MORE ON OPERATOR MONOTONE FUNCTIONS
(Research on structures of operators via methods in geometry and probability theory)

Title

Author(s)
NAJAFI, HAMED

Citation
数理解析研究所講究録 (2013), 1839: 110-118

Issue Date
2013-06

URL
http://hdl.handle.net/2433/194938

Right

Type
Departmental Bulletin Paper

Textversion
publisher

Kyoto University
MORE ON OPERATOR MONOTONE FUNCTIONS

HAMED NAJAFI

ABSTRACT. We investigate some properties of operator monotone functions. In particular, we show that if f is a non-constant operator monotone function on an interval J and A, B are self-adjoint operators with spectra in J such that $A > B$, then $f(A) > f(B)$. As an application we extend the celebrated Löwner–Heinz inequality.

1. INTRODUCTION

Let $(\mathcal{H}, \langle \cdot, \cdot \rangle)$ be a complex Hilbert space and $\mathbb{B}(\mathcal{H})$ denote the algebra of all bounded linear operators on \mathcal{H} equipped with the operator norm $\| \cdot \|$. An operator $A \in \mathbb{B}(\mathcal{H})$ is called positive if $\langle Ax, x \rangle \geq 0$ holds for every $x \in \mathcal{H}$ and then we write $A \geq 0$. For self-adjoint operators $A, B \in \mathbb{B}(\mathcal{H})$, we say $A \leq B$ if $B - A \geq 0$. Also for self-adjoint operators $A, B \in \mathbb{B}(\mathcal{H})$, we say $A \succ B$ if $\langle Ax, x \rangle > \langle Bx, x \rangle$ holds for all non-zero elements $x \in \mathcal{H}$. Also $A > B$ if $A \geq B$ and $A - B$ is invertible.

A continuous real valued function f defined on an interval J is called operator monotone if $A \geq B$ implies $f(A) \geq f(B)$ for all self adjoint operators A, B acting on a Hilbert space with spectra in J.

The Löwner theorem says that a function f is operator monotone on an interval J if and only if f has an analytic continuation to the upper half plane Π_+ such that f maps Π_+ into itself. If $f(t)$ is an operator monotone function on (a, b), then clearly $f \left(\frac{2t-a-b}{b-a} \right)$ is operator monotone on $(-1, 1)$, so in this paper we study the family of operator monotone functions on $(-1, 1)$.

Let \mathcal{K} denote the family of all operator monotone functions on $(-1, 1)$ such that $f(0) = 0$ and $f'(0) = 1$. Hansen and Pedersen [8] showed that \mathcal{K} is a compact convex subset of the space of all bounded functions on $(-1, 1)$ with pointwise convergence topology and that the extreme points of \mathcal{K} are of the form $f_\lambda(t) = \frac{t}{1-\lambda t}$ with $|\lambda| < 1$. They [8] also proved that every $f \in \mathcal{K}$ can be represented as

$$f(t) = \int_{-1}^{1} \frac{t}{1-\lambda t} d\mu(\lambda),$$

where μ is a positive measure on $(-1, 1)$, see also [3].

The Löwner–Heinz inequality says that, $f(x) = x^r$ $(0 < r \leq 1)$ is operator monotone on $[0, \infty)$. Löwner proved the inequality for matrices. Heinz proved it for positive
operators acting on a Hilbert space of arbitrary dimension. Based on the C^*-algebra theory, Pedersen [14] gave a shorter proof of the inequality.

There exist several operator norm inequalities each of which is equivalent to the Löwner-Heinz inequality. One of them is $\|A^r B^r\| \leq \|AB\|^r$, called the Côrdes inequality in the literature, in which A and B are positive operators and $0 < r \leq 1$. A generalization of the Côrdes inequality for operator monotone functions is given in [5]. It is shown in [2] that this norm inequality is related to the Finsler structure of the space of positive invertible elements.

Kwong [10] sowed that if $A > B$ ($A \succ B$, resp.), then $A^r > B^r$ ($A^r \succ B^r$, ressp.) for $0 < r \leq 1$. Uchiyama [15] showed that for every non-constant operator monotone function f on an interval J, $A > B$ implies $f(A) > f(B)$ for all self-adjoint operators A, B with spectra in J.

There are several extensions of the Löwner–Heinz inequality. The Furuta inequality [6], which states that if $A \geq B \geq 0$, then for $r \geq 0$, $(A^{r/2} A^p A^{r/2})^{1/q} \geq (A^{r/2} B^p A^{r/2})^{1/q}$ holds for $p \geq 0$ and $q \geq 1$ with $(1 + r)q \geq p + r$, is known as an exquisite extension of the Löwner–Heinz inequality; Also Ando [1] extended the Löwner Heinz inequality for a pair of J-selfadjoint matrices.

Let Ω be a open subset of \mathbb{C}. A set $\mathcal{F} \subseteq C(\Omega)$ is bounded if for each compact subset $K \subseteq \Omega$, sup$\{\|f\|_K : f \in \mathcal{F}\} < \infty$. The Montel theorem states that if \mathcal{F} is a bounded subset of the set $A(\Omega)$ of all analytic functions on Ω, then \mathcal{F} is a normal family, i.e, each sequence $\{f_n\}$ in \mathcal{F} has a subsequence $\{f_{n_j}\}$ converging uniformly on each compact subset of Ω.

2. THE RESULTS

Throughout this note, let $\Omega = \Pi_+ \cup \Pi_- \cup (-1, 1)$, where Π_- is the lower half plan.

Theorem 2.1. The family \mathcal{K} is bounded in $A(\Omega)$, so it is a normal family.

Proof. Let S be the convex hull of $\{f_\lambda : |\lambda| < 1\}$ where $f_\lambda(t) = \frac{t}{1-\lambda t}$. By Krein–Millman’s theorem, \mathcal{K} is the closed convex hull of it’s extreme points, so $\overline{S} = \mathcal{K}$. Fix $K \subseteq \Omega$ as a compact set. Then $h(\lambda, z) = |1 - \lambda z|$ is continuous on $[-1,1] \times K$ and so takes its minimum value. It should be noticed that the minimum value m of h $[-1,1] \times K$ is nonzero. Put $M_K := \sup\{|z| : z \in K\}$. Then

$$|f_\lambda(z)| = \frac{|z|}{|1-\lambda z|} \leq \frac{M_K}{m}$$

If $g = \sum_{i=1}^n c_i f_{\lambda_i} \in S$, then

$$|g(z)| = \left| \sum_{i=1}^n c_i f_{\lambda_i}(z) \right| \leq \sum_{i=1}^n c_i |f_{\lambda_i}(z)| \leq \sum_{i=1}^n c_i \frac{M_k}{m} = \frac{M_k}{m},$$

whence $\|g\|_K \leq M_K$. Now assume that $g \in \mathcal{K}$ is arbitrary. There exists $\{f_n\}$ in S such that $f_n(t) \to g(t)$ for each $t \in (-1,1)$. Since S is bounded, the sequence $\{f_n\}$ is bounded. By Montel’s theorem there exists a subsequence $\{f_{n_j}\}$ converging to g'.
MORE ON OPERATOR MONOTONE FUNCTIONS

in uniform compact convergence topology on Ω. Since $g = g'$ on $(-1,1)$, we have $g(z) = g'(z)$ for each $z \in \Omega$. Hence

$$|g(z)| = |g'(z)| = \lim_{n_j \to \infty} |f_{n_j}(z)| \leq \frac{M_K}{m}.$$

Therefore \mathcal{K} is a normal family.

Proposition 2.2. Let $f \in \mathcal{K}$ and $f(-1,1) \subseteq (-1,1)$. Then $f(t) = t$ for each $t \in (-1,1)$.

Proof. Since $f(-1,1) \subseteq (-1,1)$, so $f^n = f \circ f \cdots \circ f \in \mathcal{K}$. Hence by Theorem (2.11), f^n has a convergent subsequence that converges to a function $h \in \mathcal{K}$. Assume that $f(t_0) < t_0$ for some $t_0 \in (-1,1)$. Hence $\{f^{(n)}(t_0)\}$ is an increasing sequence converging to $h(t_0)$. Thus

$$h(f(t_0)) = \lim_{n \to \infty} f^n(f(t_0)) = \lim_{n \to \infty} f^{n+1}(t_0) = h(t_0)$$

Since h is one-one, we infer that $f(t_0) = t_0$, which is a contradiction and this completes the proof.

Remark 2.3. We can prove Proposition 2.2 directly as follows.

It follows from

$$f(t) = \int_{-1}^{1} \frac{t}{1-\lambda t} d\mu(\lambda),$$

that

$$-1 \leq \int_{-1}^{1} \frac{t}{1-\lambda t} d\mu(\lambda) \leq 1 \quad (-1 < t < 1).$$

Since for each λ the integrand $\frac{t}{1-\lambda t}$ is positive and increasing on $0 < t < 1$, by the Lebesgue's monotone convergence theorem

$$\int_{-1}^{1} \frac{1}{1-\lambda} d\mu(\lambda) = \lim_{t \to 1-} \int_{-1}^{1} \frac{t}{1-\lambda t} \leq 1.$$

Similarly we have

$$\int_{-1}^{1} \frac{-1}{1+\lambda} d\mu(\lambda) = \lim_{t \to 1+} \int_{-1}^{1} \frac{t}{1-\lambda t} \geq -1.$$

Thus we have

$$\int_{-1}^{1} \frac{1}{1-\lambda^2} d\mu(\lambda) = \frac{1}{2} \int_{-1}^{1} \left(\frac{1}{1-\lambda} + \frac{1}{1+\lambda} \right) d\mu(\lambda) \leq 1 = \int_{-1}^{1} 1 d\mu(\lambda).$$

From this it follows that $\frac{1}{1-\lambda^2} = 1$ almost everywhere with respect to μ, Thus $\mu\{0\} = 1$, which implies $f(t) = t$.

Corollary 2.4. Let f be an odd operator monotone function on $(-1,1)$ and A is a bounded linear operator on a Hilbert space with spectrum in $(-1,1)$. Then $f(|A|) \geq f'(0)|A|$.

Proof. If $f(t_0) < f'(0)t_0$ for some $t_0 \in (0,1)$, then $f_1(t) = \frac{1}{f'(0)t_0} f(t_0 t) \in \mathcal{K}$ and $f_1(-1,1) \subseteq (-1,1)$, so, by Proposition (2.2), we have $f_1(1) = 1$, which is a contradiction. Hence

$$f(|t|) \geq f'(0)|t|, \quad t \in (-1,1) \quad (2.1)$$

Therefore $f(|A|) \geq f'(0)|A|$.

Remark 2.5. A direct proof of (2.1) reads as follows. Notice that $f(0) = 0$. Hence

$$f(t) = f'(0) \int_{-1}^{t} \frac{t}{1 - \lambda t} d\mu(\lambda). \quad (2.2)$$

Since $f(t) = -f(-t)$, we obtain

$$\int_{-1}^{1} \frac{1}{1 - \lambda t} d\mu(\lambda) = \int_{-1}^{1} \frac{1}{1 + \lambda t} d\mu(\lambda).$$

Thus

$$\int_{-1}^{1} \frac{1}{1 - \lambda t} d\mu(\lambda) = \frac{1}{2} \int_{-1}^{1} \left(\frac{1}{1 - \lambda t} + \frac{1}{1 + \lambda t}\right) d\mu(\lambda)$$

$$= \int_{-1}^{1} \frac{1}{1 - (\lambda t)^2} d\mu(\lambda) \geq \int_{-1}^{1} \frac{1}{1 - (\lambda t)^2} d\mu(\lambda) = 1.$$

(2.2) yields $|f(t)| \geq f'(0)|t|$.

In the sequel we need the following lemma.

Lemma 2.6. [3, Lemma 2.4] If f is an operator monotone function on an interval (a,b), then $f^{2p+1}(t) \geq 0$ for all $p = 0,1,2, \cdots$ and all $a < t < b$.

Corollary 2.7. Let f be an odd operator monotone function on $(-1,1)$. Then f is concave on $(-1,0)$ and convex on $(0,1)$.

Proof. Without loss of generality we may assume that $f \in \mathcal{K}$. We shall show that f is convex on $(0,1)$. The proof of Lemma 4.1 of [8] shows that $f'(t) \geq \frac{f(0)^2}{t^2}$. It follows from Corollary (2.4) that $f'(t) \geq 1$ for each $t \in (0,1)$. Therefore

$$f''(0) = \lim_{t \to 0^+} \frac{f'(t) - f'(0)}{t} = \lim_{t \to 0^+} \frac{f'(t) - 1}{t} \geq 0.$$

By Lemma (2.6), $f^{(3)}(t) \geq 0$ for all $t \in (-1,1)$, so $f''(t) \geq 0$ for all $t \in (0,1)$ since f'' is monotone. Hence f is a convex function on $(0,1)$. Since f is an odd function, f is concave on $(-1,0)$.
Theorem 2.8. An odd operator monotone function on $(-1,1)$ is of the form

$$f(t) = f'(0) \int_{-1}^{1} \frac{t}{1 - (\lambda t)^2} d\mu(\lambda),$$

where μ is a probability measure on $(-1,1)$.

Proof. As before, we may assume that $f \in \mathcal{K}$. The function f can be represented as a power series $f(t) = \sum_{n=1}^{\infty} a_n t^n$, which is convergent for $|t| < 1$, cf. [3]. Since f is odd, $a_{2n} = 0$ for all n. Due to f is operator monotone, there is a probability measure μ on $(-1,1)$ such that

$$f(t) = \int_{-1}^{1} \sum_{n=1}^{\infty} t(\lambda t)^n d\mu(\lambda) = \sum_{n=1}^{\infty} t^{n+1} \int_{-1}^{1} \lambda^n d\mu(\lambda)$$

Therefore $a_{2n} = \int_{-1}^{1} \lambda^{2n-1} = 0$ and so

$$f(t) = \int_{-1}^{1} \frac{t}{1 - \lambda t} d\mu(\lambda) = \frac{1}{2} \int_{-1}^{1} \frac{t}{1 - \lambda t} + \frac{t}{1 + \lambda t} d\mu(\lambda) = \frac{1}{2}(g(t) - g(-t)),$$

where $g(t) = \int_{-1}^{1} \frac{t}{1 - \lambda t} d\mu(\lambda)$. Hence f is an odd operator monotone function on $(-1,1)$. \qed

We start main results with the following useful lemma.

Lemma 2.9. Let $A, B \in \mathbb{B}(\mathcal{H})$ be invertible positive operators such that $A - B \geq m > 0$. Then

$$B^{-1} - A^{-1} \geq \frac{m}{(||A|| - m)||A||}.$$

(2.4)

Proof. Since $f(t) = \frac{1}{t}$ is a decreasing operator monotone function on $[0, \infty)$ we have $B^{-1} \geq (A - m)^{-1}$. On the other hand

$$(A - m)^{-1} \geq A^{-1} + \frac{m}{(||A|| - m)||A||}$$

$\iff (A^{-1} + \frac{m}{(||A|| - m)||A||})(A - m) \leq 1$

$\iff \frac{A^2}{(||A|| - m)||A||} - \frac{mA}{(||A|| - m)||A||} \leq 1$

$\iff A^2 - mA \leq (||A|| - m)||A||$

$\iff ||A^2 - mA|| \leq (||A|| - m)||A||.$
MORE ON OPERATOR MONOTONE FUNCTIONS

There exists $\lambda_0 \in \text{sp}(A)$ such that $||A|| = \lambda_0$. Since $A \geq m > 0$, we have

$$||A^2 - mA|| = \max\{\lambda : \lambda \in \text{sp}(A^2 - mA)\}$$
$$= \max\{\lambda^2 - m\lambda : \lambda \in \text{sp}(A)\}$$
$$= \lambda_0^2 - m\lambda_0$$
$$= (||A|| - m)||A||.$$

So $B^{-1} \geq (A - m)^{-1} \geq A^{-1} + \frac{m}{(||A|| - m)||A||}$. \qed

Proposition 2.10. Let f be a non-constant operator monotone function on an interval J and A, B be self-adjoint operators with spectra in J such that $A > B$. Then $f(A) > f(B)$.

Proof. Without loss of generality we assume that $J = (-1, 1)$. Let $A, B \in B(\mathcal{H})$ be self-adjoint operators with spectra in $(-1, 1)$ and $A - B$ is positive and invertible. So there exists $m > 0$ such that $A - B \geq m > 0$. Put $f_\lambda(t) = \frac{t}{1 - \lambda t}$ for each λ with $|\lambda| < 1$. We shall show that $f_\lambda(A) - f_\lambda(B)$ is bounded and so invertible. It is clear that the claim is true for $\lambda = 0$. If $0 < \lambda < 1$, then $(1 - \lambda B) - (1 - \lambda A) = \lambda(A - B) > \lambda m > 0$ as well as $1 - \lambda B$ and $1 - \lambda A$ are positive invertible operators. Since

$$\frac{t}{1 - \lambda t} = \frac{-1}{\lambda} + \frac{1}{\lambda} \left(\frac{1}{1 - \lambda t} \right),$$

by Lemma 2.9, we have

$$f_\lambda(A) - f_\lambda(B) = \frac{1}{\lambda} \left(\frac{1}{1 - \lambda A} - \frac{1}{1 - \lambda B} \right)$$
$$\geq \frac{1}{\lambda} \left(\frac{\lambda m}{||1 - \lambda B|| - \lambda m ||1 - \lambda B||} \right)$$
$$= \frac{\lambda m}{||1 - \lambda B|| - \lambda m ||1 - \lambda B||} > 0 \quad (\text{by } (2.9))$$

A similar argument shows that

$$f_\lambda(A) - f_\lambda(B) \geq \frac{m}{||1 - \lambda A|| + \lambda m ||1 - \lambda A||} > 0$$

for each $-1 < \lambda < 0$. Since f is operator monotone on $(-1, 1)$, it can be represented as

$$f(t) = f(0) + f'(0) \int_{-1}^{1} f_\lambda(t)d\mu(\lambda),$$
MORE ON OPERATOR MONOTONE FUNCTIONS

where μ is a nonzero positive measure on $(-1, 1)$. Since f is nonconstant, $f'(0) > 0$, [3, Lemma 2.3]. Hence

\[
f(A) - f(B) = f'(0) \int_{-1}^{1} \left(\frac{A}{1 - \lambda A} - \frac{B}{1 - \lambda B} \right) d\mu(\lambda)
\]

\[
= f'(0) \int_{-1}^{1} \left(f_\lambda(A) - f_\lambda(B) \right) d\mu(\lambda)
\]

\[
\geq f'(0) \int_{-1}^{1} m_\lambda d\mu(\lambda),
\]

where

\[
m_\lambda = \frac{m}{(||1 - \lambda B|| - \lambda m)||1 - \lambda B||}
\]

if $0 \leq \lambda < 1$, and

\[
m_\lambda = \frac{m}{(||1 - \lambda A|| + \lambda m)||1 - \lambda A||}
\]

if $-1 < \lambda < 0$. Since μ is a nonzero positive measure and $m_\lambda > 0$, we have

\[
f(A) - f(B) \geq f'(0) \int_{-1}^{1} m_\lambda d\mu(\lambda) > 0.
\]

Therefore $f(A) > f(B)$. \hfill \square

Theorem 2.11. Let $A, B \in \mathcal{B}(\mathcal{H})$ be positive operators such that $A - B \geq m > 0$ and $0 < r \leq 1$. Then

\[
A^r - B^r \geq ||A||^r - (||A|| - m)^r.
\]

Proof. Let $0 < r < 1$. It is known that

\[
t^r = \frac{\sin(r\pi)}{\pi} \int_{0}^{\infty} \frac{t}{\lambda + t} \lambda^{r-1} d\lambda,
\]

in which $0 < r < 1$, see e.g. [1, Chapter V]. First note that,

\[
\frac{A}{\lambda + A} - \frac{B}{\lambda + B} = \lambda \left(\frac{1}{\lambda + B} - \frac{1}{\lambda + A} \right)
\]

\[
\geq \frac{\lambda m}{(||A + \lambda|| - m)||A + \lambda||} \text{ by (2.4)}
\]

\[
= \frac{\lambda m}{(||A|| + \lambda - m)(||A|| + \lambda)}
\]

for each $\lambda > 0$. By using (2.5) we have

\[
A^r - B^r
\]

\[
= \frac{\sin(r\pi)}{\pi} \int_{0}^{\infty} \lambda^{r-1} \left(\frac{A}{\lambda + A} - \frac{B}{\lambda + B} \right) d\lambda
\]

\[
\geq \frac{\sin(r\pi)}{\pi} \int_{0}^{\infty} \frac{m\lambda^r}{(||A|| + \lambda - m)(||A|| + \lambda)} d\lambda,
\]
We need to compute
\[I = \int_{0}^{\infty} \frac{\lambda^{r}}{\left(\lambda + ||A||\right)\left(\lambda + (||A|| - m)\right)} d\lambda \]
where \(0 < r < 1\). We will need the branch cut for \(z^{r} = \rho^{r}e^{ir\theta}\), in which \(z = \rho e^{i\theta}\) and \(0 \leq \theta \leq 2\pi\). Consider
\[\int_{C} \frac{z^{r}}{(z + ||A||)(z + (||A|| - m))} \, dz, \]
where the keyhole contour \(C\) consists of a large circle \(C_{R}\) of radius \(R\), a small circle \(C_{\epsilon}\) of radius \(\epsilon\) and two lines just above and below the branch cuts \(\theta = 0\); see Figure 1. The contribution from \(C_{R}\) is \(O(R^{r-2})2\pi R = O(R^{r-1}) = 0\) as \(R \to \infty\). Similarly the contribution from \(C_{\epsilon}\) is zero as \(\epsilon \to 0\). The contribution from just above the branch cut and from just below the branch cut is \(I\) and \(-e^{2r\pi i}I\), respectively, as \(\epsilon \to 0\) and \(R \to \infty\). Hence, taking the limits as \(\epsilon \to 0\) and \(R \to \infty\),
\[(1 - e^{2r\pi i})I = \int_{C} \frac{z^{r}}{(z + ||A||)(z + (||A|| - m))} \, dz \]
by the Cauchy residue theorem. So
\[I = \frac{\pi}{m \sin(r\pi)} (||A||^{r} - (||A|| - m)^{r}) \, . \]
Therefore
\[A^{r} - B^{r} \geq \frac{\sin(r\pi)}{\pi} \int_{0}^{\infty} \frac{m\lambda^{r}}{(||A|| + \lambda - m)(||A|| + \lambda)} d\lambda = ||A||^{r} - (||A|| - m)^{r}. \]

Figure 1. Keyhole contour
Corollary 2.12. Let $A, B \in \mathbb{B}(\mathcal{H})$ be positive operators such that $A - B \geq m > 0$. Then
\[
\log A - \log B \geq \log \|A\| - \log(\|A\| - m).
\]

Proof. Put $f_n(t) = n(t^{\frac{1}{n}} - 1)$ on $[0, \infty)$. Then the sequence $\{f_n\}$ uniformly converges to $\log t$ on any compact subset of $(0, \infty)$. Hence
\[
\log A - \log B = \lim_{n \to \infty} f_n(A) - f_n(B) \\
\geq \lim_{n \to \infty} n(\|A\|^{\frac{1}{n}} - (\|A\| - m)^{\frac{1}{n}}) \\
= \log \|A\| - \log(\|A\| - m).
\]

REFERENCES

6. T. Furuta, $A \geq B \geq 0$ assures $(B^r A^p B^r)^{1/q} \geq B^{(p+2r)/q}$ for $r \geq 0$, $p \geq 0$, $q \geq 1$ with $(1 + r)q \geq p + 2r$, Proc. Amer. Math. Soc., 101 (1987), 85-88.