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Stochastic optimal transportation problem and related topics

B T2W%ERE =L 8K (Toshio Mikami)
Laboratory of Mathematics, Institute of Engineering

Hiroshima University

First of all we briefly introduce two classes of Stochastic optimal transportation
problems and the duality theorems. As applications, we consider marginal problems
for Markov processes which is called Markov marginal problems. We also introduce
the Knothe-Rosenblatt process as a stochastic optimal control analogue of the Knothe-
Rosenblatt rearrangement and show that it can be approximated by a minimizer of
a class of Stochastic optimal transportation problems with a small parameter. Fi-
nally we also introduce an application of the optimal transportation problem to the
characterization of a maximally dependent random variable.

1 Stochastic optimal transportation problems.

Let W(t) = W(t,w) be a d-dimensional standard Brownian motion on a complete
filtered probability space (2, F, {F:}i>0, P):

() w(0) =0,

(ii) W(t) — W(s) is independent of F,, 0 < s < ¢,

(iii) The probability law of W(t) — W(s) is N(0, (t — s)Id), 0 < s < t.

(iv) W(-) € C([0,00) : RY) a.s..
Let u(t) = u(t,w) be d-dimensional, B([0, 1]) x F-measurable, and F;-measurable for
t €[0,1] and L(t,z;u) € C([0,1] x R¢ x R4 : [0,00)) be convex in u.
We introduce two classes of Stochastic optimal transportation problems (see [18, 19]).
(Problem I) For any {P,, P} € M;(R?)(=the space of all Borel probability measures
on R? with a weak topology),

V(P Py) := inf{EUol L(t,X"(t);u(t))dt”

dX*(1) == u(t)dt + dW (t), PX(t)™ = P,,t = 0, 1}. (1.1)



(Problem II) For P := {P,}oc;<; € M;(RY),

1
V(P) = mf{E[ / L(t,X“(t);u(t))dt”
0
dX*(t) := u(t)dt + dW (), PX*(t)™ = P,,0 < { < 1}. (1.2)
Remark 1.1 (i) If we delete +dW (t) in (1.1), then V (P, P,) becomes the Monge-
Kantorovich problem (see [3, 7, 8, 10, 18, 16, 17, 22, 23, 26, 27]):

inf{ E[I(X(0), X(1))]|PX ()" = B, t = 0,1}, (1.3)

where

I(z,y) = inf{/01L<t,X(t);g%tgt—))dt”X(O) =z,X(1) = y}.

(i) For a fixed Py € M(RY), the conver dual Vg, of P — V(Py, P) is a finite time
horizon stochastic optimal control problem (see [9)):

VR (f) = sup { /R df(x)P(d:c)—V(Po,P)}

PeM, (R9)
- sup{E[f(X“(l)—/:L(t,X“(t);u(t))dt”
dX(t) = u(t)dt + dW(t), PX*(0)"! = PO}. (1.4)

1.1 Duality Theorems in stochastic optimal transportation

For the sake of simplicity, we set L = I%E More general results can be found in the
references given below.
We state the duality theorems for Problems I and II.

Theorem 1.1 (Duality Theorem) (Mikami and Thieullen [21]) For any P, and
P e M (R%),

V(B P) = sup{ [ e(1a)Pi(dz) - [ o(0,2)Po(do)}), (15)

where the supremum is taken over all bounded continuous viscosity solutions ¢, to
the following Hamilton-Jacobi-Bellman (HJB for short) PDE (see e.g.[6]), for which
©(1,-) € C°(R9):
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22) | L nplt,z) + 5Dt 9P =0, (Lx) €D XRE (L6)

Theorem 1.2 (Duality Theorem) (Mikami [18]). For anyP := {P.}oct<1 C Mi(R?),

VP) = sp{ [ Jo)aRdE) - [ 605 NPE)
f e C(0,1] X R“)}, (1.7)

where the supremum is taken over all bounded continuous viscosity solutions ¢ to the

following HIB PDE: ¢(1,z; f) =0,

05S) | Lng(t,) + HDeplt, OF + 60) =0, (La) € [0,1) xRE (19

1.2 Marginal problems

We state two classes of marginal problems for which we gave positive answers in
(Mikami [18]).

(I) Marginal problem with fixed two end points distributions (see [12, 25]).

For { P, P} C M;(RY), construct a semimartingale { X (¢) }o<:<1 for which there exists
a measurable function b : [0,1] x R¢ —» R? and

Il

dX(t) b(t, X (t))dt + dW (t),
PXt)™ = B, t=0,1

(II) Marginal problem with fixed marginal distributions for all times.
For {P.}o<t<1 € M;(R9), construct a semimartingale {X(¢)}o<t<1 for which there
exists a measurable function b : [0, 1] x R? — R and

dX(t) = b(t,X(t))dt + dW(t),
PXt)™ = PR, telo,1],
Remark 1.2 Marginal problem (II) is inspired by Nelson’s marginal problem in stochas-

tic mechanics: for {P.}o<ici C Mi(R?) and b € A({P}o<i<1), construct a semi-
martingale {X(t)}o<t<1 for which the following holds:



dX(t) = b(t, X(t))dt +dW(2),
PX®)™ = P, telo1],

1.3 Idea of the proof of marginal problems.

We introduce two variational problems to give applications of the duality theorems to

the marginal problems for Markov processes.

Definition 1.1 For b : [0,1] x R? — R? and {P.}o<t<1 C M(RY), we write b €
A({P}o<i<1) if the Fokker-Planck equation holds: for any f € Cp*([0,1] x R%) and
t€[0,1],

o FED)P(da) - [ 1(0,2)Po(da)

= [as ] (%;S@ + 28](s,8)+ < b(5,2), Daf(5,2) > ) P(de).

(Problem i) For {Py, P} € M;(R9),

o(Po P = inf{ [Cae [ Lt b(t, 2))Qu(do)|b € A({Quocter), Qc = Pt = 0,1},
(1.9)

(Problem ii) For P := {P,}o<t<1 € M1(RY),

v(P) = inf{/ol a [ it b(t,x))Pt(d:c)lb c A(P)}. (1.10)

Remark 1.3
V(PO: Pl) Z /U(P()a Pl):

V({P:o<i<1) = v({ P }o<i<a)-

The idea of the proof to marginal problems in section 1.2 is to prove V = v and

V = v via Duality Theorems.
On the problem (I), for a fixed Py € M;(R?), consider the convex dual of P —
’U(PO, P)
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vp(f) = sup { ,f(@)P(dz) —v(R, P)}
PeM;i(RY)
- mf{/ £(2)Qs(dz) — /dt/ (¢, 7 b(t, ©))Q, (d2)
be A{Qu ostct), Qo = PO}. (1.11)

Prove P — V(P,, P) and v(P,, P) are not identically equal to infinity and lower semi-

continuous and convex, which implies the following (see e.g. [5]):

V(RLR) = s ([ SR - Vi) (112)
v(Po, ) = sup {] f(z)Pi(dz)—vR,(f)}- (1.13)
fECH(RY)

For f € C°(R?), prove

Va(f) = vk (f) = [ ,#(0,7)Po(da) (114)
where ¢ is a minimal bounded continuous viscosity solution to the following HJB PDE:

(p(l,.’L‘) = f(x)’

Op(t, z)
ot

Here for (¢,z,z) € [0,1] x R¥ x R¢,

4 %Ago(t,x) + H(t 2 Dap(t, ) =0, (tz)€[0,1) xREL  (L.15)

H(t,z;z) == sup{< z,u > —L(t, z; u)|u € R%}.

On the problem (II), a similar but more complicated idea can be applied by con-
sidering V and v as functionals of dtP,(dx) on M;([0,1] x R?) (see [18] for details).

2 Knothe-Rosenblatt processes

The Knothe-Rosenblatt rearrangement plays a crucial role in many fields, e.g., the
Brunn-Minkowski inequality and statistics (see [1, 2, 14, 15, 24] and the references
therein). We first describe the Knothe-Rosenblatt rearrangement.

Let d > 2. ¢ : R — R is called a triangular mapping/transformation if



p(z) = (p1(z1), P2(21,22), -+, a1, -+, 2a)), T = (m3)i,y.

A triangular mapping ¢ is called nondecreasing if z; — ¢;(21, - -, z;) is nondecreasing
foralli=1,---,d.

Definition 2.1 For Py and P, € M;(R?), the Knothe-Rosenblatt rearrangement which

maps Py to Py is a nondecreasing triangular mapping ¢ such that

P[)(,D—l ZPl.

For P, € M;(R?),

P.i(A) := P(Ax R%), for Borel A C R".

For the sake of simplicity, we only introduce a typical Knothe-Rosenblatt process (see
[20] for more general definition).

Definition 2.2 Let d > 1 For Py, P, € M;(R%), {X(t) = (Xi(t))1<i<ato<t<1 is called
the Knothe-Rosenblatt process (for Brownian motion) if there exists b(t,z) =
(bi(t, 1, -, x;))4 | such that

dX (t) = b(t, X (t))dt + dW (),

and {X;(t) = (X;(t))1<j<i fo<t<1 is the unique minimizer of

Vi(Posi, PrilXi-1)
inf{E[fy %|u1(t)|?dt]|dY Y (¢) = wi(t)dt + dW (2),
PY{(0)™ = Pox, PY1* (1) = P11} = Vi(Pos, Pra) (t=1),
= inf{E[fy u:(t)|2dt]|dY ™ (2) = wi(t)dt + dW (2),
PY;‘i(O)_l = Po,i,PY:-li(l)-l = Pl,i1
P(Yi_l)_l = P(Xi_l)_l} (1 <1 < d)

\

Remark 2.1 X, is the h-path process for Brownian motion, provided Vi(Poq, P11) is
finite. In this sense, the Knothe- Rosenblatt process can be considered as a generalization
of the h-path process (see [12, 21, 25] and the references therein).
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2.1 Convergence result

We state a typical case of the result [20] which is a stochastic control analogue of [4].
Fori=2,---,dand € > 0,

VE(Poy, Pri)
= inf{ {Zs’ 1/ = )|2dt”
AY™(8) = uy(t)dt + W (t), PY™(0)™" = Py, PY™(1)) = Py, }.(2.1)

We show that a minimizer of Vf(P,, P;) converges to the Knothe-Rosenblatt process
as e — 0.

Theorem 2.1 Suppose that d = 2. Then for any Py, P, € M;(R?) for which the
Knothe-Rosenblatt process {X(t)}o<i<1 exists, a minimizer {X¢(t)}o<e<1 of V5 (Po, P1)
ezists and weakly converges to {X(t)}o<i<1 as € = 0.

hmEUlwf(t Xe(t)2dt) = Vi(Poa, Pry), (2.2)

e—0

hmE[/ 1b5 (£, X5 (t) zdtJ Va(Py, PiIXy). (2.3)

I

We consider the case where d > 2.
For all i =1,---,d, consider the following HJB PDEs: (HJB);

avi(ta xi)

1
ot + EAvi(t,xi)—F < Vi_lv,-(t,x,-),bi_l(t,xi_l) >

l 3v,<(t, Xi) 2
2 Bz,-

=0, (t,x;)€(0,1) xR, (2.4)
where bx, := 0.

Theorem 2.2 Suppose that the Knothe-Rosenblatt process {X(t)}o<t<1 exists for Fp,
P, € Mi(R?) and that there exists a solution v;(t,xq,) € Cy?([0,1] x R%*) to HJB
PDE (2.4) such that

6vi(t,xi)

bi = 85(51' )



Then one can construct Pf € M;(R?) such that a minimizer {X¢(t) Yo<i<1 of V(Po, P§)
ezists and converges to {X(t)}o<t<1 in the sense of relative entropy as e — 0:

H(PXS) T P(X)™) = %E[/Olwf(t,xw))-b(t,Xf(t))lzdt}-»o (2.5)

(€ —=0). Fori=1,---,d, we also have

m | /01 SO Il /01 b, (O] = Vo, PrafXi). (26)

li
e—=0

3 Maximally dependent random variable.

Random variables X, - -, X,, with a common distribution functions F is called maxi-
mally dependent if

P(max(Xy, -, Xn) > t) > P(max(Ys, -, Ys) > 1), (3.1)

for all t > 0, for any Yi,---,Y,, with a common distribution function F.

For a nonnegative random variable X,

Sx(t) := P(X > t), t>0, (3.2)
Is called a survival function of X.
Letn>2,m>1(G=1,---,n),and ¥;; i =1,---,n,j5 = 1, --,m;) be real random
variables. In this section, we present the maxima and minima of the overall survival

functions

Smin{max{¥;;[1<j<m}1<i<n}(t),  Smax{min{¥i;[1<j<mi}<i<n} (t)

in the case where the probability distributions P(Y;;)~! are fixed. This can be proved
by the optimal transportation problem on R (see [11]).
For an R"-valued random variable Z = (Z,---,Z,) and k = 2,-- -, n, set

bz1 = Uz1:= 21,

$z2 = Vzo:=Fz'(1 - Fz(Z)),

bz = Fz (1 — Fuinoz,,dzr)(Min(dz1, -, dzx-1))),
Uz = Fz, (1= Fuax(@g,, 9z, ) (max(Pz1,- -, Uz 1)),
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Then, we have

Theorem 3.1 (see [11]) Suppose that Fz,(-), - -, Fz,(-) are continuous. Then,

P(¢z;) ' = P(Wg,) ' = P(Z)™', Vzi=—¢_zi;, i=1,---,n), (3.3)
Fmin(¢z,1,"',¢z.n)($) = min (Z in.(.'L‘), 1)1 (3'4)

i=1
Fmax(q:z'ly...‘q:z'")(ﬂi) = max (Z Fz(z) —n+1, 0). (3.5)

=1

In particular,

Fmin(q&z’l,...,¢z‘")(min(¢z,17 o :¢Z,n)) = Z FZ.' (min(¢z,17 e 7¢Z,n))7 a.s., (36)
i=1

o

Fmax(\pz'l,...,q;z,n)(ma.X(\Ilel, SR \I/z’n)) = FZ. (max(\Ilzyl, I ‘I}z,n)) —n+1,a.s..

..
1
-

(3.7)

We first consider the case in which m; = 1 (i > 2), and set m := my, Y; := Y3;, and
X; :=Y; (i > 2) for the sake of simplicity.

Theorem 3.2 Suppose that Fy,(-),-- -, Fy,.(-) are continuous. Then,

Smax(min(Y1,~--,Ym),X2,~-,Xn)(x)

> ma.x(l—iFy‘(z),l—sz(a:),~-~,1—Fx"(a:)), z € R. (38)

i=1

Here, the equality holds if

Yi = ¢Y,i (i=2a"',m)a

X; = F;}(fjpyk(mmm,-.-,Ym))> (i=2,-,n). (3.9)

k=1

Suppose, in addition, that Fx,(-), -+, Fx,(-) are continuous. Then,



n

Smss(ain Yo ) (&) < min (= nfhx Fy, (2) = 3 P (@),1), € R. (3.10)

=2

Here, the equality holds if

Yi = F}Zl(Fyl()/l)) (Z.=27'“,m))
Xi = ‘I’x,i (?:22,"',71),
where X1 :=min(Y;, -+, Y,).

(3.11)

We can now state the following two corollaries that follow from Theorem 3.2 and

from the following:

min(max(Y1, -, Ym), X2, -+, Xp)
= —max(min(=Yy, -, -Y,), Xy, -+, = X,).

Corollary 3.1 Suppose that Fy,(-),-- -, Fy, () are continuous. Then,

Swmin(max(Ys,,Yom), X2, Xn) ()

< min('m — > Fy,(2),1 - Fx,(x),-+,1— Fxn(:v)), z € R.
i=1

Here, the equality holds if

Yi = lI,Y,z' (i=27"'1m),

X, = F,;}(ZFyk(max()q,---,Ym))-m+1), i=2-n.

k=1
Suppose, in addition, that Fx,(-), -, Fx,(-) are continuous. Then,

n

(3.12)

(3.13)

St ) a6 () = max (1= malp Py (@) = 3 Fx,(4),0), @ € R. (3.14)

i=2
Here, the equality holds if

Y; = F;«.l(Fyl(Yl)) (i:2a"'7m)’
Xi = ¢xi (1=2,---,n),
where Xy := max(Yy, -+, Y,).

(3.15)
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Corollary 3.2 Suppose that there exist m > 1 and ig > 1 such that m; = m (i =
-vig) and m; = 1 (i =iy +1,---,n) and that for each i = 1,---,n, {Yi;}]2; are
identically distributed with a continuous distribution function. Then,

Smax{min{¥;;[1<j<m}1<i<n} (T) 2 max(max{l -miFy, (z)[1 <1 < n},O),x € R, (3.16)

where the equality holds if

}/ij =¢Y J'—2 )7

v = { Balfui ) =hen (3.17)
F}’l mFYu mln()/lla ,S/lm))) 1 =20+1,"',n,

where Y; := (Ya, -+, Yim,)

Smin{max(Yy,|1<j<m }1<i<n} (z) < min(min{m; —m;Fy, (z)[1 < i <n}, 1),z €R, (3.18)

where the equality holds if

}/1] = \Ilyi,j (J =2’...’mi),
Y, = F}E{(Fm(yu)) | z: 1,-- 4, 19
Fyu(mFYu(max()/n,-..’)/lm))—m+1) Z:zo—{-l,...’n_
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