<table>
<thead>
<tr>
<th>項目</th>
<th>内容</th>
</tr>
</thead>
<tbody>
<tr>
<td>タイトル</td>
<td>基調講演 証明論と複雑性</td>
</tr>
<tr>
<td>作者</td>
<td>Kuroda, Satoru</td>
</tr>
<tr>
<td>引用</td>
<td>数理解析研究所講究録 1832: 2-7</td>
</tr>
<tr>
<td>発行年月</td>
<td>2013-04</td>
</tr>
<tr>
<td>URL</td>
<td>http://hdl.handle.net/2433/194859</td>
</tr>
<tr>
<td>型式</td>
<td>Departmental Bulletin Paper</td>
</tr>
<tr>
<td>出版者</td>
<td>Kyoto University</td>
</tr>
</tbody>
</table>
A propositional proof system based on comparator circuits

Satoru Kuroda (黒田覚)
Gunma Prefectural Women's University

1 Introduction

Since the seminal paper by S. Cook [2], there have been many literatures on the connection of complexity classes and proof systems. The most prominent example is the relationships between the class P, Buss' theory S^1_2 [1] and extended Frege proofs.

In this paper we construct a propositional proof system which corresponds to the class CC. Originally, this class is defined by Subramanian [5] as the set of problems log-space reducible to the comparator circuit value problem. This class has not gained much attention since it was presented. However, recently Cook et.al. [4] shed a new light on the class by defining bounded arithmetic theory VCC and proved that stable marriage problem is definable in the theory. So we believe that our proof system gives a step forward for the investigation of the class.

Here we only give a rough outline of the system and detailed proofs are given in the forthcoming paper.

2 Preliminaries

A comparator gate is a function $C : \{0, 1\}^2 \rightarrow \{0, 1\}^2$ that takes an input pair (p, q) and outputs a pair $(p \wedge q, p \vee q)$. A comparator circuit consists of n wires each having input bits and produces an output. In each layer, two wires are connected by an arrow representing a comparator gate. Formally, a comparator circuit can be represented as a directed acyclic graph with input nodes having indegree 0 and outdegree 2, output nodes with indegree 1 and outdegree 0, and comparator gates with indegree and outdegree 2.

The comparator circuit value problem (CCV) is a decision problem. Given a comparator circuit, an input and a designated output wire, decide whether the circuit outputs one on that wire.

Definition 1 The complexity class CC is the class of problems which are AC^0 many-one reducible to CCV.
We formalize CC reasoning in tow sort language. The language L_2 comprises number variables x, y, z, \ldots and string variables X, Y, Z, \ldots. It also has the following symbols: $Z(x) = 0$, $x + y$, $x \cdot y$, $x \leq y$, $x \in Y$.

The class Σ^B_0 is the class of L_2-formulas in which all quantifiers are bounded number quantifiers $\forall x < t$ or $\exists x < t$ and Σ^B_1 is the class of formulas of the form

$$\exists X < \hat{t} \varphi(X), \varphi \in \Sigma^B_0.$$

We define L_2-theory V^0 as having the axioms $BASIC_2$ which is a finite set of defining formulas for symbols in L_2 together with

$$\Sigma^B_0\text{-IND} : \exists X < a \forall y < a(y \in X \leftrightarrow \varphi(y),$$

where $\varphi \in \Sigma^B_0$ contains no free occurrences of X.

The theory VCC is defined the extension of V^0 by the axiom expressing CCV. Let $\delta_{CCV}(m, n, X, Y, Z)$ be the following Σ^B_0 formula:

$$\forall i < m(Y(i) \leftrightarrow Z(0, i) \land \forall i < n \forall x < m \forall y < m \big(Z(i + 1, x) \leftrightarrow (Z(i, x) \land Z(i, y)) \land \forall j < m((j \neq x \land j \neq y) \rightarrow (Z(i + 1, j) \leftrightarrow Z(i, j))) \big).$$

This formula expresses the following properties:

- X encodes a comparator circuit with m wires and n gates as sequence of n pairs (i, j) with $i, j < m$ and $(X)^i$ encodes the i-th comparator gate of X,
- $Y(i)$ encodes the i-th input to X,
- Z is an $(n + 1) \times m$ matrix, where $Z(i, j)$ is the value of wire j at layer i.

Definition 2 The theory VCC is the L_2 theory which is aximatized by axioms of V^0 together with

$$CCV : \exists Z \leq \langle m, n + 1 \rangle + 1 \delta_{CCV}(m, n, X, Y, Z).$$

Theorem 1 (Cook et.al.) A function is computable in CC if and only if it is Σ^B_1 definable in VCC.

In the propositional translation, it is easier to work with the universal conservative extension of VCC. Let L_{CC} be the language L_2 extended by a single function symbol F_{CC}. We denote the Σ^B_0 formula in the extended language by $\Sigma^B_0(F_{CC})$.

Definition 3 The theory $V^0(F_{CC})$ is the $\Sigma^B_0(F_{CC})$ theory which is aximatized by $BASIC_2$, $\Sigma^B_0(F_{CC})\text{-IND}$ and the following defining axiom of F_{CC}:

$$F_{CC}(X, Y) = Z \leftrightarrow \delta_{CCV}(\sqrt{|X|}, |Y|, X, Y, Z)$$

where \sqrt{m} is the integer part of the square root of m.

It is not difficult to see that

Theorem 2 VCC and $V^0(F_{CC})$ proves the same L_2 theorems.
3 The system CCK

In this section we present a propositional proof system CCK which corresponds to bounded arithmetic theory VCC in the sense that

- CCK has polynomial size proofs for all $\forall \Sigma^B_0$ consequences of VCC and
- VCC proves the reflection principle of CCK.

The fundamental idea is to introduce connectives used to construct comparator circuits so that formulas represents circuits. The language of CCK comprises the following symbols:

- propositional variables x_1, x_2, \ldots
- connectives $\neg_k, [j, k]$ for $j, k \in \omega$, \oplus
- superscripts (i) for $i \in \omega$

We define CCK formulae and a number $w(\varphi)$ for a formula φ recursively as follows:

- a propositional variable x_i is a formula and $w(x_i) = 1$,
- if φ is a formula and $i, k \leq w(\varphi)$ then so is $(\neg_k \varphi)^{(i)}$ and $w(\neg_k \varphi) = w(\varphi)$,
- if φ is a formula and $i, j, k \leq w(\varphi)$ then so is $\varphi[j, k]^{(i)}$ and $w(\varphi[j, k]) = w(\varphi)$
- if φ and ψ are formulas and $i \leq w(\varphi) + w(\psi)$ then so is $(\varphi \oplus \psi)^{(i)}$ and $w(\varphi \oplus \psi) = w(\varphi) + w(\psi)$.

The intuitive meaning of the above definition is that, the superscript in $\varphi^{(i)}$ represents its designated output, $\neg_k \varphi$ is φ with negation at the top of the k-th wire, $\varphi[j, k]$ is obtained from φ by placing arrows from j to k at to top, and $\varphi \oplus \psi$ is a juxtaposition of φ and ψ. Furthermore, the function $w(\varphi)$ represents the number of wires in φ.

Before we define the proof system CCK we introduce one more important notion. Two CCK-formulae are identical if they are of the same form if superscripts are ignored. Thus for instance $(\neg_k \varphi)^{(i)}$ and $(\neg_k \varphi)^{(j)}$ are identical.

Proposition 1 Checking whether two formulas are identical can be done in AC^{0}.

Now we define the system CCK. Axioms of CCK are:

\[\varphi \rightarrow \varphi, \rightarrow T, \perp \rightarrow . \]

Inference rules of CCK are contraction, weakening, exchange, cut and the following logical rules introducing connectives:

\[
\frac{\Gamma \rightarrow \Delta, \varphi^{(i)}}{(\neg \varphi)^{(i)}, \Gamma \rightarrow \Delta} \quad \frac{\varphi^{(j)}, \Gamma \rightarrow \Delta}{(\neg \varphi)^{(j)}, \Gamma \rightarrow \Delta} \quad \neg_i\text{-left}
\]
provided that $\varphi^{(i)}$ and $\varphi^{(j)}$ are identical.

A CCK-proof is a sequence C_1, \ldots, C_k of CCK-formulas such that each C_i is either an axiom or obtained from preceding formulas by one of the inference rules of CCK. The size $\text{size}(P)$ of a CCK-proof P is the number of formulas in it.

It is easy to show that Boolean formulas are expressed by CCK-formulas and any rules of Frege system can be represented by some rule of CCK. So we have the following:

Proposition 2 CCK proof system p-simulates Frege.

As CCK formulas are special cases of Boolean circuits and circuit Frege and extended Frege are p-equivalent, we have

Theorem 3 Extended Frege system p-simulates CCK proof system.

4 Propositional Translation

In this section we prove that CCK is at least as strong as VCC. More precisely, it is proved that all $\forall\Sigma _{0}^{B}$ theorems of the universal conservative extension of VCC are translated into families of CCK-formulas having polynomial size CCK-proofs.

First we define the translation.

Definition 4 For $\varphi(X) \in \Sigma _{0}^{B}(F_{CC})$, we define its propositional translation $\|\varphi(X)\|_a$ inductively as follows:

- if φ is an atomic sentence without string variables then

 $\|\varphi\| = \begin{cases}
 \top & \text{if } \varphi \text{ is true,} \\
 \bot & \text{if } \varphi \text{ is false.}
 \end{cases}$
For each string variable X we introduce propositional variables x_0, \ldots, x_{n-1} and let $\|i \in X\|_n = x_i$.

$\|\neg \varphi\|_\overline{n} = \neg k \|\varphi\|_n$ where k is the designated output position of $\|\varphi\|_n$.

$\|x \in F_{CC}(X, Y)\|_{i, m, n} = C_U^{m,n}(p_{\overline{X}}, \overline{p}_{Y})$ where $C_U^{m,n}$ denotes the formula representing universal comparator circuit with a code X for a comparator circuit and Y as its input.

$\|\varphi \wedge \psi\|_{\overline{n}} = (\|\varphi\|_n \oplus \|\psi\|_n)[i, w(\|\varphi\|_n) + j]^{(i)}$,

$\|\varphi \vee \psi\|_{\overline{n}} = (\|\varphi\|_n \oplus \|\psi\|_n)[i, w(\|\varphi\|_n) + j]^{(w(\|\varphi\|_n) + j)}$,

$\|(\forall x < t) \varphi(x)\|_{n} = (\oplus_{x \leq t} \|\varphi(x)\|_n)[i_0, i_1][i_1, i_2] \cdots [i_{t-2}, i_{t-1}]^{(i_0)}$,

$\|(\exists x < t) \varphi(x)\|_{n} = (\oplus_{x \leq t} \|\varphi(x)\|_n)[i_0, i_1][i_1, i_2] \cdots [i_{t-2}, i_{t-1}]^{(i_{t-1})}$.

Theorem 4 Let $\varphi(\overline{X})$ in Σ^B_0. If $VCC \vdash (\forall \overline{X}) \varphi(\overline{X})$ then $\{\|\varphi(\overline{X})\|_n\}_{n \in \omega}$ has polynomial size CCK-proofs.

(Proof). It suffices to show that axioms of $V^0(F_{CC})$ are translated into CCK formulas having polynomial size proofs. For axioms of V^0 it suffices to remark that CCK p-simulates Frege. So it suffices to show that $\Sigma^0_0(F_{CC}$-IND can be simulated by polynomial size CCK proofs. The proof is similar to the one for VTC^0 and TC^0-Frege.

5 Proving the reflection principle

We will show the converse to the argument of the last section; CCK is not stronger than VCC.

We will give a rough idea of how formulas, proofs etc. are coded in L_0. Assume any reasonable coding of CCK formulas in L_0. Then for each CCK formula φ we can assign a string X_φ which codes an equivalent comparator circuit with negation gates in such a way that $(X_\varphi)^i$ codes the comparator gate or the negation gate on i-th level. Although comparator circuit with negation gates is not by definition contained in VCC, it can be shown that VCC proves the following result by Cook et.al [3].

Proposition 3 The circuit value problem for comparator circuits with negation gates is AC^0 reducible to CCV.

Let (X, i) denote a CCK formula X with the designated output i. We can define the Σ^B_0 formula $Z \models (X, i)$ which states that (X, i) is true on the assignment Z. So we have

Lemma 1 VCC proves that any formula can be evaluated on any assignment.
Let $\text{Prf}^{CCK}(P, X, i)$ be the L_0 formula stating that P is a CCK-proof of the CCK formula (X, i). Then the following theorem follows by the argument similar to those for other systems.

Theorem 5 VCC proves that CCK is sound:

$$\forall i, \forall X (\exists P \text{Prf}^{CCK}(P, X, i) \rightarrow \forall Z (Z \models (X, i))).$$

6 Concluding Remarks

It is unknown whether the complexity class CC is properly contained in P. Furthermore, relations with subclasses of P such as NL is also open. A counterpart to this problem for propositional proof systems is whether CCK p-simulates extended Frege.

Another direction of research is to find a hard tautology for CCK or polynomial size CCK proofs for natural combinatorial principle.

References

