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Abstract
In this note, we review the author’s recent result in [12] on the exis-
tence of asymmetric positive solutions for semilinear elliptic equations
in symmetric domains.

1 Introduction

We prove the existence of positive solutions without symmetry for the gen-
eralized Hénon equation in symmetric domains

—Au = h(z)u’, u>0 inQ, u=0 on ON. (1.1)

Here Q is a bounded domain in R" with piecewise smooth boundary. We
assume that 1 <p<oofor N=2,1<p< (N+2)/(N-2)for N>3,
h € L*(Q2) and h(x) may or may not change its sign. Let G be a closed
subgroup of the orthogonal group O(N) such that G # {I}, where I is
the unit matrix. We call Q a G invariant domain if g(Q2) = Q for any
g € G and h(z) a G invariant function if h(gx) = h(x) for any g € G and
z € Q. In the same way, a G invariant solution is defined. Assume that
hi(z) := max(h(z),0) Z 0 in Q. Then (1.1) has a G invariant positive
solution. However, we are looking for a solution without G invariance. To
this end, we define the Rayleigh quotient R(u) with the definition domain

D(R) by
R(u) := ( /Q |Vu|2dx) / ( /Q h(:v)|u]”+1d:1:)2/(p+l),



D(R) = {u € H:(Q) : / h(z) |y dz > 0},

Q
Moreover, we define the Nehari manifold A/ by

N = {u e H}(Q)\ {0} : / |Vul? — h(z)|ulPt)dz = 0}.

The least energy Ry is defined by
Ry := inf{R(u) : ve D(R)} = inf{R(u): ue€ N} (1.2)

We call u a least energy solution if u € N and R(u) = Rp. It becomes a
positive or negative solution of (1.1). We choose a positive one as a least
energy solution after replacing u by —u, if necessary.

To explain our purpose, we introduce the Hénon equation

~Au = |z|*P”, >0 in B, u=0 on JdB, (1.3)

where B is the unit ball in RY. Smets, Willem and Su [17] have proved
that if A is large enough, then a least energy solution of (1.3) is not radially
symmetric. It is known that there exists a radial positive solution. Therefore
(1.3) has both a radial positive solution and a nonradial positive solution.
There are many papers which have studied the Hénon equation ([1, 2, 3, 4,
5 6,7,8,09, 15, 16]). '

On the other hand, Moore and Nehari [13, pp.32-33] have studied the
two point boundary value problem of the ordinary differential equation

u'(t) + h(t)u?P =0, uw>0 in (-1,1), uw(-1)=u(l)=0, (1.4

where h(t) = 0 for |t| < a and h(t) = 1 for a < |t| < 1. When a(< 1) is
sufficiently close to 1, they have constructed at least three positive solutions
of (1.4): an even solution u(t), a non-even solution v(t) and the reflection
v(—t). The purpose of this paper is to extend the results above to more
general symmetric domains €2 and to more general weight functions h(z).

2 Main result

In this section, we state main results and give several examples of Q and
h(x). We first define the fized point set of G by

F =Fix(G) := {x ¢ RY : gz = z for all g € G}.

Then F' is a linear subspace of RY. Since G # {I} is assumed with the unit
matrix 7, it holds that 0 < dim F < N — 1.

143



144

Definition 2.1. Let F! be the orthogonal complement of F in RY. We
denote by z = z’ + z the orthogonal decomposition of z into 2’ € F and
1" € F1. We define

dist(x, F) := inf{|z — y| : y € F} = |2"|,

Q(z"| <a)={2'+2"€Q: |z"| <a} fora>0.

Put
L = max{dist(z, F) : z € Q} = max{|z"| : 2’ + 2" € Q}.

We denote the set of the farthest points in Q from F by 0%, i.e.,
0Q := {x € 0Q : dist(z, F) = L}.

Assumption 2.2. Assume that h(z) satisfies either (A) or (B) below.

(A) Let h(z) take the form h(z) = f(x)* with A > 0 large enough, where
f(z) is a G invariant continuous function on 2 such that

0 < f(z) < max f(y) forxz € 2\ Q.
Y€

(B) A(z) <0in Q(|2"| < a), hi(z) Z0in Q(a < |z"| < L) and a € (0, L)
is sufficiently close to L.

We state our main result in the following.

Theorem 2.3. Let 2 and h be G invariant and h satisfy either (A) or (B).
Then a least energy solution of (1.1) is not G invariant. Therefore (1.1) has
both a G invariant positive solution and a G non-invariant positive solution.

When Fix(G) = {0} and h(r) is radial, conditions (A) and (B) reduce to
the following conditions.

(A) h(r) = f(r)* with X large enough and 0 < f(r) < f(L) for 0 <r < L.
(B)" h(r) <0in (0,a), hy(r) £ 0 in (a, L) and a is sufficiently close to L.

Examples of h(z) satisfying (A)’ are h(|z|) = |z|*, !, (|z|/(1 + |z])*.
A simple example of h satisfying (B)’ is h(|z|) = (|z| — a)/(L — a).

Corollary 2.4. Suppose that Fix(G) = {0} and h(r) satisfies either (A)’ or
(B)’. Then the same conclusion as in Theorem 2.3 holds.



Example 2.5. Let G = O(N) and 2 be a ball with radius L. Then Fix(G) =
{0}. Let h(r) satisfy either (A)’ or (B)’. Then a least energy solution is not
radially symmetric. This example extends the result by Smets, Willem and
Su [17] to more general h(x).

Example 2.6. Let §) be a convex regular polytope with center origin in R¥.
We define the regular polytope group G(£2) by

G(Q) :={g € SO(N) : () = Q},

where SO(NV) denotes the rotation group. Then it holds that Fix(G(2)) =
{0} for any regular polytope 2. Let h(r) satisfy either (A)’ or (B)’, where L
is the radius of a circumscribed sphere of Q. Then a least energy solution of
(1.1) is not invariant under the action of the regular polytope group G Q).

Example 2.7. Let Q be a cylinder in R3, which is defined by
Q= {(z1,22,23) : 73 + 73 < &, |z3| < B,

with «,8 > 0. Put L := y/a?+ 3% and let h(r) be a radially symmetric
function satisfying (A)’ or (B)’. Then a least energy solution is not even, not
rotationally symmetric around the z3-axis and not reflectionally symmetric
with respect to the plane z3 = 0.

We shall prove this assertion. First, we choose G := {I,—I}. Then
Fix(G) = {0}. By Corollary 2.4, a least energy solution is not even.

Next, we choose
0
G:={(g 1):960(2)}.

Then G invariance means the rotational invariance around the zj-axis. By
Theorem 2.3, a least energy solution is not rotationally invariant around the
T3-aXIs.

Lastly, we choose

o~{(54). (5 %)
where I, denotes the 2 x 2 unit matrix. By Theorem 2.3, a least energy
solution is not reflectionally symmetric with respect to the plane z3 = 0.
Example 2.8. Let
| Q= {(x1,22,23) ER?: 5, >0, (1<i<3), a1+a9+23< 1}

Then ) is a triangular pyramid. Let h(r) satisfy either (A)’ or (B)’ with
L = 1. Then a least energy solution is not invariant under the rotation by
angle 27/3 around the line z; = 25 = 3.
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3 Proof of the main theorem

We give a sketch of proof of Theorem 2.3. The next lemma is known, but we
give a proof for the reader’s convenience.

Lemma 3.1. Let u be a positive solution of (1.1). Then we have

0</|Vu|2d:v=/hu”+ldx, (3.1)
Q 0

(p—-1)/(p+1) (p—1)/(p+1)
R(u) = (/ |Vu|2d:v) = (/ hu”“dx) : (3.2)
0 0

Proof. Multiplying (1.1) by u and integrating it over €2, we obtain (3.1),
which leads to (3.2). O

To prove Theorem 2.3, we define
H)Q,G) := {u€ Hy(Q): uis G invariant},
D(R,G) := D(R)N H}(Q,G), N(G):=NnNHy(Q,G).

We define a G invariant least energy
Rg := inf{R(u): u € D(R,G)} = inf{R(u) : veN(G)}.

We call u a G invariant least energy solution if u € M(G) and R(u) = Rg.
We call Ry a global least energy, which has already been defined by (1.2).
To prove the theorem, it is enough to show that Ry < Rs. Indeed, this
inequality ensures that a global least energy solution corresponding to Ry
cannot be G invariant because R is the infimum of R(u) for all G invariant

solutions wu.
Let us show Ry < Rg. Let u be a GG invariant least energy solution. We

shall define ¢(x) later on, which satisfies
R((1 +e¢)u) < R(u) = Re for € > 0 small enough. (3.3)
Putting v(z) := (1 + €¢)u, we obtain
Ro < R(v) < R(u) = Rg.

We shall construct a function ¢(z) satisfying (3.3). For simplicity of
discussion, we consider the case where N = 2 and (2 is a regular triangle in
R? and G is given by

cosf —sind ) . (3.4)

sinf cosf

G :={9(2y7/3):5=0,1,2}, g(0):= (
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Let B(z,r) denote the ball centered at x with radius r. Let zo and z; be
vertices of the regular triangle Q such that g(27/3)(zo) = x1, where g(27/3)
is defined by (3.4). We take two small balls By = B(zg,2ry) and B, =
B(xy,2ry) with the same radius 2r¢ small enough. Therefore g(27/3)(B,) =
B;. Let ¢y € C§°(R?) be a radially symmetric function such that 0 < ¢o(x) <
1 in R? and

do(z) =1 for |z| < ro, suppgo C B(0, 2rp).

Here supp¢y denotes the support of ¢g.
Definition 3.2. We define ¢(z) in the whole space R? by

Qbo(.%' — ZL'()) lf T € B(.Io, 27‘0),
— oz — 1) if © € B(z1,2ry),
0 otherwise.

(z) =
We define the inner product in Hg(2) by

(v, v)my :=/ﬂ\7qudx.

The orthogonal complement of Hy (2, G) in H} () is denoted by Hy (2, G)*,
le.,

H{(Q,G)t = {ue Hy(N) : (w,v)gg =0 for all v e Hy(Q,G)}.
Then ¢(z) defined above satisfies
6 € CE() N HAO, G)* 0 L2, G)*, (3.5)
where (2, is defined by
0 = {z € R?: dist(z, Q) < 1}.

Proposition 3.3 ([12]). Let u be a G invariant least energy solution and ¢
be defined by Definition 3.2. Then we have

/ \Vo|*u’dx — 2(p — 1)/ upVuVedr < (p — 1)/ |Vul>¢*dz.  (3.6)
Q Q 0

Using the propositioh above, we prove Theorem 2.3 in the following.
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Proof of Theorem 2.3. We compute R(v) for v := (1 + e¢)u. Multiplying
(1.1) by ¢*u and integrating it over §2, we have

/ (IVul?¢® + 2upVuVe) dx = / huPt ¢’dz. (3.7)
)

Q

Combining (3.6) with (3.7), we have

1 / |Vo|*uldr < / (IVul*¢? + 2upVuVe) dz = / huPt¢tdz.
p—1Jq Y Q

Hence

/ huP*t'¢?dz > 0. (3.8)
Q

Using (3.6) and (3.7), we obtain
/Q(IVul2¢2 + 2upVuVe + |Vo|*u?)dx
< p'/Q(IVuIQd)2 + 2upVuVe)dz = p‘/Q huPt!¢idz.
Choose q € (1, p) slightly less than p such that,
/Q(IVu|2¢2 + 2upVuVeo + [Vo|*u?)dzr < q/ﬂhu”“qfdm. (3.9)

We expand |Vv|? as

Vo> = (14 26+ e¢?)|Vul|? + 2euVuVe
+262upVuVe + 2| Vo|*u?. (3.10)
From now on, we extend u onto the whole space R? by putting u = 0 outside
of Q. Then u € H(Q). By (3.5), ¢ and |Vu|? are orthogonal in L?((;),
i.e., the integral of ¢|Vu|? on 2y, or equivalently on §2, is zero. By the same

reason, the integral of 2uVuV¢ on  vanishes. Integrating both sides of
(3.10) over 92, we get

/IVvl2dx = /(1+82¢2)|Vu|2dx+262/u¢VuV¢d:v
Q Q Q
+€2/ |Vo|*uldz
0

< /IVUIde+62q/hu”+1¢2dx,
Q Q



where we have used (3.9). Observing Lemma 3.1, we put
1
A= / |Vu|?dx = / huPtldz, B .= = / huPttp*dzx.
0 Q A Jo

/ Vol2dz < A1 + €%B). (3.11)
Q

Then

Next, we shall compute the denominator of R(v). Expanding (1 + e¢)P*!
by the Taylor theorem, we get

/h(m)v”“dm = /h(:c)(1+s¢)p+lu”+1dx
Q o
= / h(z)uPtldr +e(p + 1)/ h(z)puttdx
0 0

+——52p(1;—+ i /Q h(z)uP*1¢?(1 + ¢)dz.

Here v¥(z,€) in the last integral is a remainder term, which converges to zero
uniformly on €2, as € — 0. Since ¢ is orthogonal to any G invariant function,
we have

/ h¢up+1dx =0.
Q
Therefore

/h(x)vp“dx = /h(a:)u”“dx
0 Q

+e2p(];+ 1)/Qh,(x)u”+1¢2(1+'l/))dx

= A(1+€%C,),

where

Coi= P2 [ @)1 + v, e))de

Observe the easy inequality
1+8)9<1—qt(1+t)"9 fort>0, ¢>0.
Substituting ¢ = £2C, and q = 2/(p + 1), we have

—2/(p+1)
(/ h(x)v”“dm)
Q

= A—2/(p+1)(1 + EZCE)~2/(p+l)

2
< AT/ ) _25_(1 + 5205)_(p+3)/(p+1)05}
N p+1

= A" (1 — £2p0. D,), (3.12)
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where we have put
0. = (1+ 5205)—(p+3)/(19+1),

D, = %/ﬂhu”“dﬁ(l + Y(z,€))dx.

Combining (3.11) with (3.12), we get

Rv) = ( /Q |Vv|2dx) ( /Q hv”“da;)_z/(pH)

< APV {1 4 e2(gB - pf.D;)} .

By (3.8), we have
lim pf. D, = 2/ huPtgidz > 0.
e—0 A Q

Since ¢ < p, it holds that

gB = g/hu””qﬁzdw < —P-/hup+1¢2dx.
A Ja A Jo
Therefore ¢B < pf.D, for € > 0 small enough. Then we have R(v) <
AP-1)/+1) — R(vy), where the last equation follows from Lemma 3.1. The

proof is complete. O
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