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A GENERALIZATION OF PERSPECTIVE FUNCTION
MOHSEN KIAN

ABSTRACT. We study perspective of operator convex functions. In particular we give
a generalization of perspective functions and establish its properties. We also give an
operator extension of a classical inequality in information theory. As an application

a refinement of the operator Jensen inequality is presented.

1. INTRODUCTION

Let B(5) be the algebra of all bounded linear operators on a Hilbert space S and
I denote the identity operator. An operator A is said to be positive (denoted by A > 0)
if (Az,x) > 0 for all vectors z € . If, in addition, A is invertible, then it is called
strictly positive (denoted by A > 0). By A > B we mean that A — B is positive, while
A > B means that A — B is strictly positive. An operator C is called an isometry if
C*C = I, a contraction if C*C < I and an expansive operator if C*C > I. A map
on B(J#) is called positive if ®(A) > 0 for each A > 0.

A continuous real valued function f defined on an interval [m, M] is said to be

operator convex if
FAA+ (1 =X)B) <Af(A) + (1 - N f(B),

for all self-adjoint operators A, B with spectra in [m, M] and all A € [0, 1], where f(A)
is the functional calculus as usual. The Jensen operator inequality due to F. Hansen
and G.K. Pedersen, which is a characterization of operator convex functions, states

that f is operator convex on [m, M] if and only if
f(C*AC) < C*f(A)C, (1.1)

for any isometry C and any self-adjoint operator A with spectrum in [m, M][12]. If
f(0) <0, then f is operator convex on [m, M] if and only if f(C*AC) < C*f(A)C
for any contraction C. Various characterizations of operator convex functions can be
found in [11, 10]. Given in [17], the following result is a generalization of (1.1).
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Theorem A. Let f be an operator convex function on [m, M] and ®;,---,d, be
positive linear maps on B(#) with >, ®;(I) = I. Then

f (Z ‘I’i(Ai)) < Z‘I)i(f(Ai))a (1.2)

for all self-adjoint operators A; (¢ =1,---,n) with spectra in [m, M].
Let f be a convex function on a convex set K C R". The perspective function g
associated to f is defined on the set {(z,y):y >0 and 2eK } by

9(z,y) =yf (f) :

)
(see [13]). As an operator extension of the perspective function, Effros [9] introduced

the perspective function of an operator convex function f by

or.R) =1 (%),

for commuting strictly positive operators L and R and showed that:

Theorem B.[9] If f is operator convex, when restricted to commuting strictly pos-
itive operators, then the perspective function (L, R) — g(L,R) = Rf (%) is jointly
operator convex.

He also extended the generalized perspective function, defined by Maréchal [15, 16],
to operators. Given continuous functions f and h and commuting strictly positive
operators L and R, Effros defined the operator extension of the generalized perspective

function by

(FAR)(L, R) = h(R)f (WI]’%)) ,

and proved that:

Theorem C. If f is operator convex with f(0) < 0 and h is operator concave with
h > 0 then fAh is jointly convex on commuting strictly positive operators.

The authors of [8] extended Effros’s results by removing the restriction to commuting
operators. They proved non-commutative versions of Theorem B and Theorem C.

A beautiful various study of such functions for operators was introduced by F. Kubo
and T. Ando. They considered the case where f is an operator monotone function and
established a relation between operator monotone functions and operator means (see
[11)).

One of the most principal matters in applications of probability theory, is to find a
suitable measure between two probability distributions. The theory of information di-

vergence measures has been applied in several fields such as signal processing, genetics,



A GENERALIZATION OF PERSPECTIVE FUNCTION

economics and in pattern recognition. Many kinds of such measures have been studied.
One of the most famous of such measures is the Csiszdr f-divergence functional, which
includes several measures.

For a convex function f : [0,00) — R, Csiszér [3, 4] introduced the f-divergence

functional by

Ii(p,q) = g%‘f (Zqi) , (1.3)

for probability distributions p and ¢, in which undefined expressions were interpreted
by

. 0
50 = tm s, o (g)=o

P\ _ o J(@)
or(2) = s () =rim
Also Csiszar and Korner [5] obtained the following results.
Theorem D. If f : [0,00) — R is convex, then I;(p, q) is jointly convex in p and g.
Theorem E. Let f: [0,00) — R be convex. Then

Zqz (222) <160 (1.4)

z—l T

for every p,q € R%.

Definition of f-divergence functional was generalized to an n-tuple of vectors z =
(1,+-- ,2,) and a probability distribution ¢ = (g, - - , ¢») as follows (see [6]). Let X
be a vector space, K be a convex cone in X and f : K — R be a convex function.
For any n-tuple of vectors © = (z1,---,z,) € K™ and a probability distribution ¢ =
(g1, ,qn), the f-divergence functional is defined by

q) = ZQif <%) :

A series of results and inequalities related to f-divergence functionals can be found in
1,2, 6,7, 14].

In section 2, we generalize the notion of operator perspective function and investigate
some properties of generalized perspective function. In particular, an operator exten-
sion of (1.4) is presented. In section 3, we provide some applications for our results.

More precisely, a refinement of the Jensen operator inequality is given in section 3.
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2. NON-COMMUTATIVE f-DIVERGENCE FUNCTIONALS

Let f be an operator convex function. The perspective function g associated to f is
defined by

9(L,R) = R3 f(R™3LR™$)R3,
for self-adjoint operator L and strictly positive operator R on a Hilbert space J¢.
It is known that [8] f is operator convex if and only if g is jointly operator convex.
We consider a more general case. Let L = (Ly,---,L,) and R = (Ry,---,Ry) be

n-tuples of self-adjoint and strictly positive operators, respectively. Let us define the
non-commutative f-divergence functional © by[18]

o(L,R) = S RI f(R;*LiR; *)R?. (2.1)
i=1

By the same argument as in [8], it is easy to see that © is jointly operator convex if
and only if f is operator convex. In the sequel, we study some properties of © and

establish some relations between O and g.

Theorem 2.1. Let f be an operator convex function, and L= (L1, ,L,) and
R = (Ry, -+, Ry,) be n-tuples of self-adjoint and strictly positive operators, respec-
tively. Then

9(L, B) < O(L, R), (22)
where R=5 ¢  Riand L= ", L;.
Proof.

(by the Jensen operator inequality)
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1 1
- (ZRj) SRR LR R (ZR]-) 2
j=1 i=1

=1
= R™:6(L,R)R"3,
whence we have the desired inequality (2.2). O

Corollary 2.2. The perspective function g of an operator convez function f is sub-
additive in the sense that

g(L1 + Ly, Ry + Ry) < g(L1, Ry) + g(Ly, Ry).

Corollary 2.3. Under the same conditions of Theorem 2.1,

f(L) < 6(L, R),
whenever ) R, = 1.

For every positive integer n, let J C {1,--- ,n} and J = {1,--- ,n} — J. Then the
following result holds true.

Corollary 2.4. Let g be the perspective function of an operator convex function f, and
L= (L1,---, L) and R= (Ry,---, Ry) be n-tuples of self-adjoint and strictly positive
operators, respectively. Then

20 (3(LR)) < gl Ro) + (L, By) < O, B, 23)

where R=3%""  R;, R; = duiesRiy L=3" Ly and L; = 2ies Li-

Proof. Since (L, R) = (L, Rs) + (Lyj, Ry), the first inequality of (2.3) follows immedi-
ately from the joint convexity of g. Utilizing Theorem 2.1, we obtain

1 ~1 1 1 1 —1 -1 1 ~ ~
9(Ls,Ry) +9(Ly, Ry) <Y R? f(R; *LiR; *)R? + > R?f(R;?LiR; ?)R? = ©(L, R).
ieJ ied
O

Corollary 2.5. Let Lij and Ri; (3,5 =1,--- ,n) be self-adjoint and strictly positive
operators, respectively, and let p; (j = 1,--- ,n) be positive numbers. If f is operator

convez, then
ZQ(R'L" Lz) < Zpie(zi’ éz),
=1 =1

where R; = 7 pjRyj, L' = (Laa, -+ , Lin) and pL' = (p1La, - -+, puLin).
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Proof. Using Theorem 2.1 for each R; and L; we obtain
gL R) = Rif (R ‘LR *) R < 0L’ pk), (1<i<n). (2.4)
In addition,

e(pL',pRY)

Z(Pijj)%f ((ijij)_%(ijij)(ijij)_%) (p;Ri;)?

i 11 11
j=1
Summing (2.4) over i we get

S gLy, R) < Y (L' pR)
i=1

i=1
n n 1 o N L

= Zzijfjf(Riszinijz)Rizj (by (2.5))
=1 j=1

= L S | 1
= ijZRfjf(RifLinijz)Rfj
j=1 =1

— Y pe(D B,
Jj=1
O

For continuous functions f and h and commuting matrices L and R, Effros [9] defined
the function (L, R) — (fAh)(L, R) by
L
(AR R) = £ (5 ) WD
He also proved that if f is operator convex with f(0) < 0 and h is operator concave
with h > 0, then fAh is jointly operator convex. In [8], definition and properties of
fAh was given for two not necessarily commuting self-adjoint operators L and R, by

(FAR)(L, B) = h(R)} £ (h(R)*Lh(R)~}) h(R)}.

Assume that f and h are continuous functions and L = (L, ,Ly,) and R =
(Ry,---,Ry) be n-tuples of self-adjoint operators. Let p = (p1,-**,pn) and ¢ =
(q1,--- ,gn) be probability distributions. As a generalization of fAh, we define fVh
by

GVRE,R 5D =Y piblaR)f (hlasR) FLh(@R) ) h(aR)E.

=1
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Note that with py =g =1and p; =0 (i =2,--- ,n), fVh = fAh. It is not hard to
see that f is operator convex with f(0) < 0 and h is operator concave with h > 0 if
and only if fVh is jointly operator convex. The next result, is a Choi-Davis—Jensen
type inequality for fAh.

Theorem 2.6. [18] Let f be an operator convez function with f(0) < 0, h be an
operator concave function with h > 0 and fAh be the operator generalized perspective
function. If @ is a positive linear map on B(#) with ®(I) < I, then

(fAR) (®(L), 2(R)) < &((fAR)(L, R)), (2.6)

for all self-adjoint operators L, R. In particular, If g is the perspective function asso-
ciated to f, then

9(®(L), ®(R)) < ®(¢(L, R)), (2.7)
for all self-adjoint operator L and strictly positive operator R.
Proof. Let R be a self-adjoint operator. Define the positive linear map ¥ on B(4) by
U(X) = h(®(R))3® (h(R)Xh(R)}) h(®(R)) 3.
Since h is operator concave, h > 0 and ®(I) < I, then ®(h(R)) < h(®(R)). Therefore
(1) = h(@(R) O (h(R)A(B(R) < I.

Hence

Nl

(FAR)(@(L), 2(R)) = h(B(R)) £ (A(@(R) 3 ®(L)h(S(R))" %) h(@(R))}
= h(B(R))3 f (\p (h )" Lh(R)™3 )
< @RV (f (h(R)FLA(R)F)) h(®
(by operator convexity of f, f(O) <0and ¥(I) <)
oy (h(R)%f (h(R)—%Lh(R)—%) h(R)%)
= &((fAh)(L, R)).
Applying (2.6) for h(t) =t gives (2.7). O

Corollary 2.7. Let f be an operator convex function with f (0) <0, h be an operator
concave function with h > 0 and fAh be the operator generalized perspective function.
Then

(fAh) ((Lz, ), (Rz, z)) < ((fAR)(L, R)z, z),
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for all self-adjoint operators L and R and all unit vector x € 5. In particular, if g is
the perspective function of operator convez function f, then

g9 ({Lz,z),(Rz,z)) < (9(L, R)z, z), (2.8)

for all self-adjoint operator L and all strictly positive operator R and all unit vector

x e H.
In the next theorem, we establish a relation between two functions fAh and fVh.

Theorem 2.8. Let f be an operator convex function with f(0) < 0 and h be an operator
concave function with h > 0. Ifp = (p1, -+ ,pn) and § = (q1,- -+ ,qn) are probability
distributions, then

(fAR)(L,R) < (fVh)(L, R, 5,9, (2.9)

for all n-tuples of self-adjoint operators L = (L, -+ , Ly) and R = (Ry, -+ , Ry), where
R=3 " qRi, L =31 piLi.

Since h is operator concave and h > 0, it is operator monotone [11]. Hence

h(Qini) < h (Z%’Rj> ) (7' = 17‘ o ’n)'

Therefore

Zpih (Z quj>
i=1 j=1

pih (ZqJRj> hacR)} (h(@Rs) ™ Lib(aiR) ™) hlg:R)th (ch&) )
1
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So, it follows from (2.10), the operator convexity of f and f(0) < 0 that
f (R(R)“LA(R)"%)

1
2

1
2 n

< Zpih (Z QjRj) h(QiRi)%f (h(Qi&)_%Lih(QiRi)_%) h(QiRi)%h ( QjRj)
=1 j=1 1
=h (Z quj> Zpih(Qi-Ri)%f (h(QiRi)_%Lih(QiRir%) h(Qth)%h (

=1 i=1

= h(R)"(fVR)(L, B, B, )h(R) %,
whence we get the required inequality (2.9). O

Let (1,---,®,) and (¥y,---,¥,) be n-tuples of positive linear maps on B(J#)
with 337 ®(I) =T and Y, ¥;(I) = I, (A1, -+ ,A,) and (By, - -« , B,) be n-tuples
of self-adjoint operators on J# and g be a jointly operator convex function. Define the
function I": [0,1] x [0,1] — R by

i=1 j=1 j=1

We have the following result.

Theorem 2.9. With the same assumption of above, I is jointly convex. Furthermore
9(A,B) <T(t,s),

where A =371, ®i(A;) and B =37, U;(B;).

Proof. Tt is easy to see that the joint convexity of I" follows from the joint operator

convexity of g. Also

Cihs) =Y &, (Z I, (g (tAZ- PO B4 B+ (- \v,-(Bj))))

J=1

> Zn: o, (9 (tAi +(1-1¢) En:q)i(Ai), i U, (sBj +(1—-s) 2": ‘I/j(Bj))))
> g (Z@ (tAi-F 0 —t)i@(Ai)) 3, <sBj f1- s)iwj<3j)))
i=1 =1 o =

= g(A, B).
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3. APPLICATIONS

In this section, we use the results of section 2 to derive some operator inequalities.
Throughout this section, assume that L = (L,,-- -, L,) and R= (R, - ,Ry)) ben
tuples of self-adjoint and strictly positive operators, respectively, and p = (p1, - - , Pn)
and ¢ = (g1, ,q,) be probability distributions.

For every positive integer n, Let J C {1,---,n} and J = {1,---,n} — J. As the
first application of our result, we obtain the following refinement of the Jensen operator

inequality.

Theorem 3.1. Let f be an operator convez function, ®,,---,®, be positive linear
maps on B(S#) such that 3. ®:(I) =1 and Ty =Y, ; B:i(I). Then

01 (Sow) <ty (15 Sowns?) e 1fs (T Sa; )
= ' i€
<Z<I>(I) f(<1> (I)728;(A:)®;(1 )")<1> (1)}
i (f(Ai)), (3.1)
(i) Z<I> (f(A))-f (znjé (4i )) >3 @i(f(4:) - T} f <T;%Zq>,.(A,.)TJ-%) T?
) ZZ)G-J . (3.2)

for all self-adjoint operators A; and all J C {1,--- ,n}.

Proof. (i) Put C = TJ% and D = TJé. Clearly C*C + D*D = I. It follows from the

Jensen operator inequality that

T (T;% Z@i(A,-)T;%> T} +Tif (T 13" 0,4 %) T
i€ ieJ
=C'f (C*“l > <1>,-(A,-)c—1) C+Df (D*-l > <I)i(A,-)D‘1) D
ieJ ieJ
2 f (Z Bi(A)+ ) ‘Di(Ai))
ieJ ieJ

=f (Z <I>,-<A,-)> :

104
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which is the first inequality of (3.1). Assume that g be the perspective function of f.
It follows from Theorem 2.1 that

f(T;%Z@(Ai)T;%> T+ T2 f (T 23 ,(4)T; ) T?

P el
o(Zowrn) o (Gewn)
=g(€ZJ¢i(Ai),;¢¢(I)) +g(ZJ_<I>i<Ai>,ZJ_¢>i<I))
<;g i(4:), &:(I) +§;g . (1)) ) (by (2.2))
—Zg i(4:), ®:(1))

- Z 2,(DEf (@D hou( A1) ) a1},

whence we get the second inequality of (3.1). For each ¢ = 1,---,n, let the unital

positive linear map ¥; be defined by
Ui(X) = &(1) 73 0:(X)®;(1) 2.
Since f is operator convex, we have

f (@ teapen ) = fu

IA
SO
> =

() 7E,(f(A:))0:(1) 5. (3.3)

I

The last inequality of (3.1) now follows from (3.3).
(zz) Let ¥ be the unital positive linear map defined by ¥ (®;c74; ® B) = 3, 7 ®:(A:)+

TZBT 3 Applying Choi-Davis—Jensen’s inequality for U we obtain
- 1/ 1 1\ 1
f (Z @i(Ai)) = f (Z ®;(A;) + 17 (TJ 2N 0,(A)T; 2> Tj)
i=1

ieJ icJ

<3 @i(f(A)) + T f (Tzzé ) T,

ieJ i€J
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Hence

Z@ (f(A) (Z@(A )
>Z<I> (4)) = 3 &l f(TﬁZcbi(Ai)Tﬁ)T?

ieJ 1€J
=T, &(f(A)T} - f (TF > <I>i(Ai)TJ_5>
i€J ieJ
> 0.

The last inequality follows from the Choi-Davis—Jensen inequality. a
Example 3.2. Let f(t) = t?> and J = {1}. Consider the positive linear maps

‘131, q)g, @3 : M3(C) — Mz(C) defined by

1 1
$,(4) = §(aij)15i,j52, ®,(A4) = ®3(A4) = g(az’j)i’sm'ﬁfi’

for all A € M3(C) Then (1)1(.[3) + @2(13) —+ @3([3) = Iz, where I3 and Iz are the
identity operators in M3(C) and M;(C), respectively. Also T; = &,(f3) = %Iz and
Tj = @2(.[3) + @3(13) = %.[2 If

(®1(A1) + B2(Ag) + B3(As))* = ( 105 ) ,

L<ls>|---

T f(TJ—%Z@(A,»)TJ_%) T} + T2 f( P37 & (A j‘%)

i€J i€

15 3
3 6/’
1

1 1 2
(D} () F (e (1)) @)

+ By(1)} (1) 40y (A)o(1) ) (D)}

Nl=

N

+25(D) (@s(1)H05(An)2s(1) ) 25(0)

(183
L3 9/’
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B1(f(A)) + Bo(F(A2)) + Ba( f(As)) = ( 231 f; ) .

Now inequalities
10 5 15 3 18 3 21 3
< < < 5
5 5 3 6 3 9 3 15
show that all inequalities of (3.1) are strict. By the same computation, one can show
that inequalities of (i) are strict.

Corollary 3.3. Let f be an operator convez function, Ay, --- , A, be self-adjoint oper-
ators and C1, - -- ,Cy, be such that Y ., C:C; = I. Then

f (Z C;“AiCi) <Tif (TJ‘% ) C;AiCiTJ_%> T? + T2 f (TJ_" : S cracT; %) T

=1 i€J ieJ

R

< DGO f (€1 H(CIACH(CIC) ™} ) (Cr 0t
i=1

where Ty = Y., CrC;.
Proof. Apply Theorem 3.1 for &;(A) = CrAC;. O
The rest of this section is devoted to some operator inequalities derived from our
results.
1°. For all self-adjoint operators C, D and strictly positive operators A, B,
(C+D)A+B)(C+D)<CA™'C+DB™'D. (3.4)

Proof. Let L = (L1, ,L,) and R = (R1,---, Ry) be n-tuples of self-adjoint and
strictly positive operators, respectively. Applying Theorem 2.1 for operator convex
function f(t) = t? we obtain

n n ~1 n n

(z Li) (z m) (z Li) <SR @5
i=1 =1 =1 =1

Now (3.4) follows from (3.5) with L = (C, D) and R = (4, B). O

2°. Let ® be a positive linear map on B(#). Applying Theorem 2.6 for the operator

convex function f(¢) =t? (-1 < B8 <0or1 < B < 2), and the operator concave
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function h(t) =t* (0 < a < 1), we obtain

iR
IN

&(R)3 ((I)(R)‘ @(L)@(R):zg)ﬁé(R)% @(R%(R—%LR-%)"R%). (3.6)

In particular, for @ = 3 and 8 = —1, (3.6) gives rise to
&(R)I®(L)1B(R)s < ® (R%L-lR%) .
Note that with a = 1 and 8 = —1 (3.6) gives the known inequality

O(R)®(L)"'®(R) < ® (RL'R).
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