation system $\mathcal{O}(\Omega)$ and define a computable function f^α for a starting numerical function $f : \mathbb{N} \rightarrow \mathbb{N}$ by transfinite recursion on $\alpha \in \mathcal{O}(\Omega)$. The transfinite definition of f^α stems from [13]. We show that a function is provably computable in ID_1 if and only if it is a Kalmar elementary function in $\{s^\alpha \mid \alpha \in \mathcal{O}(\Omega) \text{ and } \alpha < \Omega\}$, where s denotes the numerical successor function $m \mapsto m + 1$ and Ω denotes the least non-computable ordinal (Corollary 6.4).

This paper consists of two materials, a technical report [8] by the authors and a draft [14] by the second author. Section 3–6 consist of [8] and Section 7 consists of [14]. We mention in particular that the ordinal notation system $\mathcal{O}(\mathcal{F})$ stems from [14]. Most of proofs are omitted due to the page limitation. We note however that there is a non-trivial error in the technical report [8, p. 8, Lemma 15.5]. We restate Lemma 4.4.5, provide its proof and discuss in detail about embedding (Section 5) affected by this correction. The full details of missing proofs will appear in [7].

2 Preliminaries

In order to make our contribution precise, in this preliminary section we collect the central notions. We write \mathcal{L}_{PA} to denote the standard language of first order theories of arithmetic. In particular we suppose that the constant 0 and the successor function symbol S are included in \mathcal{L}_{PA}. For each natural m we use the notation \underline{m} to denote the corresponding numeral built from 0 and S. Let a set variable X denote a subset of \mathbb{N}. We write $X(t)$ instead of $t \in X$ and $\mathcal{L}_{\text{PA}}(X)$ for $\mathcal{L}_{\text{PA}} \cup \{X\}$. Let $\text{FV}_1(A)$ denote the set of free number variables appearing in a formula A and $\text{FV}_2(A)$ the set of free set variables in A. And then let $\text{FV}(A) := \text{FV}_1(A) \cup \text{FV}_2(A)$. For a fresh set variable X we call an $\mathcal{L}_{\text{PA}}(X)$-formula $A(x)$ a *positive operator form* if $\text{FV}_1(A(x)) \subseteq \{x\}$, $\text{FV}_2(A(x)) = \{X\}$, and X occurs only positively in A.

Let $\text{FV}_1(A(x)) = \{x\}$. For a formula $F(x)$ such that $x \in \text{FV}_1(F(x))$ we write $A(F,t)$ to denote the result of replacing in $A(t)$ every subformula $X(s)$ by $F(s)$. The language $\mathcal{L}_{\text{ID}_1}$ of the *system ID_1 of non-iterated inductive definitions* is defined by $\mathcal{L}_{\text{ID}_1} := \mathcal{L}_{\text{PA}} \cup \{P_A \mid A \text{ is a positive operator form}\}$ where for each positive operator...
form A, P_A denotes a new unary predicate symbol. We write $T(L_{ID_1}, V)$ to denote the set of L_{ID_1}-terms and $T(L_{ID_1})$ to denote the set of closed L_{ID_1}-terms. The axioms of ID$_1$ consist of the axioms of Peano arithmetic PA in the language L_{ID_1} and the following new axiom schemata (ID$_1$) and (ID$_2$):

(ID1) $\forall x (A(P_A, x) \rightarrow P_A(x))$.

(ID2) (The universal closure of) $\forall x (A(F, x) \rightarrow F(x)) \rightarrow \forall x (P_A(x) \rightarrow F(x))$, where F is an L_{ID_1}-formula.

For each $n \in \mathbb{N}$ we write $I\Sigma_n$ to denote the fragment of Peano arithmetic PA with induction restricted to Σ_n^0-formulas. Let k be a natural number and $f : \mathbb{N}^k \rightarrow \mathbb{N}$ a numerical function and T be a system of arithmetic containing $I\Sigma_1$. Then we say that f is provably total computable in T or provably computable in T for short if there exists a Σ^0_n-formula $A_f(x_1, \ldots, x_k, y)$ such that (i) $FV(A_f) = FV_1(A_f) = \{x_1, \ldots, x_k, y\}$, (ii) for all $\vec{m}, n \in \mathbb{N}$, $f(\vec{m}) = n$ holds if and only if $A_f(\vec{m}, n)$ is true in the standard model \mathbb{N} of PA, and (iii) $\forall \vec{x} \exists! y A_f(\vec{x}, y)$ is a theorem in T.

3 A non-computable ordinal notation system $OT(\mathcal{F})$

In this section we introduce a non-computable ordinal notation system $OT(\mathcal{F}) = \langle OT(\mathcal{F}), \prec \rangle$. This new ordinal notation system is employed in the next section. For an element $\alpha \in OT(\mathcal{F})$ let $OT(\mathcal{F}) \upharpoonright \alpha$ denote the set $\{\beta \in OT(\mathcal{F}) \mid \beta < \alpha\}$.

Definition 3.1 We define three sets $SC \subseteq H \subseteq OT(\mathcal{F})$ of ordinal terms and a set \mathcal{F} of unary function symbols simultaneously. Let $0, \varphi, \Omega, S, E$ and $+$ be distinct symbols.

1. $0 \in OT(\mathcal{F})$ and $\Omega \in SC$.
2. $\{S, E\} \subseteq \mathcal{F}$.
3. If $\alpha \in OT(\mathcal{F}) \upharpoonright \Omega$, then $S(\alpha) \in OT(\mathcal{F})$ and $E(\alpha) \in H$.
4. If $\{\alpha_1, \ldots, \alpha_l\} \subseteq H$ and $\alpha_1 \geq \cdots \geq \alpha_l$, then $\alpha_1 + \cdots + \alpha_l \in OT(\mathcal{F})$.
5. If $\{\alpha, \beta\} \subseteq OT(\mathcal{F}) \upharpoonright \Omega$, then $\varphi \alpha \beta \in H$.
6. If $\alpha \in OT(\mathcal{F})$ and $\xi \in OT(\mathcal{F}) \upharpoonright \Omega$, then $\Omega^\alpha \cdot \xi \in H$.
7. If $F \in \mathcal{F}$, $\alpha \in OT(\mathcal{F})$ and $\xi \in OT(\mathcal{F}) \upharpoonright \Omega$, then $F^\alpha(\xi) \in SC$.
8. If $F \in \mathcal{F}$ and $\alpha \in OT(\mathcal{F})$, then $F^\alpha \in \mathcal{F}$.
We write \(\omega^\alpha \) to denote \(\varphi_0 \alpha \) and \(m \) to denote \(\omega^0 \cdot m = \frac{\omega^0 \cdot \ldots \cdot \omega^0}{m \text{ many}} \).

Let \(\text{Ord} \) denote the class of ordinals and \(\text{Lim} \) the class of limit ones. We define a semantic \([\cdot]\) for \(\mathcal{O}(F) \), i.e., \(\exists\mathcal{O}(F) \to \text{Ord} \). The well ordering \(< \) on \(\mathcal{O}(F) \) is defined by \(\alpha < \beta \iff [\alpha] < [\beta] \). Let \(\Omega_1 \) denote the least non-computable ordinal \(\omega_1^{\text{CK}} \). For an ordinal \(\alpha \) we write \(\alpha =_{NF} \Omega_1^{\alpha_1} \cdot \beta_1 + \ldots + \Omega_1^{\alpha_l} \cdot \beta_l \) if \(\alpha > \alpha_1 > \ldots > \alpha_l \), \(\{\beta_1, \ldots, \beta_l\} \subseteq \Omega_1 \), and \(\alpha = \Omega_1^{\alpha_1} \cdot \beta_1 + \ldots + \Omega_1^{\alpha_l} \cdot \beta_l \). Let \(\varepsilon_\alpha \) denote the \(\alpha \)th epsilon number. One can observe that for each ordinal \(\alpha < \varepsilon_{\Omega_1+1} \) there uniquely exists a set \(\{\alpha_1, \ldots, \alpha_l, \beta_1, \ldots, \beta_l\} \) of ordinals such that \(\alpha =_{NF} \Omega_1^{\alpha_1} \cdot \beta_1 + \ldots + \Omega_1^{\alpha_l} \cdot \beta_l \). For a set \(K \subseteq \text{Ord} \) and for an ordinal \(\alpha \) we will write \(K < \alpha \) to abbreviate \((\forall \xi \in K) \xi < \alpha \), and dually \(\alpha \leq K \) to abbreviate \((\exists \xi \in K) \alpha \leq \xi \).

Definition 3.2 (Collapsing operators)
1. Let \(\alpha \) be an ordinal such that \(\alpha =_{NF} \Omega_1^{\alpha_1} \cdot \beta_1 + \ldots + \Omega_1^{\alpha_l} \cdot \beta_l < \varepsilon_{\Omega_1+1} \). The set \(K_\Omega \alpha \) of coefficients of \(\alpha \) is defined by

\[
K_\Omega \alpha = \{\beta_1, \ldots, \beta_l\} \cup K_\Omega \alpha_1 \cup \cdots \cup K_\Omega \alpha_l.
\]

2. Let \(F : \text{Ord} \to \text{Ord} \) be an ordinal function. Then a function \(F^\alpha : \text{Ord} \to \text{Ord} \) is defined by transfinite recursion on \(\alpha \in \text{Ord} \) by

\[
\left\{
\begin{array}{l}
F^0(\xi) = F(\xi), \\
F^\alpha(\xi) = \min\{\gamma \in \text{Ord} \mid \omega^\gamma = \gamma, K_\Omega \alpha \cup \{\xi\} < \gamma \text{ and } (\forall \eta < \gamma)(\forall \beta < \alpha)(K_\Omega \beta < \gamma \Rightarrow F^\beta(\eta) < \gamma)\}.
\end{array}\right.
\]

Corollary 3.3 Let \(F : \text{Ord} \to \text{Ord} \) be an ordinal function. Then \(F^\beta(\eta) < F^\alpha(\xi) \) holds if \((\beta < \alpha \land K_\Omega \beta \cup \{\eta\} < F^\alpha(\xi)) \) or \((\alpha < \beta \land F^\beta(\eta) < K_\Omega \alpha)\).

Proposition 3.4 Suppose that \(\alpha < \varepsilon_{\Omega_1+1} \), a function \(F : \text{Ord} \to \text{Ord} \) has a \(\Sigma_1 \)-definition in the \(\Omega_1 \)th stage \(\mathcal{L}_{\Omega_1} \) of the constructible hierarchy \(\{\mathcal{L}_\alpha\}_{\alpha \in \text{Ord}} \) and that \(F(\xi) < \Omega_1 \) for all \(\xi < \Omega_1 \). Then \(F^\alpha \) also has a \(\Sigma_1 \)-definition in \(\mathcal{L}_{\Omega_1} \) and \(F^\alpha(\xi) < \Omega_1 \) holds for all \(\xi < \Omega_1 \).

Proposition 3.5 For any \(\alpha \in \text{Ord} \), for any \(\eta, \xi < \Omega_1 \) and for any ordinal function \(F : \Omega_1 \to \Omega_1 \), if \(\eta < F^\alpha(\xi) \), then \(F^\alpha(\eta) \leq F^\alpha(\xi) \).

Definition 3.6 We define the value \([\alpha] \in \text{Ord} \) of an ordinal term \(\alpha \in \mathcal{O}(F) \) by recursion on the length of \(\alpha \).

1. \([0] = 0 \) and \([\Omega] = \Omega_1 \).
2. \([\alpha + \beta] = [\alpha] + [\beta] \).
3. \([\varphi \alpha \beta] = [\varphi] [\alpha] [\beta] \), where \([\varphi] \) is the standard Veblen function, i.e.,

\[
\begin{align*}
[\varphi]0\beta &= \omega^\beta, \\
[\varphi](\alpha+1)0 &= \sup\{([\varphi] \alpha)^n0 \mid n \in \omega\}, \\
[\varphi] \varphi \gamma 0 &= \sup\{[\varphi] \alpha 0 \mid \alpha < \gamma\} & \text{if } \gamma \in \text{Lim}, \\
[\varphi](\alpha+1)(\beta+1) &= \sup\{([\varphi] \alpha)^n([\varphi] \alpha \beta + 1) \mid n \in \omega\}, \\
[\varphi] \gamma(\beta+1) &= \sup\{[\varphi] \alpha ([\varphi] \gamma \beta + 1) \mid \alpha < \gamma\} & \text{if } \gamma \in \text{Lim}, \\
[\varphi] \alpha \gamma &= \sup\{[\varphi] \alpha \beta \mid \beta < \gamma\} & \text{if } \gamma \in \text{Lim}.
\end{align*}
\]
4. $\Omega^\alpha \cdot \xi = \Omega_1^{\lceil \alpha \rceil} \cdot \lceil \xi \rceil$.

5. $[S(\alpha)] = [S](\lceil \alpha \rceil)$, where $[S]$ denotes the ordinal successor $\alpha \mapsto \alpha + 1$. Clearly $\{ [S](\xi) \mid \xi < \Omega_1 \} \subseteq \Omega_1$.

6. $[E(\alpha)] = [E](\lceil \alpha \rceil)$, where the function $[E] : \text{Ord} \to \text{Ord}$ is defined by $[E](\alpha) = \min \{ \xi \in \text{Ord} \mid \omega^\xi = \xi \text{ and } \alpha < \xi \}$. It is also clear that $\{ [E](\xi) \mid \xi < \Omega_1 \} \subseteq \Omega_1$ holds.

7. $[F^\alpha(\xi)] = [F]^\lceil \alpha \rceil(\lceil \xi \rceil)$.

Definition 3.7 For all $\alpha, \beta \in \mathcal{O}\mathcal{T}(\mathcal{F})$, $\alpha < \beta$ if $[\alpha] < [\beta]$, and $\alpha = \beta$ if $[\alpha] = [\beta]$.

We will identify each element $\alpha \in \mathcal{O}\mathcal{T}(\mathcal{F})$ with its value $[\alpha] \in \text{Ord}$. Accordingly we will write $K_\Omega \alpha$ instead of $K_\Omega [\alpha]$ for $\alpha \in \mathcal{O}\mathcal{T}(\mathcal{F})$. Further for a finite set $K \subseteq \text{Ord}$ we write $K_\Omega K$ to denote the finite set $\bigcup_{\xi \in K} K_\Omega \xi$. By this identification, \mathbb{H} is the set of additively indecomposable ordinals and SC is the set of strongly critical ordinals, i.e, $\text{SC} \subseteq \mathbb{H} \subseteq \text{Lim} \cup \{1\} \subseteq \text{Ord}$.

Corollary 3.8 $F^\alpha(\xi) < \Omega$ for any $F \in \mathcal{F}$ and $\xi < \Omega$.

Proof. Proof by induction over the build-up of $F \in \mathcal{F}$. \qed

Corollary 3.9

1. $K_\Omega 0 = K_\Omega \Omega = \emptyset$.

2. If $K_\Omega \alpha < \xi$ and $\xi \in \text{SC}$, then $K_\Omega S(\alpha) < \xi$.

3. $K_\Omega E(\alpha) = \{ E(\alpha) \}$ (since $\alpha < \Omega$).

4. If $K_\Omega \alpha \cup K_\Omega \beta < \xi$ and $\xi \in \text{SC}$, then $K_\Omega (\alpha + \beta) < \xi$.

5. $K_\Omega \varphi \alpha \beta = \{ \varphi \alpha \beta \}$ (since $\alpha, \beta < \Omega$). Further, if $\alpha, \beta < \xi$ and $\xi \in \text{SC}$, then $\varphi \alpha \beta < \xi$.

6. $K_\Omega F^\alpha(\xi) = \{ F^\alpha(\xi) \}$ (since $\xi < \Omega$).

By Corollary 3.8 each function symbol in \mathcal{F} defines a weakly increasing function $F : \Omega \to \Omega$ such that $\xi < F(\xi)$ holds for all $\xi \in \Omega$. In the rest of this section let F denote such a function. For a finite set $K \subseteq \text{Ord}$ we will use the notation $F[K](\xi)$ to abbreviate $F(\max(K \cup \{ \xi \}))$.

Lemma 3.10 Let $K \subseteq \text{Ord}$ be a finite set such that $K < \Omega$. Then $(F[K])^\alpha(\xi) \leq F^\alpha[K](\xi)$ for all $\xi < \Omega$.

Lemma 3.11 $(F^\alpha)^\beta(\xi) \leq F^{\alpha + \beta}(\xi)$ for all $\xi < \Omega$.
4 An infinitary proof system ID_{1}^{∞}

In this section we introduce the main definition of this paper, a new infinitary proof system ID_{1}^{∞}, to which the new ordinal notation system $\mathcal{OT}(\mathcal{F})$ is connected, and into which every (finite) proof in ID_{1} can be embedded in good order. For each positive operator form A and for each ordinal term $\alpha \in (\mathcal{OT}(\mathcal{F}) \upharpoonright \Omega) \cup \{\Omega\}$ let $P_{A}^{<\alpha}$ be a new unary predicate symbol. Let us define an infinitary language \mathcal{L}^{*} of ID_{1}^{∞} by $\mathcal{L}^{*} = \mathcal{L}_{PA} \cup \{\neq, \not\leq\} \cup \{P_{A}^{<\alpha}, \neg P_{A}^{<\alpha} \mid \alpha \in (\mathcal{OT}(\mathcal{F}) \upharpoonright \Omega) \cup \{\Omega\}\}$ and A is a positive operator form.

Let us write $P_{A}^{<\infty}$ to denote P_{A} to have the inclusion $\mathcal{L}_{ID_{1}} \subseteq \mathcal{L}^{*}$. We write $\mathcal{T}(\mathcal{L}^{*})$ to denote the set of closed \mathcal{L}^{*}-terms. Specifically, the language \mathcal{L}^{*} contains complementary predicate symbol $\neg P$ for each predicate symbol $P \in \mathcal{L}^{*}$. We note that the negation \neg nor the implication \rightarrow is not included as a logical symbol. The negation $\neg A$ is defined via de Morgan’s law by $\neg(\neg P(t)) := P(t)$ for an atomic formula $P(t)$, $\neg(\alpha \land \beta) := \neg \alpha \lor \neg \beta$, $\neg(\alpha \lor \beta) := \neg \alpha \land \neg \beta$, $\forall x A := \exists x \neg A$ and $\neg \exists x A := \forall x \neg A$. The implication $A \rightarrow B$ is defined by $\neg A \lor B$. We start with technical definitions.

Definition 4.1 (Complexity measures lh, rk, k^{Π}, k of \mathcal{L}^{*}-formulas)

1. The length $lh(A)$ of an \mathcal{L}^{*}-formula A is the number of the symbols $P_{A}^{<\alpha}$, $\neg P_{A}^{<\alpha}$, \lor, \land, \exists and \forall occurring in A.

2. The rank $rk(A)$ of an \mathcal{L}^{*}-formula A.

 (a) $rk(P_{A}^{<\alpha}(t)) := rk(\neg P_{A}^{<\alpha}(t)) := \omega \cdot \alpha$.

 (b) $rk(A) := 0$ if A is an $\mathcal{L}_{ID_{1}}$-literal.

 (c) $rk(\forall x A) := rk(\exists x A) := rk(A) + 1$.

3. The set $k^{\Pi}(A)$ of Π-coefficients of an \mathcal{L}^{*}-formula A.

 (a) $k^{\Pi}(P_{A}^{<\alpha}(t)) := \{0\}$, $k^{\Pi}(\neg P_{A}^{<\alpha}(t)) := \{0, \alpha\}$.

 (b) $k^{\Pi}(A) := \{0\}$ if A is an $\mathcal{L}_{ID_{1}}$-literal.

 (c) $k^{\Pi}(A \land B) := k^{\Pi}(A \lor B) := k^{\Pi}(A) \cup k^{\Pi}(B)$.

 (d) $k^{\Pi}(\forall x A) := k^{\Pi}(\exists x A) := k^{\Pi}(A)$.

4. The set $k^{\Sigma}(A)$ of Σ-coefficients of an \mathcal{L}^{*}-formula A.

 $k^{\Sigma}(A) := k^{\Pi}(\neg A)$.

5. The set $k(A)$ of all the coefficients of an \mathcal{L}^{*}-formula A.

 $k(A) := k^{\Pi}(A) \cup k^{\Sigma}(A)$.

6. The set $k^{\Pi}_{1}(A)$ of Π-coefficients of an \mathcal{L}^{*}-formula A less than Ω.

 $k^{\Pi}_{1}(A) := k^{\Pi}(A) \mid \Omega$.

The set $k^{\Pi}_{1}(A)$ and $k_{\Omega}(A)$ are defined accordingly.
By definition $\text{rk}(A) = \text{rk}(-A)$, $k(A) = k(-A)$ and $k_{\Omega}(A) = k_{\Omega}(-A)$.

Definition 4.2 (Complexity measures val, ord, N of L^*-terms)

1. The value $\text{val}(t)$ of a term $t \in T(L_{ID_1}) = T(L_{PA})$ is the value of the closed term t in the standard model \mathbb{N} of the Peano arithmetic PA.

2. A complexity measure $\text{ord} : T(L^*) \to (\mathcal{O}\mathcal{T}(F) \cup \Omega) \cup \{\Omega\}$ is defined by

$$\begin{cases}
\text{ord}(t) := 0 & \text{if } t \in T(L_{ID_1}), \\
\text{ord}(\alpha) := \alpha & \text{if } \alpha \in \mathcal{O}\mathcal{T}(F).
\end{cases}$$

3. The norm $N(\alpha)$ of $\alpha \in \mathcal{O}\mathcal{T}(F)$.

 (a) $N(0) = 0$ and $N(\Omega) = 1$.
 (b) $N(S(\alpha)) = N(\alpha) + 1$.
 (c) $N(E(\alpha)) = N(\alpha) + 1$.
 (d) $N(\alpha + \beta) = N(\alpha) + N(\beta)$.
 (e) $N(\varphi(\alpha)) = N(\alpha) + N(\beta) + 1$.
 (f) $N(\Omega^\alpha \cdot \xi) = N(\alpha) + N(\xi) + 1$.
 (g) $N(F^\alpha(\xi)) = N(F(\xi)) + N(\alpha)$. (Note that $F(\xi) \in \mathcal{O}\mathcal{T}(F)$ if $F(\xi) \in \mathcal{O}\mathcal{T}(F)$.)

The norm is extended to a complexity measure $N : T(L^*) \to \mathbb{N}$ by

$$\begin{cases}
N(t) := \text{val}(t) & \text{if } t \in T(L_{ID_1}), \\
N(\alpha) := N(\alpha) & \text{if } \alpha \in \mathcal{O}\mathcal{T}(F).
\end{cases}$$

By definition $N(\omega^\alpha) = N(\varphi(0^\alpha)) = N(\alpha) + 1$ and $N(m) = N(\omega^m \cdot m) = m$ for any $m < \omega$. This seems to be a good point to explain why we contain the constant Ω in $\mathcal{O}\mathcal{T}(F)$. Having that $N(\Omega) = 1$ removes some technicalities.

Definition 4.3 We define a relation \simeq between L^*-sentences and (infinitary) propositional L^*-sentences.

1. $\neg P_{\mathcal{A}}^{<\alpha}(t) :\simeq \bigwedge_{\xi \in \mathcal{O}\mathcal{T}(F) \cup \alpha} \neg A(P_{\mathcal{A}}^{<\xi}, t)$ and $P_{\mathcal{A}}^{<\alpha}(t) :\simeq \bigvee_{\xi \in \mathcal{O}\mathcal{T}(F) \cup \alpha} A(P_{\mathcal{A}}^{<\xi}, t)$.

2. $A \land B :\simeq \bigwedge_{\iota \in \{0, 1\}} A_\iota$ and $A \lor B :\simeq \bigvee_{\iota \in \{0, 1\}} A_\iota$ where $A_0 \equiv A$ and $A_1 \equiv B$.

3. $\forall x A(x) :\simeq \bigwedge_{t \in T(L_{ID_1})} A(t)$ and $\exists x A(x) :\simeq \bigvee_{t \in T(L_{ID_1})} A(t)$.

We call an L^*-sentence A a \land-type (conjunctive type) if $A \simeq \bigwedge_{\iota \in \{0, 1\}} A_\iota$ for some A_ι, and a \lor-type (disjunctive type) if $A \simeq \bigvee_{\iota \in \{0, 1\}} A_\iota$ for some A_ι. For the sake of simplicity we will write $\bigwedge_{\xi < \alpha} A_\xi$ instead of $\bigwedge_{\xi \in \mathcal{O}\mathcal{T}(F) \cup \alpha} A_\xi$ and write $\bigvee_{\xi < \alpha} A_\xi$ accordingly.
Lemma 4.4 1. If either $A \simeq \bigwedge_{i \in I} A_i$ or $A \simeq \bigvee_{i \in I} A_i$, then for all $i \in J$, $k^\Pi(A_i) \subseteq \{\text{ord}(i)\} \cup k^\Pi(A_i)$ and $k^\Sigma(A_i) \subseteq \{\text{ord}(i)\} \cup k^\Sigma(A_i)$.

2. For any $\alpha \in \mathcal{OT}(\mathcal{F})$, if $A \simeq \bigwedge_{\xi \in \alpha} A_\xi$, then $(\exists \sigma \in k^\Pi(A))(\forall \xi < \alpha)[\xi \leq \sigma]$.

3. For any \mathcal{L}^*-sentence A, $\text{rk}(A) = \omega \cdot \max k(A) + n$ for some $n \leq \text{lh}(A)$.

4. If $\text{rk}(A) = \Omega$, then either $A \equiv P_{A}^<\Omega(t)$ or $A \equiv \neg P_{A}^<\Omega(t)$.

5. If either $A \simeq \bigwedge_{i \in I} A_i$ or $A \simeq \bigvee_{i \in I} A_i$, then $\text{rk}(A_i) \leq \max(\{\text{rk}(A)\}) \cup \{2 \cdot \text{Nh}(\xi) + \text{lh}(A(\cdot, *)) | P_{A}^{<\xi} \text{ or } \neg P_{A}^{<\xi} \text{ occurs in } A\}$ for all $i \in J$.

Proof. We only show the non-trivial property, Property 5. By Property 3, $\text{rk}(A) = \omega \cdot \max k(A) + n$ for some $n \leq \text{lh}(A)$.

CASE. $n > 0$: In this case $\text{rk}(A) = \omega \cdot \max k(A) + n_0$ for some $n_0 < n \leq \text{lh}(A)$. Hence clearly $\text{Nh}(\text{rk}(A_i)) \leq \text{Nh}(\text{rk}(A))$.

CASE. $n = 0$: In this case without loss of generality let us assume A is of the form $P_{A}^{<\alpha}(t) \simeq \bigvee_{\xi \in \alpha} A(P_{A}^{<\xi}, t)$ and hence $A_\xi \simeq A(P_{A}^{<\xi}, t)$. Let $i := \xi < \alpha$. Then $\text{rk}(A_i) = \omega \cdot \xi + n_i$ for some $n_i \leq \text{lh}(A(\cdot, t))$. Hence $\text{Nh}(\text{rk}(A)) \leq 2 \cdot \text{Nh}(\xi) + \text{lh}(A(\cdot, *))$.

Throughout this section we use the symbol F to denote a weakly increasing ordinal function $F : \Omega \rightarrow \Omega$ and the symbol f to denote a numerical function $f : \mathbb{N} \rightarrow \mathbb{N}$ that enjoys the following conditions.

(f.1) f is a strictly increasing function such that $2m + 1 \leq f(m)$ for all m. Hence, in particular, $n + f(m) \leq f(n + m)$ for all m and n.

(f.2) $2 \cdot f(m) \leq f(f(m))$ for all m.

We will use the notation $f[n](m)$ to abbreviate $f(n + m)$. It is easy to see that if the conditions (f.1) and (f.2) hold, then for a fixed n the conditions $f[n]1$ and $(f[n]2)$ also hold.

Definition 4.5 Let $f : \mathbb{N} \rightarrow \mathbb{N}$ be a numerical function. Then a function $f^\alpha : \mathbb{N} \rightarrow \mathbb{N}$ is defined by transfinite recursion on $\alpha \in \mathcal{OT}(\mathcal{F})$ by

\begin{align*}
f^0(m) &= f(m), \\
f^\alpha(m) &= \max\{f^\beta(f^\beta(m)) | \beta < \alpha \text{ and } N(\beta) \leq f[N(\alpha)](m)\} \text{ if } 0 < \alpha.
\end{align*}

Corollary 4.6 1. If f is strictly increasing, then so is f^α for any $\alpha \in \mathcal{OT}(\mathcal{F})$.

2. If $\beta < \alpha$ and $N(\beta) \leq f[N(\alpha)](m)$, then $f^\beta(m) < f^\alpha(m)$.

3. $f^\alpha(f^\alpha(m)) \leq f^{\alpha+1}(m)$.

We note that the function f^α is not a computable function in general even if f is computable since the ordinal notation system $\langle \mathcal{OT}(\mathcal{F}), < \rangle$ is not a computable system.
Lemma 4.7 Let $\alpha \in \mathcal{O}(\mathcal{F})$ and $F \in \mathcal{F}$. Then $N(\alpha) \leq f^{\mathcal{O}(\alpha)}(0)$.

Lemma 4.8 Let $\{\alpha, \beta\} \subseteq \mathcal{O}(\mathcal{F}) \cap \Omega$ and $F \in \mathcal{F}$. Then $(f^{\alpha})^{\beta}(m) \leq f^{\mathcal{O}(\alpha)+\mathcal{O}(\beta)}(m)$ for all m.

Lemma 4.9
1. $f^{\alpha}[n](m) \leq (f[n])^{\alpha}(m)$.
2. If $n \leq m$, then $(f[n])^{\alpha}(m) \leq f^{\alpha}[f^{\alpha}(f(m))](f(m))$.

We write $f[n][m]$ to abbreviate $(f[n])(m)$ and $f[n]^{\alpha}$ to abbreviate $(f[n])^{\alpha}$.

Corollary 4.10 If $n \leq m$, then $(f[n])^{\alpha}(m) \leq f^{\alpha+2}(m)$.

We define a relation $f, F \vdash_{\rho}^{\alpha} \Gamma$ for a quintuple $(f, F, \alpha, \rho, \Gamma)$ where $\alpha < \epsilon_{\Omega+1}$, $\rho < \Omega + \omega$ and Γ is a sequent of \mathcal{L}-sentences. In this paper a “sequent” means a finite set of formulas. We write Γ, A or A, Γ to denote $\Gamma \cup \{A\}$.

We will write $TRUE_0$ to denote the set $\{A | A$ is an \mathcal{L}_{PA}-literal true in the standard model \mathbb{N} of PA}.

Definition 4.11 $f, F \vdash_{\rho}^{\alpha} \Gamma$ if

\[\max\{N(F(0)), N(\alpha)\} \leq f(0), \quad K_{\Omega}^{\alpha} < F(0), \quad (HYP(f; F; \alpha)) \]

and one of the following holds.

(Ax1) $\exists A(x)$: an \mathcal{L}_{ID_1}-literal, $\exists s, t \in \mathcal{T}(\mathcal{L}_{ID_1})$ s.t. $\text{FV}(A) = \{x\}$, $\text{val}(s) = \text{val}(t)$ and $\{\neg A(s), A(t)\} \subseteq \Gamma$.

(Ax2) $\Gamma \cap TRUE_0 \neq \emptyset$.

(V) $\exists A \simeq \bigvee_{\iota \in J} A_{\mu} \in \Gamma$, $\exists \alpha_0 < \alpha$, $\exists \iota_0 \in J$ s.t. $N(\iota_0) \leq f(0)$, $\text{ord}(\iota_0) < \min\{\alpha, F(0)\}$ and $f, F \vdash_{\rho}^{\alpha_0} \Gamma, A_{\iota_0}$.

(A) $\exists A \simeq \bigwedge_{\iota \in J} A_{\iota} \in \Gamma$ s.t. $\max\{N(\sigma) | \sigma \in k^{\Omega}(A)\} \leq f(0)$, $k^{\Omega}(A) < F(0)$ and $(\forall \iota \in J) \ (\exists \alpha_{\iota} < \alpha) [f[N(\iota)], F[\text{ord}(\iota)] \vdash^{\alpha_{\iota}}_{\rho} \Gamma, A_{\iota}]$.

(Cl) $\exists t \in \mathcal{T}(\mathcal{L}_{ID_1})$, $\exists \alpha_0 < \alpha$ s.t. $P^{<\Omega}(t) \in \Gamma$, $\Omega < \alpha$ and $f, F \vdash_{\rho}^{\alpha_0} \Gamma, A(P^{<\Omega}_{\mathcal{A}}, t)$.

(Cut) $\exists C$: an \mathcal{L}^*-sentence of \vee-type, $\exists \alpha_0 < \alpha$ s.t. $\max\{N(\sigma) | \sigma \in k\Omega(C)\} \cup \{lh(C)\} \leq f(0)$, $k\Omega(C) < \rho$, $f, F \vdash_{\rho}^{\alpha_0} \Gamma, C$, and $f, F \vdash_{\rho}^{\alpha_0} \Gamma, \neg C$.

We will call the pair (f, F) operators controlling the derivation that forms $f, F \vdash_{\rho}^{\alpha} \Gamma$. 47
In the sequel we always assume that the operator F enjoys the following condition HYP(F):

$$\eta < F(\xi) \Rightarrow F(\eta) \leq F(\xi) \quad \text{for any ordinals } \xi, \eta < \Omega. \quad \text{(HYP(F))}$$

We note that the hypothesis HYP(F) reflects the fact stated in Proposition 3.5. It is not difficult to see that if the condition HYP(F) holds, then the condition HYP($F[K]$) also holds for any finite set $K < \Omega$.

Lemma 4.12 (Inversion) Assume that $A \simeq \bigwedge_{i \in J} A_i$. If $f, F \vdash_{\rho}^\alpha \Gamma, A$, then for all $i \in J$, $f[N(i)], F[\text{ord}(i)] \vdash_{\rho}^\alpha \Gamma, A_i$.

We write $f \circ g$ to denote the result of composing f and g: $m \mapsto f(g(m))$.

Lemma 4.13 (Cut-reduction) Assume $C \simeq \bigvee_{i \in J} C_i$, $\text{rk}(C) = \rho \neq \Omega$, $\max(\{N(\sigma) \mid \sigma \in k_{\Omega}(C) \cup \{\text{lh}(C)\}) \leq f(g(0))$, and $k_{\Omega}(C) < F(0)$. If $f, F \vdash_{\rho}^\alpha \Gamma, -C$ and $g, F \vdash_{\rho}^\beta \Gamma, C$, then $f \circ g, F \vdash_{\rho}^{\alpha+\beta} \Gamma$.

For a sequent Γ we write $k^\Pi_{\Omega}(\Gamma)$ to denote the set $\bigcup_{B \in \Gamma} k^\Pi_{\Omega}(B)$.

Lemma 4.14 (First Cut-elimination) Let $k < \omega$. If $f, F \vdash_{\Omega+k+2}^\alpha \Gamma$, then $f^{F(0)+1}, F \vdash_{\omega}^\alpha \Gamma$.

Lemma 4.15 (Predicative Cut-elimination) Assume that $\{\alpha, \beta, \gamma\} < \Omega$, $N(\alpha) \leq f^*(0)$ and $K_{\Omega}\alpha < F(0)$. If $f^*, F \vdash_{\rho}^\beta \Gamma, -C$ and $g, F \vdash_{\rho}^\beta \Gamma, C$, then $f \circ g, F \vdash_{\rho}^{\alpha+\beta} \Gamma$.

Definition 4.16 For each \mathcal{L}^*-formula B let B^α be the result of replacing in B every occurrence of P^α_{\ast} by P^α_{\ast}.

Lemma 4.17 (Boundedness) Assume that $f, F \vdash_{\rho}^\alpha \Gamma, A$. Then for all ξ if $\alpha \leq \xi \leq F(0), N(\xi) \leq f(0)$ and $K_{\Omega}m < F(0)$, then $f, F \vdash_{\rho}^\alpha \Gamma, A^\xi$.

We will write $f, F \vdash_{\rho}^\alpha \Gamma$ instead of $f, F \vdash_{\rho}^\alpha \Gamma$.

Lemma 4.18 (Impredicative Cut-elimination)

If $f, F \vdash_{\Omega+1}^\alpha \Gamma$, then $f^{F(0)+1}, F^{\alpha+1} \vdash_{\Omega}^\alpha \Gamma$.

Lemma 4.19 (Witnessing) For each $j < l$ let $B_j(x)$ be a Δ_0^0-\mathcal{L}_{PA}-formula such that $\text{FV}(B_j(x)) = \{x\}$. Let $\Gamma \equiv \exists x_0 B_0(x_0), \ldots, \exists x_{l-1} B_{l-1}(x_{l-1})$. If $f, F \vdash_{\rho}^\alpha \Gamma$ for some $\alpha \in \overline{\mathcal{O}}\mathcal{T}(\mathcal{F})$, then there exists a sequence m_0, \ldots, m_{l-1} of naturals such that $\max(m_j \mid j < l) \leq f(0)$ and $B_0(m_0) \lor \cdots \lor B_{l-1}(m_{l-1})$ is true in the standard model \mathbb{N} of PA.
5 Embedding ID$_1$ into ID$_1^\infty$

In this section we embed the system ID$_1$ into the infinitary system ID$_1^\infty$. Following conventions in the previous section we use the symbol f to denote a strict increasing function $f: \mathbb{N} \to \mathbb{N}$ that enjoys the conditions (f.1) and (f.2) (p. 8). Let us recall that the function symbol $E \in \mathcal{F}$ denotes the function $E: \Omega \to \Omega$ such that $E(\alpha) = \min\{\xi < \Omega \mid \omega^\xi = \xi \text{ and } \alpha < \xi\}$. It is easy to see that the condition HYP(E) holds since $E(\xi) = \varepsilon_0 \leq E(0)$ for all $\xi < E(0) = \varepsilon_0$.

Lemma 5.1 (Tautology lemma) Let $s, t \in \mathcal{T}(\mathcal{L}_{ID_1})$, Γ be a sequent of \mathcal{L}^*-sentences, and $A(x)$ be an \mathcal{L}^*-formula such that $\text{FV}(A) = \{x\}$. If $\text{val}(s) = \text{val}(t)$, then

$$f[n], E[k_\Omega(A)] \vdash_{0}^{rk(A)-2} \Gamma, \neg A(s), A(t),$$

where $n := \max\{\{N(rk(A))\} \cup \{2 \cdot N(\sigma) + \text{lh}(A(\cdot, *)) \mid \sigma \in k_\Omega(A) \text{ and } P_A^{<\xi} \text{ or } \neg P_A^{<\xi} \text{ occurs in } A\}$.

Proof. By induction on $rk(A)$. Let $n := \max\{\{N(rk(A))\} \cup \{2 \cdot N(\sigma) + \text{lh}(A(\cdot, *)) \mid \sigma \in k_\Omega(A) \text{ and } P_A^{<\xi} \text{ or } \neg P_A^{<\xi} \text{ occurs in } A\}$. From Lemma 4.4.3 one can check that the condition HYP($f[n]; E(k_\Omega(A)); rk(A) \cdot 2$) holds. If $rk(A) = 0$, then A is an \mathcal{L}_{ID_1}-literal, and hence (1) is an instance of (Ax1). Suppose that $rk(A) > 0$. Without loss of generality we can assume that $A \simeq \bigvee_{i \in J} A_i$. Let $i \in J$. By Lemma 4.4.5 we observe that $N(rk(A_i)) \leq f(n) = f[n][N(\iota)](0)$ since $2m + 1 \leq f(m)$ for all m by the condition (f.1). Further by Lemma 4.4.1 $k_\Omega(rk(A_i) \cdot 2) \subseteq k_\Omega(A) \cup \{\text{ord}(\iota)\} \leq E[k_\Omega(A)][\text{ord}(\iota)]$. Summing up, we have the condition

$$\text{HYP}(f[n][N(\iota)]; E[k_\Omega(A)][\text{ord}(\iota)]; rk(A_i) \cdot 2).$$

Hence by IH we can obtain the sequent

$$f[n][N(\iota)], E[k_\Omega(A)][\text{ord}(\iota)] \vdash_{0}^{rk(A_i)-2} \Gamma, \neg A_i(s), A_i(t).$$

(2)

It is not difficult to see $\text{ord}(\iota) \leq rk(A_i) < rk(A_i) \cdot 2 + 1$ and $N(rk(A_i) \cdot 2 + 1) = N(rk(A_i) \cdot 2) + 1 \leq f[n][N(\iota)](0)$. This allows us to apply (V) to the sequent (2) yielding

$$f[n][N(\iota)], E[k_\Omega(A)][\text{ord}(\iota)] \vdash_{0}^{rk(A_i)-2+1} \Gamma, \neg A_i(s), A_i(t).$$

We can see that $rk(A_i) \cdot 2 + 1 < rk(A) \cdot 2$, $\max\{N(\sigma) \mid \sigma \in k_\Omega^n(A)\} \leq f[n](0)$ and $k_\Omega^n(A) < E[k_\Omega(A)]$. Hence we can apply (\text{V\wedge}) concluding (1). □

Lemma 5.2 Let B_j be an \mathcal{L}_{ID_1}-sentence for each $j = 0, \ldots, l - 1$. Suppose that $B_0 \lor \cdots \lor B_{l-1}$ is a logical consequence in the first order predicate logic with equality. Then there exists a natural $k < \omega$ such that $f[m + k], E \vdash_{0}^{rk(A_i)-2+k} \Gamma, B_0, \ldots, B_{l-1}$, where $m = \max\{\{N(rk(B_j)) \mid 0 \leq j \leq l-1\} \cup \{\text{lh}(A(\cdot, *)) \mid P_A^{<\xi} \text{ or } \neg P_A^{<\xi} \text{ occurs in } B_j \text{ for some } j\}.$
Proof. Let B_j be an \mathcal{L}_{ID_1}-sentence for each $j = 0, \ldots, l - 1$ and suppose that $B_0 \lor \cdots \lor B_{l-1}$ is a logical consequence in the first order predicate logic with equality. Then we can find a cut-free proof of the sequent $\Gamma, B_0, \ldots, B_{l-1}$ in an LK-style sequent calculus. More precisely we can find a cut-free proof P of $\Gamma, B_0, \ldots, B_{l-1}$ in the sequent calculus that is known as $G3_m$. Let h denote the tree height of the cut-free proof P. Then by induction on h one can find a witnessing natural k such that $f[m+k], \Gamma \vdash^\alpha \Gamma, B_0, \ldots, B_{l-1}$ for all $\alpha \geq \Omega + k$. In case $h = 0$ Tautology lemma (Lemma 5.1) can be applied since for any \mathcal{L}_{ID_1}-sentence A, $\text{rk}(A) \in \omega \cup \{\Omega + k | k < \omega \}$ and $k(A) \subseteq \{0, \Omega\}$, and hence $k_\Omega(A) = \{0\}$ and $\max\{N(\sigma) | \sigma \in k_\Omega(A)\} = 0$. \qed

Lemma 5.3 Let $m \in \mathbb{N}$ and $A(x)$ be an \mathcal{L}_{ID_1}-formula such that $\text{FV}(A(x)) = \{x\}$. Then for any $t \in T(\mathcal{L}_{ID_1})$ and for any sequent Γ of \mathcal{L}_{ID_1}-sentences, if $\text{val}(t) = m$, then

$$f[n+m], \Gamma \vdash^{\text{rk}(A)+m+2} \Gamma, \neg A(0), \neg \forall x(A(x) \rightarrow A(S(x))), \Gamma, A(t),$$

(3)

where $n := \max\{\{N(\text{rk}(A))\} \cup \{\text{lh}(A(\cdot, \cdot)) | \text{rk}(A) \leq \Omega \}$ or $\text{rk}(A) \leq \Omega \}$ occurs in A.

Proof. By induction on m. The base case $\text{val}(t) = m = 0$ follows from Tautology lemma (Lemma 5.1). For the induction step suppose $\text{val}(t) = m + 1$. Fix a sequent Γ of \mathcal{L}_{ID_1}-sentences. Then (3) holds by IH. On the other hand again by Tautology lemma,

$$f[n], \Gamma \vdash^{\text{rk}(A)+2} \Gamma, \neg A(0), \exists x(A(x) \land \neg A(S(x))), A(m), \neg A(m).$$

(4)

An application of (\land) to the two sequents (3) and (4) yields

$$f[n+m], \Gamma \vdash^{\alpha+2+1} \Gamma, \neg A(0), \exists x(A(x) \land \neg A(S(x))), A(t), A(m) \land \neg A(m),$$

The final application of (\lor) yields

$$f[n+m+1], \Gamma \vdash^{\text{rk}(A)+m+1+2} \Gamma, \neg A(0), \exists x(A(x) \land \neg A(S(x))), A(t).$$

Lemma 5.4 Let $\xi \leq \Omega$, $F(x)$ be an \mathcal{L}_{ID_1}-formula such that $\text{FV}(F(x)) = \{x\}$ and $B(X)$ be an X-positive $\mathcal{L}_{PA}(X)$-formula such that $\text{FV}(B) = \emptyset$. Then

$$f[n], E[K_{\Omega} \xi] \vdash^{\sigma+\alpha+1+1} \Gamma, \neg \forall x(A(F, x) \rightarrow F(x)), \neg B(P^<\xi, B(F),$$

where $\sigma := \text{rk}(F), \alpha := \text{rk}(B(P^<\xi))$ and $n := \max\{\{N(\sigma + \alpha + 1)\} \cup \{\text{lh}(B) | \text{rk}(B) \leq \Omega \} \}$. \qed

Proof. By main induction on ξ and side induction on $\text{rk}(B(P^<\xi))$. Let $\text{Cl}_A(F)$ denote $\neg \forall x(A(F, x) \rightarrow F(x))$. Then $\neg \text{Cl}_A(F) \equiv \exists x(A(F, x) \land \neg F(x))$. The argument splits into several cases depending on the shape of the formula $B(X)$.

CASE. $B(X)$ is an \mathcal{L}_{PA}-literal: In this case B does not contain the set free variable X, and hence Tautology lemma (Lemma 5.1) can be applied. Note that the operator form B does not occur in B.

CASE. $B \equiv X(t)$ for some $t \in T(\mathcal{L}_{ID_1})$: In this case $\neg B(P_{\mathcal{A}}^{<\xi}) \equiv \neg P_{\mathcal{A}}^{<\xi}(t) \equiv \bigwedge_{\eta<\xi} \neg \mathcal{A}(P_{\mathcal{A}}^{<\eta}, t)$. Let $\eta < \xi$. Then by MIH

$$f[n], E[K_{\Omega}\xi] \vdash_{0}^{(\sigma+\alpha_{\xi}+1)^2} \Gamma, \neg \mathcal{A}(F), \neg P_{\mathcal{A}}^{<\xi}(t), A(F, t), F(t)$$

where $\alpha_{\xi} := \text{rk}(A(P_{\mathcal{A}}^{<\xi}, t))$ and $n_{\xi} := \max\{N(\text{rk}(A(P_{\mathcal{A}}^{<\xi}, t))) \}$. We note that $\eta < \xi \leq \Omega$ and hence $K_{\Omega}\eta = \{\eta\} = \{\text{ord}(\eta)\}$. Hence this yields the sequent

$$f[n][N(\eta)], E[\text{ord}(\eta)] \vdash_{0}^{(\sigma+\alpha_{\eta}+1)^2} \Gamma, \neg \mathcal{A}(F), \neg P_{\mathcal{A}}^{<\eta}(t), A(F, t), F(t).$$

An application of (\wedge) allows us to conclude

$$f[n], E[K_{\Omega}\xi] \vdash_{0}^{(\sigma+\alpha_{\xi}+1)^2} \Gamma, \neg \mathcal{A}(F), \neg P_{\mathcal{A}}^{<\xi}(t), A(F, t), F(t).$$

On the other hand by Tautology lemma (Lemma 5.1),

$$f[n], E[K_{\Omega}\xi] \vdash_{0}^{(\sigma+\alpha_{\xi})^2} \Gamma, \neg \mathcal{A}(F), \neg P_{\mathcal{A}}^{<\xi}(t), A(F, t), F(t).$$

Another application of (\wedge) to the two sequents (5) and (5) yields the sequent

$$f[n], E[K_{\Omega}\xi] \vdash_{0}^{(\sigma+\alpha_{\xi}+1)^2} \Gamma, \neg \mathcal{A}(F), \neg P_{\mathcal{A}}^{<\xi}(t), A(F, t) \wedge \neg F(t), F(t).$$

An application of (\lor) allows us to conclude

$$f[n], E[K_{\Omega}\xi] \vdash_{0}^{(\sigma+\alpha_{\xi}+1)^2} \Gamma, \neg \mathcal{A}(F), \neg P_{\mathcal{A}}^{<\xi}(t), A(F, t).$$

The other cases can be treated in similar ways. \[\square\]

Lemma 5.5 1. $f[n], E \vdash_{0}^{\Omega^2+\omega} \forall x(\mathcal{A}(P_{\mathcal{A}}^{<\Omega}, x) \rightarrow P_{\mathcal{A}}^{<\Omega}(x))$, where $n := \max\{N(\text{rk}(A(P_{\mathcal{A}}^{<\Omega}, \Omega))), \text{lh}(A(P_{\mathcal{A}}^{<\Omega}, \Omega))\}$
2. \(f[3 + l], E \vdash_{0}^{\Omega + 2 + \omega} \Gamma, \forall \vec{y} \exists x \{ A(F(\cdot, \vec{y}), x) \rightarrow F(x, \vec{y}) \} \rightarrow \forall x \{ P_{A_{\Delta}}^\Omega(x) \rightarrow F(x, \vec{y}) \} \), where \(\vec{y} = y_0, \ldots, y_{l-1} \).

Proof. 1. Let \(\alpha = \text{rk}(A(P_{\Delta}^{< \Omega}, 0)) \) and \(t \in T(L_{\mathcal{D}_1}) \). By the definition of \(\text{rk} \) we can find a natural \(k \leq \text{lh}(A(P_{\Delta}^{< \Omega}, 0)) \) such that \(\alpha = \text{rk}(A(P_{\Delta}^{< \Omega}, t)) = \Omega + k \). This implies \(k(A(P_{\Delta}^{< \Omega}, t)) = \{ 0, \Omega \} \) and hence \(k(0)(A(P_{\Delta}^{< \Omega}, t)) = \{ 0 \} < E(0) \). By Tautology lemma (Lemma 5.1),

\[
f[n], E \vdash_{0}^{\Omega + 2 + k} \Gamma, P_{A_{\Delta}}^{< \Omega}(t), \neg A(P_{\Delta}^{< \Omega}, t), A(P_{\Delta}^{< \Omega}, t).
\]

Since \(\Omega < \Omega \cdot 2 + k + 1 \), we can apply the closure rule (C1) obtaining the sequent

\[
f[n], E \vdash_{0}^{\Omega + 2 + k + 1} \Gamma, \neg A(P_{\Delta}^{< \Omega}, t), P_{\Delta}^{< \Omega}(t).
\]

An application of (\(\land \)) followed by an application of (\(\lor \)) enables us to conclude

\[
f[n], E \vdash_{0}^{\Omega + 2 + \omega} \Gamma, \forall x \{ A(P_{\Delta}^{< \Omega}, x) \rightarrow P_{A_{\Delta}}^{< \Omega} x \}.
\]

2. By definition \(\text{rk}(P_{\Delta}^{< \Omega}) = \omega \cdot \Omega = \Omega \). On the other hand \(\text{rk}(F) < \omega \) and hence \((\text{rk}(F) + \text{rk}(P_{\Delta}^{< \Omega}) + 1) \cdot 2 = \Omega \cdot 2 + 2 \). Let \(s, \vec{t} = s, t_0, \ldots, t_{l-1} \in T(L_{\mathcal{D}_1}) \). Then by the previous lemma (Lemma 5.4)

\[
f[2], E \vdash_{0}^{\Omega + 2 + 1} \neg \forall x \{ A(F(\cdot, \vec{t}), x) \rightarrow F(x, \vec{t}) \}, \neg P_{A_{\Delta}}^{< \Omega}(t), F(s, \vec{t})
\]

since \(N(\Omega + 1) = 2 \). It is not difficult to see that applications of (\(\lor \)), (\(\land \)) and (\(\land \)) in this order yield the sequent

\[
f[3], E \vdash_{0}^{\Omega + 2 + \omega} \forall x \{ A(F(\cdot, \vec{t}), x) \rightarrow F(x, \vec{t}) \} \rightarrow \forall x \{ P_{A_{\Delta}}^{< \Omega}(x) \rightarrow F(x, \vec{t}) \}
\]

Finally, \(l \)-fold application of (\(\land \)) allows us to conclude.

Let us recall that \(s \) denotes the numerical successor \(m \mapsto m + 1 \).

Theorem 5.6 Let \(A \equiv \forall \vec{x} \exists y B(\vec{x}, y) \) be a \(\Delta_0^2 \)-sentence for a \(\Delta_0^2 \)-formula \(B(\vec{x}, y) \) such that \(\text{FV}(B(\vec{x}, y)) = \{ \vec{x}, y \} \). If \(\text{ID}_1 \vdash A \), then we can find an ordinal term \(\alpha \in \mathcal{O}\mathcal{T}(\mathcal{F}) \uparrow \Omega \) built up without the Veblen function symbol \(\varphi \) such that for all \(\vec{m} = m_0, \ldots, m_{l-1} \in \mathbb{N} \) there exists \(n \leq s^\alpha(m_0 + \cdots + m_{l-1}) \) such that \(B(\vec{m}, n) \) is true in the standard model \(\mathbb{N} \) of PA.

Proof. Assume \(\text{ID}_1 \vdash A \). Then there exist \(\text{ID}_1 \)-axioms \(A_0, \ldots, A_{k-1} \) such that \((\neg A_0) \lor \cdots \lor (\neg A_{k-1}) \lor A \) is a logical consequence in the first order predicate logic with equality. Hence by Lemma 5.2,

\[
f[c_0], E \vdash_{0}^{\Omega + 3} \neg A_0, \ldots, \neg A_{k-1}, A
\]

for some constant \(c_0 < \omega \) depending on \(\text{N}(\text{rk}(A_0)), \ldots, \text{N}(\text{rk}(A_{k-1})), \text{N}(\text{rk}(A)) \) and max\{\(\text{lh}(A(\cdot, *)) \) | \(P_{A_{\Delta}}^{< k} \) or \(P_{A_{\Delta}}^{< k} \) occurs in \(A_j \) or \(A \)\}, and depending also on the tree height of a cut-free \(\text{LK} \)-derivation of the sequent \(\neg A_0, \ldots, \neg A_{k-1}, A \). By Lemma 5.3 and 5.5, for each \(j \leq k - 1 \), there exists a constant \(c_j \) depending on \(\text{rk}(A_j) \) such that \(f[c_j], E \vdash_{0}^{\Omega + 2 + \omega} A_j \). Hence \(k \)-fold application of (Cut) yields \(f[c], E \vdash_{0}^{\Omega + 3} \neg A_0, \ldots, \neg A_{k-1}, A \).
A, where $c := \max(\{k\} \cup \{c_j \mid j \leq k - 1\}) \cup \{\text{lh}(A_j) \mid j \leq k - 1\}$ and $d := \max(\{\Omega, \text{rk}(A_0), \ldots, \text{rk}(A_{k-1})\})$.

For each $n \in \mathbb{N}$ and $\alpha \in \mathcal{OT}(\mathcal{F})$ let us define ordinal $\Omega_n(\alpha)$ and γ_n by

$$\Omega_0(\alpha) = \alpha, \quad \gamma_0 = \Omega \cdot 3,$$

$$\Omega_{n+1}(\alpha) = \Omega^{\Omega_n(\alpha)}, \quad \gamma_{n+1} = \varepsilon^{\gamma_n}(0) + 1.$$

Then d-fold iteration of Cut-reduction lemma (Lemma 4.13) yields the sequent $f[c]^{\gamma_d}, E \vdash_{\Omega+1}^{\Omega_n(\Omega \cdot 3)} A$. Hence Impredicative cut-elimination lemma (Lemma 4.18) yields $(f[c]^{\gamma_d})^{E^{\Omega_n(\Omega \cdot 3)}(0)}, E^{\Omega_n(\Omega \cdot 3)+1} \vdash^{E^{\Omega_n(\Omega \cdot 3)}(0)} A$.

Let $F := E^{\Omega_n(\Omega \cdot 3)+1}$ and $\beta := E^{\Omega_n(\Omega \cdot 3)}(0)$. Then $(f[c]^{\gamma_d})^\beta, F \vdash^{\phi \beta \beta} A$ holds. It is not difficult to check that $\beta < \Omega$, $N(\beta) \leq (f[c]^{\gamma_d})^\beta$, and $\text{K}_{\text{OE}}(\beta) < F(0)$. Hence Predicative cut-elimination lemma (Lemma 4.15) yields the sequent $(f[c]^{\gamma_d})^{F^{\Omega \cdot \beta + \beta \cdot 2}(0)+1} F \vdash_{0}^{\varphi \beta \beta} A$.

Now let f denote s^ω. One can check that the conditions $(s^\omega.1)$ and $(s^\omega.2)$ hold. One will also see that $s^\omega[c](m) \leq s^\omega(s^c(m)) \leq s^{\omega+c+1}(m)$ for all m. By these we have the inequality

$$(s[c]^{\gamma_d})^{F^{\Omega \cdot \beta + \beta \cdot 2}(0)+1}(0) \leq ((s^{\omega+c+1})^{\gamma_d})^{F^{\Omega \cdot \beta + \beta \cdot 2}(0)+1}(0).$$

Thanks to Lemma 4.8 we can find an ordinal $\alpha \in \mathcal{OT}(\mathcal{F}) \setminus \Omega$ built up without the Veblen function symbol φ such that

$$((s^{\omega+c+1})^{\gamma_d})^{F^{\Omega \cdot \beta + \beta \cdot 2}(0)+1}(0) \leq s^\alpha(0).$$

This together with (l-fold application of) Inversion lemma (Lemma 4.12) yields the sequent $s^\alpha[m_0] \cdots [m_{l-1}], F \vdash^{\phi \beta \beta} \exists y B(\vec{m}, y)$,

where $\vec{m} = m_0, \ldots, m_{l-1}$. By Witnessing lemma (Lemma 4.19) we can find a natural $n \leq s^\alpha[m_0] \cdots [m_{l-1}](0) = s^\alpha(m_0 + \cdots + m_{l-1})$ such that $B(\vec{m}, n)$ is true in the standard model \mathbb{N} of PA.

We say a function f is elementary (in another function g) if f is definable explicitly from the successor s, projection, zero 0, addition $+$, multiplication \cdot, cut-off subtraction \vdash (and g), using composition, bounded sums and bounded products.

Corollary 5.7 Every function provably computable in ID_1 is elementary in $\{s^\alpha \mid \alpha \in \mathcal{OT}(\mathcal{F}) \setminus \Omega\}$.

\[\square \]
6 A computable ordinal notation system $\mathcal{O}(\Omega)$

In order to obtain a precise characterisation of the provably computable functions of ID$_1$, we introduce a computable ordinal notation system $(\mathcal{O}(\Omega), <)$. Essentially $\mathcal{O}(\Omega)$ is a subsystem of $\mathcal{OT}(\mathcal{F})$.

Definition 6.1 We define three sets $\mathcal{SC} \subseteq \mathbb{H} \subseteq \mathcal{O}(\Omega)$ of ordinal terms simultaneously. Let 0, Ω, S, and $+$ be distinct symbols.

1. $0 \in \mathcal{O}(\Omega)$ and $\Omega \in \mathcal{SC}$.
2. If $\alpha \in \mathcal{OT}(\mathcal{F}) \uparrow \Omega$, then $S(\alpha) \in \mathcal{O}(\Omega)$.
3. If $\{\alpha_1, \ldots, \alpha_l\} \subseteq \mathbb{H}$ and $\alpha_1 \geq \cdots \geq \alpha_l$, then $\alpha_1 + \cdots + \alpha_l \in \mathcal{O}(\Omega)$.
4. If $\alpha \in \mathcal{O}(\Omega)$, then $\omega^\alpha \in \mathbb{H}$.
5. If $\alpha \in \mathcal{O}(\Omega)$ and $\xi \in \mathcal{O}(\Omega) \uparrow \Omega$, then $\Omega^\alpha \cdot \xi \in \mathbb{H}$.
6. If $\alpha \in \mathcal{O}(\Omega)$ and $\xi \in \mathcal{O}(\Omega) \uparrow \Omega$, then $S^\alpha(\xi) \in \mathcal{SC}$.

The relation $<$ on $\mathcal{O}(\Omega)$ is defined in the obvious way. One will see that $\mathcal{O}(\Omega)$ is indeed a computable ordinal notation system. Let us define the norm $N(\omega^\alpha)$ of ω^α in the most natural way, i.e., $N(\omega^\alpha) = N(\alpha) + 1$.

Lemma 6.2 Let α denote an ordinal term built up in $\mathcal{OT}(\mathcal{F})$ without the Veblen function symbol φ. Then there exists an ordinal term $\alpha' \in \mathcal{O}(\Omega)$ such that $\alpha \leq \alpha'$ and $N(\omega^\alpha) \leq N(\omega^{\alpha'})$.

Proof. By induction over the term construction of $\alpha \in \mathcal{OT}(\mathcal{F})$. In the base case let us observe that $E(\alpha) \leq S^1(\alpha)$ for all $\alpha < \Omega$ and that $N(E(\alpha)) = N(\alpha) + 1 < N(S(\alpha)) + 1 = N(S^1(\alpha))$. In the induction case we employ Lemma 3.11. \qed

Lemma 6.3 For any ordinal term $\alpha \in \mathcal{OT}(\mathcal{F})$ built up without the Veblen function symbol φ there exists an ordinal term $\alpha' \in \mathcal{O}(\Omega)$ such that $s^\alpha(m) \leq s^{\alpha'}(m)$ for all m.

Corollary 6.4 A function is provably computable in ID$_1$ if and only if it is elementary in $\{s^\alpha \mid \alpha \in \mathcal{O}(\Omega) \uparrow \Omega\}$.

The "only if" direction follows from Corollary 5.7 and Lemma 6.3. The "if" direction can be seen as follows. One can show that for each $\alpha \in \mathcal{O}(\Omega) \uparrow \Omega$ the system ID$_1$ proves that the initial segment $(\mathcal{O}(\Omega) \uparrow \alpha, <)$ of $(\mathcal{O}(\Omega), <)$ is a well-ordering. For the full proof, we kindly refer the readers to, e.g., Pohlers [11, §29]. From this one can show that for each $\alpha \in \mathcal{O}(\Omega) \uparrow \Omega$ the function s^α is provably computable in ID$_1$, and hence the assertion.
7 A quick proof-theoretic analysis of ID₁

In the final section we show that the collapsing function \(F : \Omega_1 \times \varepsilon_{\Omega_1} \rightarrow \Omega_1 \); \((\xi, \alpha) \mapsto F^\alpha(\xi)\) can be used for a smooth proof-theoretic analysis of ID₁. Suppose a positive operator form \(A \). Let \(\Phi_A : \mathcal{P}(N) \rightarrow \mathcal{P}(N) \) denote the operator induced by the operator form \(A \). Namely \(\Phi_A(X) = \{ n \in N \mid N \models A(X, n) \} \) if \(X \subseteq N \). By positiveness of \(A \) the operator \(\Phi_A \) is monotone, i.e., \(X \subseteq Y \Rightarrow \Phi_A(X) \subseteq \Phi_A(Y) \), and hence \(\Phi_A \) has the least fixed point \(I_{\Phi_A} \) that corresponds to the predicate \(P_A \). Further, for an ordinal \(\alpha \), let \(I_{\Phi_A}^\alpha \) denote the \(\alpha \)-th stage of iterating \(\Phi_A \). More precisely, corresponding to the predicate \(P_A^\alpha \), \(I_{\Phi_A}^\beta \) is defined by \(I_{\Phi_A}^0 = \emptyset \) and \(I_{\Phi_A}^\alpha = \Phi_A(I_{\Phi_A}^{\alpha-1}) \). Recall that \(\Omega_1 \) denotes the least non-computable ordinal \(\omega_1^C \). From an elementary fact in generalised recursion theory, it is known that \(I_{\Phi_A}^\alpha \) is consumed at \(\alpha = \Omega_1 \), i.e., \(I_{\Phi_A}^{\Omega_1} = I_{\Phi_A} \). The norm \(|n|_{\Phi_A} \) of a natural number \(n \) is defined by \(|n|_{\Phi_A} = \min\{ \alpha \in \text{Ord} \mid n \in I_{\Phi_A}^\alpha \} \). It is natural to ask what can be said about the norm \(|n|_{\Phi_A} \) in case that \(ID_1 \vdash P_A(\bar{n}) \). An elegant proof-theoretic way to answer this question can be found in lecture notes [4] by W. Buchholz. (See [4, Theorem 9.19].) By slightly modifying the exposition in [4] we present an alternative simplified way to answer this question.

In contrast to the infinitary system \(ID_1^\infty \) we investigate the associated semiformal system \(ID_1^1 \) which is modelled following the lecture notes [4]. As until the previous section we will identify each element \(\alpha \in \mathcal{OT}(F) \) with its value \([\alpha] \in \text{Ord} \), e.g., \(\Omega \in \mathcal{OT}(F) \) with \(\Omega_1 \in \text{Ord} \). We also follow a convention that \(F : \Omega \rightarrow \Omega \) denotes a weakly increasing function such that \(\xi < F(\xi) \) for all \(\xi < \Omega \). Further in this section we use an additional convention that \(\omega^F(\xi) = F(\xi) \), and hence \(E(\xi) \leq F(\xi) \) for all \(\xi < \Omega \). (Recall \(E(\alpha) = \min\{ \xi \in \text{Ord} \mid \omega^\xi = \xi \} \).) Let us recall that for a sequent \(\Gamma \), \(k^\Omega_\Gamma(\Gamma) \) denotes the set \(\bigcup_{B \in \Gamma} k^\Omega_\Gamma(B) \).

Definition 7.1 \(F \vdash_\rho^\alpha \Gamma \) if \(k^\Omega_\Gamma(\Gamma) \subseteq \Omega \alpha < F(0) \) and one of the following holds.

(Ax1) \(\exists A(x) \) : an \(L_{ID_1} \)-literal, \(\exists s, t \in T(L_{ID_1}) \) s.t. \(FV(A) = \{ x \} \), \(\text{val}(s) = \text{val}(t) \) and \(\{ \neg A(s), A(t) \} \subseteq \Gamma \).

(Ax2) \(\Gamma \cap \text{TRUE}_0 \neq \emptyset \).

(V) \(\exists A \simeq \bigvee_{\iota \in J} A_\iota \in \Gamma \), \(\exists \alpha_0 < \alpha \), \(\exists \iota_0 \in J \) s.t. \(\text{ord}(\iota_0) < F(0) \), and \(F \vdash_\rho^{\alpha_0} \Gamma, A_{\iota_0} \).

(\&) \(\exists A \simeq \bigwedge_{\iota \in J} A_\iota \in \Gamma \) s.t. \((\forall \iota \in J) (\exists \alpha_\iota < \alpha) F[\text{ord}(\iota)] \vdash_\rho^{\alpha_\iota} \Gamma, A_\iota \).

(Cl) \(\exists t \in T(L_{ID_1}) \), \(\exists \alpha_0 < \alpha \) s.t. \(P_\alpha^\Omega(t) \in \Gamma \) and \(F \vdash_\rho^{\alpha_0} \Gamma, A(\Pi_\alpha^\Omega, t) \).

(Cut) \(\exists C \) : an \(L^* \)-sentence of \(\forall \)-type, \(\exists \alpha_0 < \alpha \) s.t. \(\text{rk}(C) < \rho \), \(F \vdash_\rho^{\alpha_0} \Gamma, C \), and \(F \vdash_\rho^{\alpha_0} \Gamma, \neg C \).

Lemma 7.2 (Inversion) Assume that \(A \simeq \bigwedge_{\iota \in J} A_\iota \). If \(F \vdash_\rho^{\alpha_0} \Gamma, A \), then \(F[\text{ord}(\iota)] \vdash_\rho^{\alpha_0} \Gamma, A_\iota \) for all \(\iota \in J \).

Proof. By induction on \(\alpha \). □
Lemma 7.3 (Cut-reduction) Assume that $C \simeq \bigvee_{i \in J} C_i$ and $\text{rk}(C) = \Omega + k + 1$. If $F \vdash_{\Omega+k+1} \Gamma, \neg C$ and $F \vdash_{\Omega+k+1} \Gamma, C$, then $F \vdash_{\Omega+k+1} \Gamma$.

Proof. By induction on β. \Box

Lemma 7.4 (Cut-elimination) Let $k < \omega$. If $F \vdash_{\Omega+k+2} \Gamma$, then $F \vdash_{\Omega+k+1} \Gamma$.

Lemma 7.5 $F[\xi]^\alpha(\xi) \leq F^\alpha(\xi)$.

Proof. By induction on α. \Box

Lemma 7.6 If $\eta < \xi$ and $\alpha_\eta < \alpha$ and $K \alpha_\eta < F[\eta](0)$ then $F[\eta]^\alpha_\eta(\xi) \leq F^\alpha(\xi)$.

Lemma 7.7 If $\eta < F(0)$ and $\alpha_\eta < \alpha$ and $K \alpha_\eta < F[\eta](0)$ then $F[\eta]^\alpha_\eta(\xi) \leq F^\alpha(\xi)$.

Definition 7.8 For each \mathcal{L}^*-formula B let $B^{\alpha,\beta}$ denote the result of replacing in B every negative occurrence of P^α_A by P^α_A and every positive occurrence of $P^{\alpha\Omega}_A$ by $P^{\alpha\beta}_A$. For each sequent Γ consisting of \mathcal{L}^*-formulas let $\Gamma^{\alpha,\beta} := \{B^{\alpha,\beta} \mid B \in \Gamma\}$. It is known that, viewing ID$_1$ as a subsystem of set theory in a standard way, $L_\Omega \models \text{ID}_1$ holds for the Ωth stage L_Ω of the constructible hierarchy $(L_\alpha)_{\alpha \in \text{Ord}}$. We will just write $\models B$ (B is an \mathcal{L}^* sentence) or $\models \Gamma$ (Γ is an \mathcal{L}^* sequent) to refer to this relation if no confusion arises.

Theorem 7.9 (Witnessing) If $F \vdash_{\Omega+1} \Gamma$, then $\models \Gamma^{F,\xi}(\xi)$ for all $\xi < \Omega$.

Proof. By induction on ξ. \Box

In embedding ID$_1$ into ID*_1, we follow (very closely) the exposition in the lecture notes [4] and indicate how the operators can be adapted accordingly. As in case of embedding ID$_1$ into ID$^\alpha_1$, the condition HYP(E) on page 10 holds.

Lemma 7.10 (Tautology lemma) Let $s, t \in T(\mathcal{L}_{\text{ID}_1})$, Γ a sequent of \mathcal{L}^*-sentences, and $A(x)$ be an \mathcal{L}^*-formula such that $\text{FV}(A) = \{x\}$. If $\text{val}(s) = \text{val}(t)$, then $F \vdash_{0}^{\text{rk}(A)^2} \Gamma, \neg A(s), A(t)$, provided $k^{\Pi}_{\Omega}(\Gamma) \cup k^{\Pi}_{\Omega}(A) < F(0)$.

Proof. By induction on $\text{rk}(A)$. \Box

Lemma 7.11 Let B_j be an $\mathcal{L}_{\text{ID}_1}$-sentence for each $j = 0, \ldots, l - 1$. Suppose that $B_0 \vee \cdots \vee B_{l-1}$ is a logical consequence in the first order predicate logic with equality. Then there exists a natural $k < \omega$ such that $F \vdash_{0}^{\Omega^{2+k}} \Gamma, B_0, \ldots, B_{l-1}$, provided $k^{\Pi}_{\Omega}(\Gamma) < F(0)$.

This can be shown like Lemma 5.2.
Lemma 7.12 Let \(m \in \mathbb{N} \) and \(A(x) \) be an \(\mathcal{L}_{ID_{1}} \)-formula such that \(\text{FV}(A(x)) = \{x\} \).
Then for any \(t \in \mathcal{T}(\mathcal{L}_{ID_{1}}) \) and for any sequent \(\Gamma \) of \(\mathcal{L}_{ID_{1}} \)-sentences
\[
F \vdash_{0}^{(\text{rk}(A)+\text{val}(t)-2)} \Gamma, \neg A(0), \neg \forall x(A(x) \rightarrow A(S(x))), A(t),
\]
provided \(k_{\Omega}^\Pi(\Gamma) \cup k_{\Omega}^\Pi(A) < F(0) \).

Proof. By induction on \(\text{val}(t) \). \[\square\]

Lemma 7.13 Let \(\xi \leq \Omega \), \(A(x) \) be an \(\mathcal{L}_{ID_{1}} \)-formula such that \(\text{FV}(A(x)) = \{x\} \) and \(B(X) \) be an \(X \)-positive \(\mathcal{L}_{PA}(X) \)-formula such that \(\text{FV}(A) = \emptyset \).
Then
\[
F \vdash_{0}^{\text{rk}(A)+\alpha+1) \cdot 2} \Gamma, \neg \forall x(A(A(x), x) \rightarrow A(x)), \neg B(P_{\mathcal{A}}^{<\xi}), B(A),
\]
provided \(k_{\Omega}^\Pi(\Gamma) \cup k_{\Omega}^\Pi(A) \cup \{\text{ord}(\xi)\} < F(0) \) where \(\alpha := \text{rk}(B(P_{\mathcal{A}}^{<\xi})) \).

Proof. By induction on \(\text{rk}(B(P_{\mathcal{A}}^{<\xi})) \). \[\square\]

Lemma 7.14
1. \(F \vdash_{0}^{\Omega+\omega} \Gamma, \forall x(A(P_{\mathcal{A}}^{<\Omega}, x) \rightarrow P_{\mathcal{A}}^{<\Omega}(x)), \) provided \(k_{\Omega}^\Pi(\Gamma) < F(0) \).
2. \(F \vdash_{0}^{\Omega^2+\omega} \Gamma, \forall y[\forall x(A(B(\cdot, y), x) \rightarrow B(x, y)]) \rightarrow \forall x(P_{\mathcal{A}}^{<\Omega}(x) \rightarrow B(x, y))], \) provided \(k_{\Omega}^\Pi(\Gamma) \cup k_{\Omega}^\Pi(B) < F(0) \).

Let us recall that \(S \) denotes the ordinal successor.

Theorem 7.15 Let \(n \in \mathbb{N} \). If \(\text{ID}_{1} \vdash P_{\mathcal{A}}(n) \), then there exists an ordinal \(\alpha < \varepsilon_{\Omega+1} \) such that \(|n|_{\mathcal{A}} < S^{\alpha}(0) \).

Note that the latter bound is sharp in the sense that for each \(\alpha < S^{\varepsilon_{\Omega+1}}(0) := \sup\{S^{\varepsilon_{m}(\Omega+1)}(0) | m < \omega\} \) there exists an operator form \(\mathcal{A} \) and a natural number \(n \) such that \(\text{ID}_{1} \vdash P_{\mathcal{A}}(n) \) and \(\alpha \leq |n|_{\mathcal{A}} \).

8 Conclusion

In [13] the second author has started a new approach to provably total computable functions, providing a streamlined characterisation of those functions provably computable in PA. In this work we extend this approach to those functions provably computable in the system ID\(_{1}\) of non-iterated inductive definitions. The approach introduced in this work should be extended to stronger impredicative systems. The obvious next step is to extension to the system ID\(_{2}\) of an iterated inductive definitions. This extension seems to be made possible by employing an additional ordinal operator, i.e., \(f, F_{0}, F_{1} \vdash_{0}^{\rho} \Gamma \) where \(F_{0} \) is an ordinal function \(F_{0} : \Omega_{1} \rightarrow \Omega_{1} \), \(F_{1} \) is another ordinal function \(F_{1} : \Omega_{2} \rightarrow \Omega_{2} \), and \(\Omega_{2} \) denotes the least recursively regular ordinal above \(\Omega_{1} \).

References

