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1 Introduction

Since the seminal paper by S. Cook [2]|, there have been many literatures on the
connection of complexity classes and proof systems. The most prominent example
is the relationships between the class P, Buss’ theory S [1] and extended Frege
proofs.

In this paper we construct a propositional proof system which corresponds to the
class CC. Originally, this class is defined by Subramanian [5]as the set of problems
log-space reducible to the comparator circuit value problem. This class has not
gained much attention since it was presented. However, recently Cook et.al. [4]
shed a new light on the class by defining bounded arithmetic theory VCC and
proved that stable marriage problem is definable in the theory. So we believe that
our proof system gives a step forward for the investigation of the class.

Here we only give a rough outline of the system and detailed proofs are given in
the forthcoming paper.

2 Preliminaries

A comparator gate is a function C : {0,1}? — {0, 1}? that takes an input pair (p, q)
and outputs a pair (p A ¢,pV ¢). A comparator circuit consists of n wires each
having input bits and produces an output. In each layer, two wires are connected
by an arrow representing a comparator gate. Formally, a comparator circuit can
be represented as a directed acyclic graph with input nodes having indegree 0 and
outdegree 1, output nodes with indegree 1 and outdegree 0, and comparator gates
with indegree and outdegree 2.

The comparator circuit value problem (CCV) is a decision problem. Given a
comparator circuit, an input and a designated output wire, decide whether the
circuit outputs one on that wire.

Definition 1 The complezity class CC is the class of problems which are AC®
many-one reducible to CCV.
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We formalize C'C reasoning in tow sort language. The language Lo comprises
number variables z, y, z, . .. and string variables X,Y, Z, . ... It also has the following
symbols:Z(z) =0, z+y, z-y, 2 <y, €Y.

The class £ is the class of Ly-formulas in which all quantifiers are bounded
number quantifiers Vz < t or 3z < t and ©B is the class of formulas of the form

X < tp(X), p € T5.

We define Ljy-theory VO as having the axioms BASIC, which is a finite set of
defining formulas for symbols in Ly together with

2F-IND : 3X <aVy <a(y € X < ¢(y),

where ¢ € ¥F contains no free occurrences of X.
The theory VCC is defined the extension of V° by the axiom expressing CCV.
Let dccv(m,n, X,Y, Z) be the following ¢ formula:

Vi <m(Y (i) « Z(0,i) AVi < nVz < mVy < m
Zi+1,z) & (Z(i,x) A Z(i,y))
(X)! = (z,y) = | AZ(i+ Ly) < (Z2(i,2) vV Z(,y))
NG <m((j#zAj#y) = (Z(i+1,7) « Z(i,5)))
This formula expresses the following properties:

e X encodes a comparator circuit with m wires and n gates as sequence of n
pairs (i, j) with 4,5 < m and (X)* encodes the i-th comparator gate of X,

e Y (i) encodes the i-th input to X,
e 7 is an (n + 1) x m matrix, where Z(i, 7) is the value of wire j at layer .

Definition 2 The theory VCC is the L, theory which is aximatized by azioms of
VO together with

CCV : 3Z < (m,n+ 1)+ léccv(m,n, XY, Z).

Theorem 1 (Cook et.al.) A function is computable in CC if and only if it is £P
definable in VCC.

In the propositional translation, it is easier to work with the universal conserva-
tive extension of VCC. Let Lo be the language L, extended by a single function
symbol Foc. We denote the ©F formula in the extended language by 38 (Fec).

Definition 3 The theory V°(Fgc) is the S8 (Foc) theory which is azimatized by
BASIC,, S8 (Fcc)-IND and the following defining aziom of Foo:

Feo(X,)Y) =27 & 5CCV(\/|YIa Y|, X,Y, Z)
where \/m is the integer part of the square root of m.
It is not difficult to see that
Theorem 2 VCC and V°(Fgc) proves the same Ly theorems.



3 The system CCK

In this section we present a propositional proof system CCK which corresponds to
bounded arithmetic theory VCC in the sense that

e CCK has polynomial size proofs for all V& consequences of VCC and
e VCC proves the reflection principle of CCK.

The fundamental idea is to introduce connectives used to construct comparator
circuits so that formulas represents circuits. The language of CCK comprises the
following symbols:

e propositional variables x;, z,, . ..
e connectives —, [4, k] for j, k € w, ®
e superscripts @ for i € w
We define CCK formulas and a number w(yp) for a formula ¢ recursively as follows:
e a propositional variable z; is a formula and w(z;) = 1,
e if ¢ is a formula and i, k < w(¢) then so is (—xp)® and w(—xp) = w(y),
o if  is a formula and 4, 5, k < w(y) then so is ¢[j, k|® and w(y[j, k]) = w(go)

e if © and 1 are formulas and i < w(p) + w(+) then so is (¢ ® ¥)? and
w(p @ ¥) = w(p) +w(¥).

The intuitive meaning of the above definition is that, the superscript in 0 rep-
resents its designated output, —p is ¢ with negation at the top of the k-th wire,
©[J, k] is obtained from ¢ by placing arrows from j to k at to top, and ¢ ® ¢ is a
juxtaposition of ¢ and 1. Furthermore, the function w(y) represents the number of
wires in (. '

Before we define the proof system CCK we introduce one more important notion.
Two CCK-formulas are identical if they are of the same form if superscripts are
ignored. Thus for instance (—x)® and (—xp)Y) are identical.

Proposition 1 Checking whether two formulas are identical can be done in ACP.

Now we define the system CCK. Axioms of CCK are -
p—op =T, L.

Inference rules of CC K are contraction, weakening, exchange, cut and the following
logical rules introducing connectives:

p_,A,(p(i) (p(j),p_,,A
(mip)®, T — A (mip)?, T — A

—|,--left
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provided that ¢® and ¢ are identical.

A CCK-proof is a sequence Cy,...,Cy of CCK-formulas such that each C; is
either an axiom or obtained from preceding formulas by one of the inference rules
of CCK. The size size(P) of a CCK-proof P is the number of formulas in it.

It is easy to show that Boolean formulas are expressed by CCK-formulas and
any rules of Frege system can be represented by some rule of CCK. So we have the
following:

Proposition 2 CCK proof system p-simulates Frege.

As CCK formulas are special cases of Boolean circuits and circuit Frege and
extended Frege are p-equivalent, we have

Theorem 3 Extended Frege system p-simulates CCK proof system.

4 Propositional Translation

In this section we prove that CCK is at least as strong as VCC. More precisely,

it is proved that all VE¥ theorems of the universal conservative extension of VCC

are translated into families of CCK-formulas having polynomial size CC K-proofs.
First we define the translation.

Definition 4 Forp(X) € F(Foc), we define its propositional translation ||o(X)||x
inductively as follows:

e if v is an atomic sentence without string variables then

ol = T if ¢ is true,
PI=1 L if ¢ 1s false.



o For each string variable X we introduce propositional variables x,...,Tn-1
and let ||i € X||n = z;.

o ||~¢lla = —kll@lln where k is the designated output position of ||¢||n.-

o ||lz € Foe(X,Y)|imn = C;""(Px, py) where Ci™ denotes the formula repre-
senting universal comparator circuit with a code X for a comparator circuit
and Y as its input.

o lo Aplla = (lelln @ 19 ]a) i, w(ll#lla) + 319,

o lloVilla= (elln @ [[9l1) 5 w(llelln) + )Nl

o |(vz < t)9(2)|ln = (Ba<tll(@)In)li0s 1][d0, 2] - - - [do, 12-1] ).

o |Gz < t)p(2)lln = (Bostll(x)ln)lios ia] [i1, 42] - - - [be—2, Ge—1] ).

Theorem 4 Let o(X) in TE. If VCC F (VX)p(X) then {|¢(X)|la}new has poly-
nomial size CC K -proofs.

(Proof). It suffices to show that axioms of VO(F¢() are translated into CCK for-
mulas having polynomial size proofs. For axioms of V? it suffices to remark that
CCK p-simulates Frege. So it suffices to show that ©Z(Foc-IND can be simulated
by polynomial size CCK proofs. The proof is similar to the one for VT'C° and
TC°-Frege.

5 Proving the reflection principle

We will show the converse to the argument of the last section; CCK is not stronger
than VCC.

We will give a rough idea of how formulas, proofs etc. are coded in L. Assume
any reasonable coding of CCK formulas in Ly. Then for each CCK formula ¢ we
can assign a string X, which codes an equivalent comparator circuit with negation
gates in such a way that (X,)* codes the comparator gate or the negation gate on
i-th level. Although comparator circuit with negation gates is not by definition
contained in VCC, it can be shown that VCC proves the following result by Cook
et.al [3].

Proposition 3 The circuit value problem for comparator circuits with negation
gates is AC® reducible to CCV .

Let (X, ) denote a CCK formula X with the designated output . We can define -
the £8 formula Z |= (X, ¢) which states that (X, 1) is true on the assignment Z. So
we have

Lemma 1 VCC proves that any formula can be evaluated on any assignment.
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Let PrfC¢K(P,X,i) be the Ly formula stating that P is a CCK-proof of the
CCK formula (X,4). Then the following theorem follows by the argument similar
to those for other systems.

Theorem 5 VCC proves that CCK is sound:
Vi, VX (3PPrfCCE(P, X,i) - VZ(Z = (X,1))).

6 Concluding Remarks

It is unknown whether the complexity class CC is properly contained in P. Fur-
thermore, relations with subclasses of P such as NL is also open. A counterpart to
this problem for propositional proof systems is whether CC K p-simulates extended
Frege.

Another direction of research is to find a hard tautology for CCK or polynomial
size CCK proofs for natural combinatorial principle.
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