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1. INTRODUCTION

A spatial graph $G$ in a closed 3-manifold $M$ is a topological embedding of a graph
into $M$ . By abusing notation, we also regard $G$ as the image of the embedding. We
consider hyperbolic structures of $M\backslash G$ with totally geodesic boundary and of finite
volume. $A$ hyperbolic structure is determined once we fix whether the meridian of each
edge corresponds to a hyperbolic or a parabolic isometry. Note that every choice dose not
necessarily give a hyperbolic structure, however, the hyperbohc structure, if any, is unique
i.e. rigidity theorem still holds (see [5], [3], and [10]). Heard has developed a computer
program named Orb [4], which computes hyperbolic structures and many hyperbolic
invariants of spatial graph complements. Orb is based on Weeks’ computer program
SnapPea. By using Orb, in [5], Heard, Hodgson, Martelli and Petronio enumerated many
hyperbolic graphs with parabohc meridians i.e. the meridian of each edge corresponds
to a parabolic isometry. However unlike hyperbolic knots and links, not so many works
have been done about hyperbolic graphs. In this paper, we consider the hyperbolic graphs
with parabolic meridians and discuss a relation between hyperbolic planar graphs and fully
augmented links (see section 3 for the definition). $\mathbb{R}om$ now on, by the word”hyperbolic
graph”, we always mean a hyperbolic graph with parabolic meridians. In section 2, we
introduce moves which preserve volume. These moves correspond to cutting or gluing
along a thrice punctured sphere. By this move, we can obtain a hyperbohc link from a
hyperbolic graph of the same volume. In particular, we can get a fully augmented hnk if
we apply those moves suitably on planar graphs. Then in section 3, we discuss Lackenby’s
volume estimates [7] in terms of the twist number. Lackenby (also an improvement by
Agol-Thurston, see appendix of [7] $)$ has used fully augmented links to get an upper bound
of the volume of a given hyperbolic link. By the above moves, we have a corresponding
planar trivalent simple graph for a given fully augmented link. There are only finitely
many such graphs with $n$ vertices and hence the best possible upper bounds $B_{n}$ is attained
by one of such graphs.

In the latter half of section 3 we compute approximated value of the best possible
upper bounds for twist number $n=2,3,$ $\ldots,$

$8$ . First we see that a given planar graph
is a hyperbolic graph if and only if the graph is cyclically $m$-connected for some $m\geq$

$3$ (see section 3 for the definition of the cyclically connectedness). Then to compute
approximated value, we observe that if a planar graph is cyclically 3-connected, then the
computation of the volume can be reduced to the case of fewer vertices. Hence we only
need to investigate cyclically $m$-connected graphs with $m\geq 4$ . We used plantri [2] to
enumerate graphs with given number of vertices and with certain connectedness and Orb
[4] to compute the approximated value of the hyperbolic volume.
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2. VOLUME PRESERVING MOVES ON HYPERBOLIC GRAPHS

$\mathbb{R}om$ now on, we consider spatial graphs in $S^{3}$ . We first recall a topological definition
of a hyperbohc graph i.e. a hyperbohc graph with parabolic meridians (see also [5], [9]).
Let $G$ be a trivalent spatial finite graph in $S^{3}$ and $V\subset S^{3}$ the set of vertices of $G$ . We
define $N_{G}$ as $S^{3} \backslash G\backslash (\bigcup_{v\in V}\mathcal{N}(v))$ where $\mathcal{N}(v)$ is an open regular neighborhood of $v.$ $N_{G}$

is a 3-manifold with thrice punctured sphere boundary components, one corresponds to
each vertex of G. $G$ is said to be hyperbolic if $N_{G}$ admits a hyperbolic metric of finite
volume with totally geodesic boundary.

The following lemma relates hyperbolic graphs with hyperbolic links. The same proof
can be found in [6], but we include this for the completeness.

Lemma 2.1. For hyperbolic graphs, the moves from the left (or right) to center (cutting),
and center to left $(or r’ight)$ (glueing) of Figure 1 are volume preserving.

FIGURE 1. Volume preserving moves on hyperbolic graphs with parabolic meridians

Proof. Note that each vertex in graphs corresponds to a totally geodesic thrice punc-
tured sphere and each edge corresponds to an annulus cusp. Moreover, the hyperbolic
structure on a thrice punctured sphere is unique and hence any orientation preserving
homeomorphism between hyperbolic thrice punctured spheres is isotopic to an isometry.
Since homeomorphisms between thrice punctured spheres are uniquely determined by its
action on cusps, we may denote homeomorphisms as elements of $S_{3}$ , the symmetry group
of degree 3. Fix labels of the cusps of thrice punctured sphere as in Figure 1. We glue
the thrice punctured boundary components via the homeomorphism corresponding to

$(\begin{array}{lll}1 2 31 2 3\end{array})$ . Then we get the tangle in the left of Figure 1. When we glue the thrice

punctured boundary components via the homeomorphism corresponding to $(\begin{array}{lll}1 2 31 3 2\end{array}),$

we get the tangle in the right of Figure 1. To see this, we regard $S^{3}=B^{3}\cup B^{3}$ , and
reverse the inside and the outside with respect to one of the boundary components. After
gluing, we get a link or graph in $S^{2}\cross S^{1}$ . The component coming from the cusp labelled
by 1 is going to be a loop which corresponds to a generator of the fundamental group of
$S^{2}\cross S^{1}$ . Therefore its complement is homeomorphic to a sohd torus. Figure 2 depicts the
argument. Thus we get a tangle in the left or right of Figure 1. The inverse move (left
or right to middle) is verified by the fact that any essential thrice punctured sphere (or,
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2-punctured disk) in hyperbolic manifolds is totally geodesic ([1]). Since we are dealing
with hyperbolic graphs, the 2-punctured disk in the left or right of Figure 1 is essential
(see [8] Lemma 2. 1). $\square$

FIGURE 2. Glueing by a automorphism

Remark 2.2. In [9], van der Veen has demonstrated above moves for planar diagrams.

3. SOME APPLICATIONS OF VOLUME PRESERVING MOVES

In this section, we apply Lemma 2.1 to fully augmented links. First we recall the
definition of a fully augmented link (see also [8]). Let $D$ be a diagram of a hnk in $S^{3}.$

Definition 3.1. $A$ twist of $D$ is either a connected collection of bigon regions arranged
in a row, which is maximal in the sense that it is not part of a longer row of bigons, or
a single crossing adjacent to no bigon regions. The twist number of a diagram $D$ is its
number of twists and is denoted by tw$(D)$ .

Definition 3.2. $A$ fully augmented link is a hnk obtained by encirchng each twist by a
single unknoted component and removing full-twists (see Figure 3). We call each added
unknotted component a crossing circle. $A$ component which is not a crossing circle is
called a knot component.

The fully augmented link obtained from a diagram $D$ has as many crossing circles as
the twist number tw$(D)$ .

In [7] Lackenby (improved by Agol-Thurston) has proved the following theorem

Theorem 3.3 ([7]). Let $L$ be a hyperbolic $hnk$ in $S^{3},$ $D$ a diagram for L. Then,

$Vol(S^{3}\backslash L)<10v_{3}(tw(D)-1)$

where tw$(D)$ is the twist number of the diagram $D.$

90



FIGURE 3. (left) a hnk diagram and its twists. (center) the augmented link
diagram. (right) $A$ diagram of a fully augmented link

Thanks to Thurston’s Dehn surgery theorem (see [10]), we see that this inequality can
be obtained by estimating the volume of the fully augmented link which we get from $D.$

From now on, we will give more precise estimates of such volume by using graphs.
By lemma 2.1, we get a trivalent graph from a fully augmented hnk. Moreover,

Proposition 3.4. Let $L$ be a fully augmented link, and let $G_{L}$ denote the spatial trivalent
graph which we get by applying the cutting move in Lemma 2.1 to each 2-punctured disk
bounded by a crossing circle. Then $G_{L}$

(1) is trivalent with $2c$ vertices,
(2) is simple, and
(3) has a planar diagram.

Proof. By the construction, the graph $G_{L}$ is trivalent and has a planar diagram. If $G_{L}$ is
not simple then it has self-loop or multi-arcs. By lemma 2.1, if it has self-loop then the
$L$ is splittable and if it has multi-arcs, then the complement of $L$ has an incompressible
annulus. These contradict the assumption that $L$ is hyperbolic. $\square$

Since for given $n\in \mathbb{N}$ , there are only finitely many trivalent simple planar graphs with
$n$ vertices, we can enumerate all of them.

Example 3.5. There are only one simple planar trivalent graph with 4 or 6 vertices.
Their volumes are $2v_{8}$ and $4v_{8}$ respectively. Where $v_{8}$ is the volume of regular ideal
octahedron. Therefore, if a link has a diagram with 2 (resp. 3) twist regions, its volume
is less than $2v_{8}$ (resp. $4v_{8}$ ).

$\cap=4$

FIGURE 4. Simple planar trivalent graph with 4 or 6 vertices.

From now on, we only consider planar graphs and regard each planar graph as a diagram
of a spatial graph in $S^{3}$ . In order to compute the upper bounds, we do not have to
enumerate all planar graphs. The cychcally connectivity of graphs allows us to reduce
the target of enumeration.
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Definition 3.6. $At$-cut of a graph is a collection of $t$ edges whose removal is disconnected.
$At$-cut is nontrivial if each component of its removal graph contains a cycle. $A$ graph is
cychcally $k$-connected if it has no non-trivial $t$-cuts for $0\leq t\leq k-1.$

If a planar graph has a nontrivial 1 or 2-cut, then its complement (as a spatial graph
with a planar diagram in $S^{3}$ ) has a disk which compresses the meridian of the cut edge
or an essential annulus respectively. Therefore those graphs can not be hyperbolic and
hence, we only need to enumerate cyclically -connected graphs. Moreover, by Thurston’s
uniformization theorem, it turns out that a trivalent planar graph is hyperbolic if and only
if it is simple and cychcally -connected (see [5], Theorem 2.4).

Let $P$ be a planar graph with $n$ vertices such that $N_{P}$ admits a hyperbolic metric of
finite volume. Let $\omega(P)=Vol(N_{P})/n$ and $U_{m}= \max\{\omega(Q)|Q$ trivalent planar graph
with $m$ vertices}. We call $\omega(P)$ the normalized volume of $P.$

Proposition 3.7. If $P$ has a non-trivial 3-cut, then for some $4\leq k\leq n-2,$ $\omega(P)\leq U_{k}.$

Proof. By [1], any essential thrice punctured sphere in $N_{P}$ is isotopic to totally geodesic
one. We claim that the thrice punctured sphere $E$ determined by the non-trivia13-cut is
essential. If it has a boundary compressing disk $F$ , then we may assume that the boundary
$\partial F$ encircles exactly 1 puncture. Therefore $F$ gives a disk which compresses the meridian
of the edge corresponds to the encircled puncture. This contradicts the hyperbohcity of
$N_{P}$ . Hence $F$ is a totally geodesic thrice punctured sphere and we may cut along $F$ to
get two graphs with planar diagram whose number of vertices are less than or equal to
$n-2.$ $\square$

Example 3.8. The graph in the left of Figure 5 has a non-trivia13-cut. The dotted hne
depicts a thrice punctured sphere that may cut the complement into two pieces. Each
piece is homeomorphic to the complement of a graph. The graphs in the middle and the
right in Figure 5 are the corresponding graphs.

FIGURE 5. Graph with nontrivia13-cut.

Thus, putting all the discussion above together, we get

Theorem 3.9. Let $B_{n}$ denote the best possible upper bound of the volumes of hyperbolic
links that have diagrams with $n$ twists. Then we have $B_{n}=2nU_{2n}$ . hrther, $B_{n}$ is attained
by some cyclically 4-connected graph $P_{2n}$ if we have $\omega(P_{2n})\geq U_{2k}$ for all $2\leq k\leq n-1.$

Remark 3.10. It seems quite likely that $B_{n}$ is attained by some -connected graph for
all $n.$

In Table 1, we collect the number of cychcally 3 or 4 connected graph.
By plantri [2], we enumerate all planar cyclically -connected trivalent graphs and

estimate the volume by Orb[4]. We computed an approximate value of $U_{2n}$ for $n\leq 8$

(Figure 6).
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TABLE 1. The number of cyclically 3 or 4-connected planar graphs.

$1\theta ^{--}$
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FIGURE 6. The values of $10v_{3}(n-1)/n$ (the upper bounds by Agol-
Thurston) and $U_{2n}.$

So far, $U_{n}$ is monotonically increasing as a function of $n$ . It is interesting to compute
exact values of $U_{n}$ and observe the difference between $10v_{3}(n-1)/n$ and $U_{n}$ for general
$n.$
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