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Throughout this paper, capital letters stand for n x n (complex) positive-definite
matrices. For positive operator monotone function fy,, with f,,(1) = 1 on (0, 0o), which
is called the representing function for m, the Kubo-Ando (operator) mean [15] is defined
by

AmB = A f,, (A—%BA-%) A},

The quasi-arithmetic Kubo-Ando mean is
A#peB = A3 (1= ) +t(aBAT)") Ab
Another type of quasi-arithmetic operator mean is

ASnB = ((1—t)A” +tB)* .

The latter paths are the geodesic of the Hiai-Petz geometry [12] and one of the former
paths for r = 0;
t
A#.B= A} (A7BATH) ab

is the geodesic of the CPR geometry [1, 2]. Here we consider such types of operator
means here and call the latter type chaotical means [9, 3].
Considering Uhlmann’s entropy, these paths are interpolational ([7])

(1) (Am,B)my(Am,B) = Am(_y)r+5B.

Interpolational paths Am,B are (operator-valued) convex for ¢ and differentiable ([8])
and determine the relative (operator) entropy as the derivatives at the end points
([7, 8, 17]). Thus interpolational paths play important parts in geometric view for
matrices or operators. So we discuss properties around interpolational paths in this
paper.

For a symmetric mean m (i.e., Am B = Bm A), we can define the (continuous) path
from A to B by the following binary construction: Based on a initial condition

AmyB=A, Am;B=AmB, AmB =B,
define operator means for binary fractions for 2k + 1 < 2"*! inductively:

(2) Am(2k+1)/2n+1B = (A mk/QnB) m (A m(k+1)/2nB) = (A m(k+1)/2nB) m (A mk/gnB).
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Chaotical operator means are interpolational, but Kubo-Ando means are not: The
logarithmic Kubo-Ando mean

ALB = A%t (4iBA™H) A}
where ¢(z) = (z — 1)/ log z is not interpolational. One of the equivalent condition that
a mean is interpolational is ([5]):

Theorem 1. A symmetric mean m is interpolational if and only if
mixing property: (embd)m(cmd) = (amc)m (bmd)
holds for all positive numbers a, b, ¢ and d.

Proof. Suppose my is an interpolational path. By the homogeneity, we may assume
that d = 1, a > b,c > 1. Then there exist r,s > 0 with b = 1m,a and ¢ = 1m,a. It
follows that
(amb)m(cml) =(am(lmya))m((lmsa)m1l)
= (1me41)20) m (1 m,/pa) = 1 m(rygq1)/40
= (1m(s41)/2a) m (11m,/20)
m

=(am(1msa))m((1m,a)ml) = (ame)m(bm1l).

Conversely suppose m satisfies the mixing property. First we show
(3) (1 mg/pna) m (1 my/pna) = 1 Mgig)/gntra

inductively. It holds for n = 1. Suppose it holds for not greater than n. We may
assume that the k and ¢ are odd numbers 2k + 1 and 2 + 1 respectively. Then, by the
definition (2), the mixing property and symmetry, we get

(1 M(2k+1)/2n+1 a) m (1 mMy(2¢41)/2n+1 a)
= ((1me/zna) m (I mee1)2na)) m ((1mge1)2na) m (1mey2na))
= ((1 mk/2na) m (1 m(g+1)/2na)) m ((1 m(k+1)/2na) m (1 mg/gna))

= (1mte41)/2n+1@) M (1 Meret1)/2n+1a) = 1M(kipy1)/2n 10,
so that (3) holds for all n. By the continuity, we have
(3) (1mra) m (1mea) = 1 m(r4q) /20
for all r, s € [0, 1]. Similarly we show

(4) (1 mpa) mg/on (1 mya) = 1my_g/2nyrt(k/2n)s@
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inductively. In fact,

(]. mra) m(2k+1)/2n+1 (1 msa)
= ((1m,a) mg2n(1msa)) m ((1 m,a) mpy1)/2n (1 msa))

B ((lm((zﬂ_k)rHcS)/?"a)) " <(1m((2"—(k+1))r+(k+1>3)/2"a)>

=1 m((2"+1—(2k+1))r+(2k+1)8)/2"+1a - 1m(l—(2k+1)/2"+1)r+((2k+1)/2"+1)3a’

so that (4) holds, and hence we have the interpolationality by the continuity. O
Putting b = z, ¢ = y and a = d = 1, we immediately obtain,

Corollary 2. If m is interpolational, then

(5) femy) = f@)m i), thatis, zmy=f(f(z)mf()).
Every chaotical operator mean satisfies
operator mixing property: (AmB)m(CmD)=(AmC)m(BmD)

and

(5) f(AmB) = f(A)m f(B), thatis, AmB= f"'(f(4)mf(B)).

But, if a Kubo-Ando operator mean satisfies the above, then we can show that it
is an arithmetic or a harmonic one ([5]). Recall that the adjoint m* is defined by
Am*B = (A'mB )™

Theorem 3. If a symmetric operator mean m satisfies the operator mizing property,
then it coincides with the arithmetic mean ¥V or the harmonic one !.

Proof. For the representing function f of m, we may assume f(0) = 0. Now we will
show m is the harmonic mean. For > 0 and projections of rank one

21(1 1) oo 1 (m ﬁ) » RZ;(M) ff‘(‘x)")
2\1 1)’ 1+z \Vz 1 1+ f(z) \/f(z) 1 ’

put
A=<1 O) and B=P
0 z

Since | BA™'B|| = (1 + 1/z) = 1% and m is symmetric, we have
oo (57) Eror(2)
flamp) =1 (1 (325)) P=1(Ha)P end
5=

P=
2@ \ p_ tn it
L) P s @)P,

f(A)m f(B) = f(A)m
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so that f(h(z)) = h(f(z)), or equivalently, f*(a(z)) = a(f*(z)). Since f* is concave,
then f* is affine on the interval between 1 and z, and hence f*(z) = a + Sz for all
xz > 0. By the symmetric condition, we have

a+ Bz =f(z)=zf"(1/z) =az+

for all z > 0. Thus a = 3 = 1/2 by f*(1) = 1, that is, m* is the arithmetic mean.
Therefore m is the harmonic one. O

For the numerical case, it is uncertain whether (5) implies the mixing property or
not. But, by the proof of Theorem 8, we have that (5°) implies the operator mixing
property since the means V and ! have its property.

Corollary 4. If a symmetric operator mean satisfies (5'), then it has the operator
mizing property.

For (interpolational) paths m;, we can define the induced integral mean m by
1
AmB = / AmB dt.
0

Then we obtain ([5]):

Theorem 5. If m is interpolational, then m is symmetric and not greater than m
itself.

Proof. Since Bm;A = Am;_;B., we have
1 1 1
AmB = / AmBdt = / Bm;_Adt = / Bmy,Ads = Bm A.
0 0 0

By the maximality of the arithmetic mean, we have

Am,Bdt+ [} BmAdt /1 Am;B+ Am;_,B
0

2 5 dt

1 fl
AEBz/ AmBdt = =2
" 1
2/ (AmtB)m(Aml_tB)dt=/ AmBdt=AmB.
0 0

Example. Put operator monotone functions fNz) = (1=t +tz")* (-1=r=s1),
then the representing functions f" of the induced Kubo-Ando integral means # are:

1
~ 1 1—t+tz")F roz™l -1
f(x) /0( + tz") @ -

T l4r zr—1"
0

For example,

~ 1
(r=1) arithmetic mean:  f(z) = ;I,
~ - ~1
(r=0) logarithmic mean: ji(o)(:c) = lgg fO(x) = :fogz ,
(r=-1/2) geometric mean:  fY3(z) = /x,
. . . . . 7(-1) T Fle-1) xlogx
(r=-1) adjoint logarithmic mean: f'""(z) = h{g fE () = T
€ T —



It satisfies the following estimation ([6]):

sA+(1-s)B+ Am,B

Theorem 6. For s € [0,1], AmB < 5

AVB+AmB
5 .

Proof. For ¢(t) = Am;B, the convexity of ¢ shows

{ L(g(s) — $(0) + 6(0) 0 ¢<s, and
Eo(p(1) - p(s)) + d(s) ifs<t<1

In particular, AmB <

It follows that

/sAmthtS/S( (Am;B — A) + ) [ (Am,B — A)-i—tA
0 (2) g 0
2
+

(A m,B - A)+sA=

1 1
/Amthtg/ (I‘ (B- Am,B) + Am,B )d

2/9 _
- [f—/z—ts (B - Am,B )+tAmsBJ

(AmsB+ A) and

1-s .
g g2 2 B
_1/2 sl s?/2+s (B—AmsB)+(1—s)AmsB=1 E B).
— S8
1 p—
Therefore, AfB = / Am,Bdt < ST 0 S;B*“ Am,B -
0
Putting s = 1/2, we obtain
Corollary 7.

AVB—-AmB

0<AmB-AVBK

Similarly we have

Theorem 8. For0=ty <t; <+ <tp <tpp1 =1,

_ 1 -
AmB S -2- <t1A + (]. - tn)B -+ Z(tk_H b tk_l)Amth) .

k=1

In particular, AmB < nL—f-l (A V B+ ; Amk/(nH)B) .
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