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GEOMETRIC MEAN MAJORIZATIONS

YONGDO LIM

ABSTRACT. We extend the notion of the classical majorization of real numbers to
positive definite matrices by taking a multivariable weighted geometric mean of posi-
tive definite matrices. Some connections between our geometric mean majorizations

and classical results of the standard majorization of real numbers are presented.

1. INTRODUCTION

The Hardy-Littlewood-Pélya-Rado majorization theorem (cf. [2]) says in particular
that for an n x n doubly stochastic matrix W = (wi;) and z = (z4,...,2,) € R",
y = Wz is a convex combination of the n! vectors z, = (iL’a(1), .+, To(n)) Where o
varies over the permutation group of n-letters (Rado’s theorem) and equivalently for
every continuous convex function f defined on an interval I containing z; and y;, s =
Loooym, Yo flys) < Son, f(z:). Furthermore for every continuous convex function
f +I" = R invariant under the permutation of coordinates (Schur’s convexity),
f ) < flay, ... z0).

Embedding R™ into the space of n x n diagonal matrices and applying the exponen-
tial function, we may restate these beautiful results equivalently for the n x n positive
diagonal matrices, where we replace the arithmetic mean by the geometric mean and a
convex function by a geodesidally convex function, f(a'~*") < (1—t)f(a)+tf(b),t €
[0,1]. For instance, Rado’s theorem is equivalent to the statement that for a posi-
tive diagonal matrix diag(as,...,a,), the diagonal matrix whose #-th entry is the
W' = (W, ..., wp)-weighted geometric mean of positive reals ay, .. ., a, is the diago-
nal matrix whose éi-th entry is the u-weighted geometric mean of the n! positive real

numbers a,, ), - . ., @y, ;). The main purpose of this paper is to extend these results
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on diagonal matrices to the non-commutative setting of positive definite matrices by
taking a multivariable weighted geometric mean of positive definite matrices, a multi-
variable extension of the weighted geometric mean A#,B = AY/2(A~1/2BA~1/2)t A\/2
of two positive definite definite matrices A and B, and a geodesically convex function
which satisfies f(A#:B) < (1 —t)f(A) +tf(B).

2. WEIGHTED GEOMETRIC MEANS

A symmetric weighted geometric mean of n positive definite matrices is a map
G : A, x P* — P that satisfies the following properties: For A = (4y,...,4,),B =
(Bi,...,B,) € P",0 € S™ a permutation on n-letters, a = (a1,...,a,) E R}, (Ryy =
(0,00)), these are

(P1) (Consistency with scalars) G(w; A) = A" - -- A%~ if the A;’s commute;
(P2) (Joint homogeneity) G(w; a1 4y, - . .,ands) = ai* - - - a"G(w; A);
(P3) (Permutation invariance) G(w,;A,) = G(w; A), where wy = (Wy1y, - - -, Wo(n))
and A, = (As1), - - Aocn));
(P4) (Monotonicity) If B; < A; for all 1 < i < n, then G(w;B) < G(w; A);
(P5) (Continuity) The map G(w;-) is continuous;
(P6) (Congruence invariance) G(w; M*AM) = M*G(w; A)M for any invertible ma-
trix M, where M(Ay, ..., Ap)M* = (MAM*,...,MA,M*);
(P7) (Joint concavity) G(w; AA + (1 — A)B) > AG(w; A) 4 (1 — A)G(w; B) for 0 <
A< 1;
(P8) (Self-duality) G(w;A™1)"! = G(w; A), where A~! = (A7,..., AzY);
(P9) (Determinental identity) DetG(w; A1, ..., An) = I1;-; (DetA;)™; and
(P10) (AGH weighted mean inequalities) (3, w;4;')™! < G(w; Ay, ..., An) <
Yo Wi
The w-weighted Karcher mean, also called the least squares mean, of n positive
definite matrices A;,..., 4, and w = (wy,...,w,) € A, is defined as the unique
minimizer of the sum of squares of the Riemannian trace metric distances to each of
the A;, i.e.,

n

(2.1) Aw; Ay, ..., Ay) = argmin Y w;0%(X, A;).
1
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The Karcher mean coincides with the unique positive definite solution of the Karcher

equation
n
(2.2) > wilog(X2A7 XY?) = .
i=1

Theorem 2.1 ([4]). The Karcher mean is a symmetric weighted geometric mean.

The weighted BMP mean is indeed a symmetric weighted geometric mean; satisfy-
ing all the properties (P1) — (P10) and that the weighted BMP mean is constructed
by induction and the following symmetrization procedure:

(1) For n = 2, Bmp, (w1, wa; Ay, A) = Ay, As.
(2) Assume that Bmp,,_;(:;-) : Ap_y x P*1 5 P is defined. Let {AET)}S‘;O be the
sequence defined by; Az(o) = A; and

Wy

(2.3) Az(r+1) = Az(r)#l_wiBmpn_1 ((1 )jtis (A;r))#z.) , 1<i<n,

where (a;);% = (a1,...,8;_1,0i11, ..., a,). Then lim,_,o A,ET) exists and has
the same value for every i; we denote the common limit by lim,_,q, AET) =
Bmp, (w; 4;,--- , A,).

See [6, 5] for the weighted BMP mean in a general setting of metric spaces.

Definition 2.2. A subset C C P is called geodesically convex (occasionally, in con-
text, convex) if A#;B € C for all t € [0, 1] whenever A, B € C. A function f : C — R

on a geodesically convex set C' is called geodesically convex if for any A, B € C and

t €[0,1], f(A#:B) < (1 -t)f(A) +tf(B).

Definition 2.3. A weighted geometric mean G : A, x P* — P is called convez if
n
f(G(w; Ay, .., An)) < Zwif(Ai)
i=1

for all w = (wy,...,w,) € A,, (4i,...,4,) € P* and continuous geodesically convex
functions f : P — R. We denote by C, the set of all weighted convex geometric

n-means.

Theorem 2.4 ([7]). There are infinitely many convex geometric means. In particular,

the weighted BMP mean Bmp,, and the Karcher mean A, are conver.
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Definition 3.1. Let G be a weighted geometric n-mean and let A = (A;,...,A,),B =
(By,...,By) € P". We say that A is G-majorized by B (abbreviated, A <¢ B ) if there

exists a positive doubly stochastic matrix W = (w;;)nxn such that for alli =1,...,n,
Ai = G(wil, N ,wm;lB).

Remark 3.2. [n = 2| Since the map (¢, A, B) — A#;B is the unique weighted
geometric mean for n = 2, (A}, A2) < (B, By) if and only if A; = B;#;B, and
Ay = Bi#1_¢By = By#,B; for some t € [0, 1].

Example 3.3. We have (G(A),...,G(A)) <% A for all A € P". Use

11 - 1
111 1
W=-—

n

11 1

The following are some basic properties of the geometric mean majorization.

Proposition 3.4 ([7]). Suppose that A <© B.
(1) MAM* <G MBM?* for any non-singular M.
(2) A7t <¢B-L
(3) log detA < log detB, where det(A) = (detAy, ..., detA,).
(4) If G is symmetric, then A, <C B, for any permutation o.

The next theorem is a partial extension of Hardy-Littlewood-Péyla Theorem to

convex geometric means of positive definite matrices.

Theorem 3.5 ([7]). Let G be a convex geometric mean. IfA <C B, theny ., f(AF!) <

Sn_, F(BEY) for any continuous geodesically convez function f.

Let
S"={o;:1<1i<nl},
the set of all permutations of n-letters. For 0 € S™ and A = (A4y,...,4,) € P, we

denote
A, = (Aa(l), . )Aa(n)) € P".
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The Karcher mean plays an important role for our geometric mean majorization.

Theorem 3.6 (Rado’s theorem, [7]). A <A~ B if and only if A = Ap(w;B,,,...,B,,)

for some w € A,,.

Corollary 3.7 (Schur’s convexity, [7]). If A <A B, then
(1) f(A) < f(B) for any continuous geodesically convex function f : P* — R

invariant under the permutation of coordinates;
(2) A lies in the convez hull of the n! permutations of B in the product space P™.
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