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OPERATOR KANTOROVICH TYPE INEQUALITY
MOHAMMAD SAL MOSLEHIAN

ABSTRACT. We present some operator Kantorovich inequalities involving uni-
tal positive linear mappings and the operator geometric mean in the setting of
semi-inner product C*-modules. This talk is based on [M.S. Moslehian, Recent
developments of the operator Kantorovich inequality, Expo. Math. 30 (2012),
no. 4, 376-388|.

1. INTRODUCTION

Let B(5¢) denote the C*-algebra of all bounded linear operators acting on
a Hilbert space (4%, (-,-)) and I be the identity operator. In the case when
dim J# = n, we identify B(5#) with the matrix algebra M, of all n x n matrices
with entries in the complex field C and denote its identity by I,. An operator
A € B(J£) is said to be positive (positive semi-definite for matrices) if (Az, z) > 0
for all z € S and we write A > 0. For selfadjoint operators A, B € B(), we
say B> Aif B-A > 0. If A > 0 is invertible, we call it strictly positive
(positive-definite for matrices) and write A > 0.

In 1948, Leonid Vital’evich Kantorovich [18] introduced the following inequality

(Hr,z)(H 'z, ) < (A + X\)2/4M M\, (1.1)
where z = (21, -+ ,z,) is a unit vector in C* and H is an n x n positive-definite
matrix with eigenvalues A\; > --- > ), > 0. Using the spectral decomposition

A = U*diag(A1, -+, Ap)U, we see that inequality (1.1) reduces to

(ZAj‘ij) (ZA | J]2> = (/\Z;;\ ) ) (1.2)

which can be proved by utilizing the arithmetic mean—geometric mean inequality.
Of course, the Kantorovich inequality is still valid for an operator A acting on an
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infinite dimensional Hilbert space J# with 0 < m < A < M as follows:

< (M +m)?

_1 NP
(Az,z)(A" 'z, z) < -~

(xe | z|=1).

Replacing z by A%z/ || AY%z || in the above inequality, we get the following
equivalent form of the Kantorovich inequality:

(M +m)?

o Ane)? @etlle]=1). (1.3)

(A’z,z) <

As reported in a survey presented in 1997 by Watson, Alpargu and Styan [36],
inequality (1.2) was established five years earlier in 1943 by Roberto Frucht [16] (it
was originally due to Charles Hermite); see also [25]. It is noticed in [36] that the
Kantorovich inequality is equivalent to five other inequalities due to Schweitzer
(1914), Pélya and Szego (1925), Cassels (1951), Krasnosel’skif and Krein (1952),
and Greub and Rheinboldt (1959). The Kantorovich inequality is a useful tool
in numerical analysis and statistics for establishing the rate of convergence of
the method of steepest descent. During the past decades several formulations,
extensions or refinements of the Kantorovich inequality in various settings have
been introduced by many mathematicians; see [8, 15| and references therein.

The first generalization of the Kantorovich inequality is due to Greub and
Rheinboldt. In 1959, they [17] showed that if A € B(J¢) such that 0 < m[ <
A < MI, then

(z,2)* < (Az,z)(A" 'z, 7) < (z,2)°(M +m)?/(4Mm) (1.4)
for any = € . They also proved that their inequality (1.4) is equivalent to
(Az, Az)(Bz, Bz) < (Az, B)*(MM' + mm/)?/(4mm'MM'),
when B is a selfadjoint operator permutable with A, z € # and 0 < m'I < B <
M'I

In the next year Strang [35] generalized inequality (1.4) by showing that if
T € B(##) is invertible, | T ||= M and || T~" ||=m™", then

(M + m)?

-~ (z,z){y, ),

(Tz,z){y, T 'y))| <

for all =,y € % and that the bound is the best possible.
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Ky Fan [9] in 1966 generalized the inequality above by showing that if 0 <

mlI <H < MI and 24, -- - , z,, are vectors in C™ such that 22;1 | 2 H2: 1. then
m m —-p

Z (HPz;, z;) [Z(Hfﬂja %>} < (p=1)P"'p 7P (B — aP)P((b — a)(ab? — bap)p‘l)*l
Jj=1 j=1

herein p is any integer different from 0 and 1. In 1997 Mond and Pegarié [28]
gave an operator version of Ky Fan’s inequality.
Of course, there exist some integral and discrete versions of the Kantorovich

inequality in the literature. For instance, if 0 <m < f < M, then

fEdeu< m + M) (/fd> ,

which is the additive version of the Griiss type inequality [, f?du — (f o f d,u)2
(M —~m)?/4. In 1988 Andrica and Badea [3] stated a Griiss inequality for positive
linear functionals and applied it to get a Kantorovich inequality; see also [31].

Around the year 1993, Mond and Peéari¢ [26] obtained several kinds of ex-
tensions of the Kantorovich inequality. They proved that if ® is a unital pos-
itive linear map on B(5) and A € B(5#) is a positive operator satisfying
0<mlI <A< MI, then

2
(A < %Q@(A)—l & ®(A)-dAH) < (VM —vm)?I.
The second one is called an additive version of the Kantorovich inequality.
If Aj,---, Ay € M, are positive-definite matrices with eigenvalues contained
in the interval [m, M] C (0, c0), Mond and Pegari¢ [27] in 1994 proved that
k 2 -1
~17r* (m + M) *
;UjAj Uy < ZUA U, (1.5)
where Uy,---,U, are m X n matrices such that ijl U;U; = I, which is a

generalization of a result of Marshal and Olkin [24]. The result of Mond and
Pecari¢ [27], in turn, was generalized by Spain [34] in 1996.
In 1996, using the operator geometric mean, Nakamoto and Nakamura [32]
proved that
M+m

B(A)#B(47) <

whenever 0 <m < A < M and @ is a unital positive linear map on B(#).

(1.6)
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A discussion of order-preserving properties of increasing functions through the
Kantorovich inequality is presented by Fujii, Izumino, Nakamoto and Seo [12] in
1997. They showed that if A,B >0,A> B and 0 <m < A< M, then

(m+M)* , 2
—=A°>B°.
A4mM -
They also proved that the Kantorovich inequality is equivalent to the following
noncommutative variant of the GreubRheinboldt inequality
(m+ M)?

<
(Az,z)(Bz,z) < -

(AfBz,z)?,

in which A, B are positive operators satisfying 0 < m < A,B < M and z is
an arbitrary vector. In 2006 Yamazaki [37] generalized the inequality above to
n-operators via the geometric mean introduced by Ando-Li-Mathias [2].

Some other extensions of the Kantorovich inequality were given by Furuta [14]
in the year 1998. He proved that if A, B are positive operators, A > B > 0 and
MI > B > ml > 0, then

p-1 _ -1 P _ P\P
(_A{) s @17 (M? — m?) &> B

m p? (M —m)(mMpr — Mmp)r-1
holds for all p > 1. The constant x4(m,M,p) = (”‘;2"_1 (M_m)((ﬁﬁﬁ?;mp)p_l is

called the Ky Fan-Furuta constant in the literature; see [15, 13].

In 1998 Kitamura and Seo [19] established a Kantorovich inequality involving
the Hadamard product. They proved that if A is a positive operator such that
0<m< A<M, then

_ M?+m?
(A20 N)V2(A"20 I)V/2 < S
in which o denotes the Hadamard product defined for an arbitrary orthonor-
mal basis {e,} of H by ((A o B)e;,e;) = (Aei,e;)(Bes,e;). Of course, some
Kantorovich type inequalities involving the Hadamard product of matrices have
already obtained by Liu and Neudecker [22].

In the next year Yamazaki and Yanagida [38] characterized the chaotic order

in terms of the Kantorovich inequality by showing that log A > log B if and only

if(mT:’n%';_)zAszPforallpZO-
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Given a positive-definite matrix H with eigenvalues 0 < A\, < -+ < An the
Wielandt inequality states that

@, Hy) P _ (Al -An>2
<vax><y’Hy> - A1‘}')‘71 ’

where {z,y} is an orthonormal set. In 2001, Zhang [39] proved that the Wielandt
and Kantorovich inequalities are equivalent.

In 2001, T. Ando [1] presented some Kantorovich-type inequalities as upper
estimates of the maximum spectra of ®(A)~'®(A2)®(A)~!, where ® is a linear
map on a C*-algebra &/ and A € &/. Five years later, inspired by the paper
of Ando [1], Li and Mathias [21] established a weak majorization inequality for
singular values extending the Kantorovich inequality .

In 2006 the authors of [10] established another noncommutative Kantorovich
inequality. They proved that if A, B are positive operators such that 0 < mI <
A, B < MI, then

-1 -1\ —1
2\/Mm(A+B SAﬁB§M+m<A +B .
M+m 2 2v/Mm 2

Also, Bourin [5] showed, among several Kantorovich type inequalities, that if H

is a positive-definite matrix such that 0 < m < H < M, then

m+ M

2vVmM

Around the year 2008, Dragomir [7] gave several Kantorovich type inequalities

I Hz [|<

(z,Hzx) .

involving norms and numerical radii for operators acting on a Hilbert space.

In 2010 Niezgoda [33] obtained some Kantorovich type inequalities for ordered
linear spaces.

In 2011, the authors of [30] presented a Diaz—Metcalf type operator inequality
and applied it to get a unified approach to several operator inequalities includ-
ing the Pélya—Szegd, Greub—Rheinboldt, Kantorovich, Shisha-Mond, Schweitzer,
Cassels and Klamkin-McLenaghan inequalities.

The notion of semi-inner product C*-module is a generalization of that of
semi-inner product space in which the semi-inner product takes its values in a
C*-algebra instead of the field of complex numbers. We can define a semi-norm

on a semi-inner product (£, (-,-)) over a C*-algebra & by || z ||=|| (z,z) |7,

123
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where the latter norm denotes that of &. A pre-Hilbert & -module (or an inner-
product module) is a semi-inner product module in which || - || defined as above is
a norm. If this norm is complete then £ is called a Hilbert C*-module. Each C*-
algebra & can be regarded as a Hilbert &/-module via (a,b) = a*b (a,b € &).
When 2 is a Hilbert C*-module, we denote by B(Z) the C*-algebra of all
adjointable operators on 2. For every z € 2 the absolute value of z is defined
by |z| = (z,z)2 € &/. Some standard references for C*-modules are [20, 23].

Using the polar decomposition, the authors of [11] obtained a new Cauchy—
Schwarz inequality in the framework of semi-inner product C*-modules over unital
C*-algebras and applied it to present a Kantorovich type inequality.

In this paper we present some operator Kantorovich inequalities involving uni-
tal positive linear mappings and the operator geometric mean in the framework
of semi-inner product C*-modules and get some new and classical results in a

unified approach.

2. A KANTOROVICH INEQUALITY VIA OPERATOR GEOMETRIC MEAN

We provide a generalization of the Kantorovich inequality in the context of
Hilbert C*-modules which can be viewed as an extension of inequality (1.6) of
Nakamoto and Nakamura [32].

Let z,v, 2,21, . .., T, be arbitrary elements of a semi-inner product &/-module
(X, (-,-)). The authors of [4] studied the covariance cov,(z,y) :=| z ||* (z,y) —
(z,z) (2,y) and the variance var,(z) = cov,(z, z), and proved that [cov,(z;, ;)] €

M., (&) is positive, or equivalently

| 2 |2 [(z,2;)] = [(®s,2) (z,2;)] (Generalized Covariance-Variance Inequality) .
(2.1)
In particular, by the Cauchy—-Schwarz inequality for the semi-inner product cov,(., .),

it holds

cov,(z,y) cov,(z,y)* <|| var,(y) || var,(z) (Covariance-Variance Inequality).
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Recall that for positive invertible elements a,b € &7, we can use the following

characterization of operator mean due to Ando as follows

aﬂb:max{a:e;z{:xzx*, [a :CJ 20},
z b

where afib = a7 (a~2ba~2)3az. This is easily deduced from a = (afib)b~(atib) and
the fact that a > xb~2* if and only if [ ¢ : } >0, where z € &.

x*
Theorem 2.1. Let &', B be unital C*-algebras, Z be a semi-inner product o -
module and A € B(Z") such that 0 <m < A < M for some scalars m, M. Then
for every x € & for which (z,xz) is invertible and every unital positive linear

mapping Y : & — B it holds
M+m

2vVmM

Proof. First note that due to invertibility of (z, z) we have, for a :== mM (A™'z, z)

&((z,z)). (2.2)

d((z,7)) < B((Az, z))§®((A 'z, 2)) <

and b =: (Az,z), a > m(z,z) and b > m{z,z), so a and b are positive and
invertible. Since ® is positive and unital, ®(a) and ®(b) are also positive and
invertible.

Observe now that M — A and 2 — A~! are positive commuting elements of the
C*-algebra B(Z"). This implies that (M — A)(Z — A™!) > 0, wherefrom we get
mMA™' 4+ A < (m+ M). Then for every z € &

mM (A7 z,z) + (Az,z) < (m+ M) (z,7)
and therefore
mM®((A 'z, z)) + ®((Az,z)) < (m + M)®((z, z)). (2.3)

Since vt < l‘—{—t (t >0), for any a,b € o we get
1
2
and then ®(a)? (3(a) 7 ®(b)®(a)"2)2®(a)? < 1(®(a)+®(b)). Hence ®(a)fd(b) <
2(®(a) + ®(b)). Thus we get

(®(a)"20(5)®(a) %)% < (e + B(a) "2 0(b)B(a) )

VMo (A~ e, D)b((Az, ) < -;-(mMcp«A-lx,x»+<I>(<Ax,x>))

m+ M
2

IA

o((z, z)),

125
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which gives the Kantorovich inequality (the second inequality of (2.2)).
Applying (2.1) forn = 2, z; = Az, 1, = A~iz and an arbitrary z such that
z # 0 we get
A
na) @a) |,
(z,2) (A7'z,7)

Now from [6, Corollary 4.4 (ii)] it follows that

o((4z,2))  @((z,2)) ]>O
d((z,2)) o((A7'z,3)) |

so ®((z,z)) < ®((Ax, z)){P((A™ 1z, z)). O

Corollary 2.2. Let ® : B(5#) — B(JX') be a unital positive linear map. If
A € B(H) be an operator satisfying 0 < m < A < M for some scalars m, M.
Then

M+m
2v/Mm’
Proof. Consider & = B(4#) regarded as a B(4¢)-Hilbert module under (T, S) =
T*S. Then B(Z") = B(5) and if we take = to be the identity operator on J#,
then (2.4) follows from (2.2). O

®(A)§2(B) < (2.4)

3. SOME KANTOROVICH TYPE INEQUALITIES

We present an additive version of the Kantorovich inequality.

Theorem 3.1. Let &7, % be unital C*-algebras, Z be a semi-inner product < -
module and A € B(Z") such that 0 <m < A < M for some scalars m, M. Then
for every x € & for which |z| = e, where e denotes the unit of &/, and every
unital positive linear mapping ® : of — A it holds

®((A7'z,z)) — ®((Az,z)) "' < (\/MA;m\/T_ﬁ)Q )

Proof. As ® is unital it follows from (2.3) that

M+m 1
Mm Mm

®((A 'z, z)) < ®((Az, z)) . (3.1)
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Hence

®(A7 'z, z)) — O((Az,z))

< Tl S((As,2)) ~ 8((Aa, )

M+m 1
= Mm - Mm@((Ax,x)) - ®(<Ax7x>)
_ M+m 1 N2 _ 7. ))1/2 2_._
= (\/M—m— (Az,z))/? — ®((Az, z)) ) T
_ (‘/M“\/m)Q_ 1 12 _ ))1/2 ?
= e (\/M*mé((A:c z))'/? — ®((Az, z))
. VM- ym)
= Mm '

O]

There is still another multiplication type of the Kantorovich inequality as fol-

lows.

Theorem 3.2. Under the conditions as in Theorem 3.1 it holds

(M +m)?

(A 'z, z)) < m

O((Az,z)) "

Proof. 1t follows from (3.1) that

_ M + m)? 4 4
(A7) < e (M+m (M—!—m)?q)((Am’x)))
(M + m)? _
since 2a8 — a? < 82 for real numbers. 0

Finally we present a noncommutative version of (1.3).

Theorem 3.3. Let & be a unital C*-algebra with unit e, Z be a semi-inner
product & -module and A € B(Z") such that 0 < m < A < M for some scalars
m, M. Then for every x € &

M+m
T 2vVmM

(Az,z) < (APz,z)f (z,2) < (Az,z) (z € X).
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In particular, if (z,z) = e and & is commutative, then

(Az,z)* < (A’z,7) < M+ m

—2vVmM

Proof. Let € & be arbitrary. We have

(Az,z)?. (3.2)

<A1/2x|A1/2x|_1,A1/2$|A1/2:1:|_1> _ |A1/2x|—1 <A1/2:C,A1/2a:> |A1/2z|_1 —e
Replacing z by AY2z|AY2z|~! in Theorem 2.1 we get
(A1/2$|A1/2x|_1,A1/2x|A1/2:c|'1)
< <A(A1/2IA1/2$|*1),A1/2|A1/2m|—1>n <A_1(A1/2IE|A1/2£EI_1),A1/2:L’|A1/2CE|—1>

M+m (AY25| AV2g| ), AV 2g) AY 271 |

<
T 2vVmM

whence
|A1/2.’L'|_1<A1/2.’I7, A1/2x)|A1/2w|‘1

< (|A1'/2x|-1<A2x,w>|A1/2wr1)a(|Alf2xr1 (z,2) | 42| )
M4+m

< |AY2g| "L (A2, AY2g) |AV2| 1
2vmM
Using the property (c*ac)(c*bc) = c(afb)c of the operator geometric mean, we
get
M+m
Az, z) < (A%z,z)f(z,2) < Az, z).
(42,2) < (A%,9) 8 (0.9) < 3 (Az,2)

The special case follows from the property afe = a'/? and the fact that a C*-

algebfa is commutative if and only if a < b = a? < b2 for all its elements a,b. O
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