<table>
<thead>
<tr>
<th>Title</th>
<th>ON GENERALIZED POWERS-STORMER'S INEQUALITY (Research on structures of operators via methods in geometry and probability theory)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Author(s)</td>
<td>OSAKA, HIROYUKI</td>
</tr>
<tr>
<td>Citation</td>
<td>数理解析研究所講究録 (2013), 1839: 17-24</td>
</tr>
<tr>
<td>Issue Date</td>
<td>2013-06</td>
</tr>
<tr>
<td>URL</td>
<td>http://hdl.handle.net/2433/194950</td>
</tr>
<tr>
<td>Right</td>
<td></td>
</tr>
<tr>
<td>Type</td>
<td>Departmental Bulletin Paper</td>
</tr>
<tr>
<td>Textversion</td>
<td>publisher</td>
</tr>
</tbody>
</table>

Kyoto University
ON GENERALIZED POWERS-STÔRMER'S INEQUALITY

HIROYUKI OSAKA

ABSTRACT. A generalization of Powers-Stôrmer's inequality for operator monotone functions on $[0, +\infty)$ and for positive linear functional on general C^*-algebras will be proved. It also will be shown that the generalized Powers-Stôrmer inequality characterizes the tracial functionals on C^*-algebras.

1. INTRODUCTION

Powers-Stôrmer's inequality (see, for example, [16, Lemma 2.4], [4, Theorem 11.19]) asserts that for $s \in [0,1]$ the following inequality

$$2 \text{Tr}(A^sB^{1-s}) \geq \text{Tr}(A + B - |A - B|)$$

holds for any pair of positive matrices A, B. This is a key inequality to prove the upper bound of Chernoff bound, in quantum hypothesis testing theory [1]. This inequality was first proven in [1], using an integral representation of the function t^s. After that, N. Ozawa gave a much simpler proof for the same inequality, using fact that for $s \in [0,1]$ function $f(t) = t^s \ (t \in [0, +\infty))$ is an operator monotone ([11, Proposition 1.1]). Recently, Y. Ogata in [13] extended this inequality to standard von Neumann algebras. The motivation of this paper is that if the function $f(t) = t^s$ is replaced by another operator monotone function (this class is intensively studied, see [8][14]), then $\text{Tr}(A + B - |A - B|)$ may get smaller upper bound than what is used in quantum hypothesis testing. Based on N. Ozawa's proof we formulate Powers-Stôrmer's inequality for an arbitrary operator monotone function on $[0, +\infty)$ in the context of general C^*-algebras.

2. DOUBLE PILING STRUCTURES FOR MATRIX FUNCTIONS

Throughout this note, M_n stands for the algebra of all $n \times n$ matrices, M_n^+ denote the set of positive semi-definite matrices. We call a function
If matrix convex of order n or n-convex in short (resp. matrix concave of order n or n-concave) whenever the inequality

$$f(\lambda A + (1 - \lambda)B) \leq \lambda f(A) + (1 - \lambda)f(B), \ \lambda \in [0, 1]$$

(resp. $f(\lambda A + (1 - \lambda)B) \geq \lambda f(A) + (1 - \lambda)f(B), \ \lambda \in [0, 1]$) holds for every pair of selfadjoint matrices $A, B \in M_n$ such that all eigenvalues of A and B are contained in I. Matrix monotone functions on I are similarly defined as the inequality

$$A \leq B \implies f(A) \leq f(B)$$

for any pair of selfadjoint matrices $A, B \in M_n$ such that $A \leq B$ and all eigenvalues of A and B are contained in I. We call a function f operator convex (resp. operator concave) if for each $k \in \mathbb{N}$, f is k-convex (resp. k-concave) and operator monotone if for each $k \in \mathbb{N}$ f is k-monotone.

In [15] Tomiyama and the author discussed about the following 3 assertions at each level n among them in order to see clear insight of the double piling structure of matrix monotone functions and of matrix convex functions:

Theorem 2.1. Let $n \in \mathbb{N}$ and $f : [0, \alpha) \to \mathbb{R}$ and consider the following assertions.

1. $f(0) \leq 0$ and f is n-convex in $[0, \alpha)$,
2. For each matrix a with its spectrum in $[0, \alpha)$ and a contraction c in the matrix algebra M_n,

$$f(c^*ac) \leq c^*f(a)c,$$

3. The function $\frac{f(t)}{t} (= g(t))$ is n-monotone in $(0, \alpha)$.

Then we have

$$(i)_{n+1} \prec (ii)_{n} \sim (iii)_{n} \prec (i)_{\lfloor \frac{n}{2} \rfloor},$$

where the denotation $(A)_m \prec (B)_n$ means that “if (A) holds for the matrix algebra M_m, then (B) holds for the matrix algebra M_n”.

The following result is proved in [5].

Lemma 2.1. Let f be a strictly positive, continuous function on $[0, \infty)$. If the function f is $2n$-monotone, then for any positive semi-definite A and a contraction C in M_n we have

$$C^*f(A)C \leq f(C^*AC).$$

The following result is essentially proved in [7, Theorem 2.4], but for the reader’s convenience we will include a proof.
Proposition 2.1. Let f be a strictly positive, continuous function on $[0, \infty)$. If f is $2n$-monotone, the function $g(t) = \frac{t}{f(t)}$ is n-monotone on $[0, \infty)$.

Proof. Let A, B be positive matrices in M_n such that $0 < A \leq B$.

Let $C = B^{-\frac{1}{2}}A^\frac{1}{2}$. Then $\|C\| \leq 1$. Since f is $2n$-monotone, $-f$ satisfies the Jensen type inequality from Lemma 2.1, that is,

\[-f(A) = -f(C^*BC) \leq -C^*f(B)C\]
\[-f(A) \leq -A^\frac{1}{2}B^{-\frac{1}{2}}f(B)B^{-\frac{1}{2}}A^\frac{1}{2}\]
\[-A^{-\frac{1}{2}}f(A)A^{-\frac{1}{2}} \leq -B^{-\frac{1}{2}}f(B)B^{-\frac{1}{2}}\]
\[-A^{-1}f(A) \leq -B^{-1}f(B)\]

Therefore, since $-1/t$ is operator monotone, $-1/(-f(t)/t) = t/f(t)$ is n-monotone.

Remark 1. The condition of $2n$-monotonicity of f is needed to guarantee the n-monotonicity of g. Indeed, it is well-known that t^3 is monotone, but not 2-monotone. In this case the function $g(t) = \frac{t}{t^3} = \frac{1}{t^2}$ is obviously not 1-monotone.

Corollary 2.1. Let f be a $2n$-monotone, continuous function on $[0, \infty)$ such that $f((0, \infty)) \subset (0, \infty)$, and let g be a Borel function on $[0, \infty)$ defined by $g(t) = \{ \frac{t}{f(t)} (t \in (0, \infty)) \}$.

Then for any pair of positive matrices $A, B \in M_n$ with $A \leq B$, $g(A) \leq g(B)$.

Similarly, we can get the concave version of the above observation [10].

Theorem 2.2. For $n \in \mathbb{N}$ and $f : [0, \alpha) \to \mathbb{R}$ we consider the following assertions:

(iv) $f(0) \geq 0$ and f is n-concave in $[0, \alpha)$,

(v) For each matrix a with spectrum in $[0, \alpha)$ and a contraction c in the matrix algebra M_n,

\[f(c^*ac) \geq c^*f(a)c,\]

(vi) The function $\frac{t}{f(t)}$ is n-monotone in $(0, \alpha)$.

We can show that

\[(iv)_{n+1} \prec (v)_{n} \sim (vi)_{n} \prec (iv)_{\frac{n}{2}}.\]
3. Generalized Powers-Størmer’s Inequality

In this section we investigate the generalized Powers-Størmer inequality from the point of matrix functions. Note that the $2n$-monotonicity of a function f on $[0, \infty)$ implies the n-concavity of f by [2, Theorem V.2.5].

Theorem 3.1. Let Tr be the canonical trace on M_n and f be a $(n+1)$-concave (or $2n$-monotone) function on $[0, \infty)$ such that $f((0, \infty)) \subset (0, \infty)$. Then for any pair of positive matrices $A, B \in M_n$

\[
\text{Tr}(A) + \frac{1}{2} \text{Tr}(|A - B|) \leq 2 \text{Tr}(f(A)^{\frac{1}{2}}g(B)f(A)^{\frac{1}{2}}),
\]

where $g(t) = \begin{cases}
\frac{t}{f(t)} & (t \in (0, \infty)) \\
0 & (t = 0)
\end{cases}$.

Proof. Note that we know that a function g is n-monotone from Corollary 2.1 and Theorem 2.2.

Let A, B be any positive matrices in M_n.

For operator $(A - B)$ let us denote by $P = (A - B)^+$ and $Q = (A - B)^-$ its positive and negative part, respectively. Then we have

\[
A - B = P - Q \quad \text{and} \quad |A - B| = P + Q,
\]

from that it follows that

\[
A + Q = B + P.
\]

On account of (4) the inequality (2) is equivalent to the following

\[
\text{Tr}(A) - \text{Tr}(f(A)^{\frac{1}{2}}g(B)f(A)^{\frac{1}{2}}) \leq \text{Tr}(P).
\]

Since $B + P \geq B \geq 0$ and $B + P = A + Q \geq A \geq 0$ and g is n-monotone, we have $g(A) \leq g(B + P)$ and

\[
\text{Tr}(A) - \text{Tr}(f(A)^{\frac{1}{2}}g(B)f(A)^{\frac{1}{2}})
= \text{Tr}(f(A)^{\frac{1}{2}}g(A)f(A)^{\frac{1}{2}}) - \text{Tr}(f(A)^{\frac{1}{2}}g(B)f(A)^{\frac{1}{2}})
\leq \text{Tr}(f(A)^{\frac{1}{2}}g(B + P)f(A)^{\frac{1}{2}}) - \text{Tr}(f(A)^{\frac{1}{2}}g(B)f(A)^{\frac{1}{2}})
= \text{Tr}(f(A)^{\frac{1}{2}}(g(B + P) - g(B))f(A)^{\frac{1}{2}})
\leq \text{Tr}(f(B + P)^{\frac{1}{2}}(g(B + P) - g(B))f(B + P)^{\frac{1}{2}})
= \text{Tr}(f(B + P)^{\frac{1}{2}}g(B + P)f(B + P)^{\frac{1}{2}})
\quad - \text{Tr}(f(B + P)^{\frac{1}{2}}g(B)f(B + P)^{\frac{1}{2}})
\leq \text{Tr}(B + P) - \text{Tr}(f(B)^{\frac{1}{2}}g(B)f(B)^{\frac{1}{2}})
= \text{Tr}(B + P) - \text{Tr}(B)
= \text{Tr}(P).
\]
Hence, we have the conclusion.

\[\square \]

Corollary 3.1. Let \(f \) be an operator monotone function on \([0, \infty)\) such that \(f([0, \infty)) \subset (0, \infty) \). Then for any pair of positive matrices \(A, B \in M_n \)

\[
(5) \quad \text{Tr}(A) + \text{Tr}(B) - \text{Tr}(|A - B|) \leq 2 \text{Tr}(f(A)^{1/2}g(B)f(A)^{1/2}),
\]

where \(g(t) = \begin{cases} \frac{t}{f(t)} & (t \in (0, \infty)) \\ 0 & (t = 0) \end{cases} \).

Note that the operator monotonicity is equivalent to the operator concavity in the case that \(f([0, \infty)) \subset [0, \infty) \) [2, Theorem V. 2.5].

Corollary 3.2. [1, Theorem 1] Let \(A \) and \(B \) be positive matrices, then for all \(s \in [0, 1] \)

\[
\text{Tr}(A + B - |A - B|) \leq \text{Tr}(A^s B^{1-s}).
\]

Remark 2. As pointed in Proposition 2.1, 2-monotonicity of \(f \) is needed to guarantee the inequality (2). Indeed, let \(f(t) = t^3 \) and \(n = 1 \). Then, for any \(a, b \in (0, \infty) \), the inequality (2) would imply

\[
a \leq f(a)^{1/2}g(b)f(a)^{1/2},
\]

that is,

\[
\frac{a}{f(a)} \leq \frac{b}{f(b)}.
\]

Since \(\frac{t}{f(t)} \) is, however, not 1-monotone, the latter inequality is impossible.

Remark 3. For matrices \(A, B \in M_n^+ \) let us denote

\[
(6) \quad Q(A, B) = \min_{s \in [0, 1]} \text{Tr}(A^{(1-s)/2}B^s A^{(1-s)/2})
\]

and

\[
(7) \quad Q_{\mathcal{F}_{2n}}(A, B) = \inf_{f \in \mathcal{F}_{2n}} \text{Tr}(f(A)^{1/2}g(B)f(A)^{1/2}),
\]

where \(\mathcal{F}_{2n} \) is the set of all \(2n \)-monotone functions on \([0, +\infty)\) satisfy condition of the Theorem 3.1 and \(g(t) = tf(t)^{-1} \) \((t \in [0, +\infty))\).

Since the class of \(2n \)-monotone functions is large enough [14], we know that \(Q_{\mathcal{F}_{2n}}(A, B) \leq Q(A, B) \). Hence, we hope on finding another \(2n \)-monotone function \(f \) on \([0, +\infty)\) such that

\[
(8) \quad \text{Tr}(f(A)^{1/2}g(B)f(A)^{1/2}) < Q(A, B).
\]
If we can find such a function, then we may get smaller upper bound than what is used in quantum hypothesis testing [1]. For example, considering the trace distance \(T(A, B) = \frac{\text{Tr}(|A - B|)}{2} \), we might have the following better estimate

\[
\frac{1}{2} \text{Tr}(A+B) - Q_{F_{2n}}(A, B) \leq T(A, B) \leq \sqrt{\left(\frac{1}{2} \text{Tr}(A+B) \right)^2 - Q_{F_{2n}}(A, B)^2}.
\]

(See the estimate (6) in [1].)

4. CHARACTERIZATIONS OF THE TRACE PROPERTY

In this section the generalized Powers-Størmer inequality in the previous section implies the trace property for a positive linear functional on operator algebras.

Lemma 4.1. Let \(\varphi \) be a positive linear functional on \(M_n \) and \(f \) be a continuous function on \([0, \infty)\) such that \(f(0) = 0 \) and \(f((0, \infty)) \subset (0, \infty) \). If the following inequality

\[
(9) \quad \varphi(A + B) - \varphi(|A - B|) \leq 2\varphi(f(A)^{\frac{1}{2}}g(B)f(A)^{\frac{1}{2}})
\]

holds true for all \(A, B \in M_n^+ \), then \(\varphi \) should be a positive scalar multiple of the canonical trace \(\text{Tr} \) on \(M_n \), where \(g(t) = \begin{cases} \frac{t}{f(t)} & (t \in (0, \infty)) \\ 0 & (t = 0) \end{cases} \).

Theorem 4.1. Let \(\varphi \) be a positive normal linear functional on a von Neumann algebra \(\mathcal{M} \) and \(f \) be a continuous function on \([0, \infty)\) such that \(f(0) = 0 \) and \(f((0, \infty)) \subset (0, \infty) \). If the following inequality

\[
(10) \quad \varphi(A) + \varphi(B) - \varphi(|A - B|) \leq 2\varphi(f(A)^{\frac{1}{2}}g(B)f(A)^{\frac{1}{2}})
\]

holds true for any pair \(A, B \in \mathcal{M}^+ \), then \(\varphi \) is a trace, where \(g(t) = \begin{cases} \frac{t}{f(t)} & (t \in (0, \infty)) \\ 0 & (t = 0) \end{cases} \).

Corollary 4.1. Let \(\varphi \) be a positive linear functional on a \(C^* \)-algebra \(\mathcal{A} \) and \(f \) be a continuous function on \([0, \infty)\) such that \(f(0) = 0 \) and \(f((0, \infty)) \subset (0, \infty) \). If the following inequality

\[
(11) \quad \varphi(A) + \varphi(B) - \varphi(|A - B|) \leq 2\varphi(f(A)^{\frac{1}{2}}g(B)f(A)^{\frac{1}{2}})
\]

holds true for any pair \(A, B \in \mathcal{A}^+ \), then \(\varphi \) is a tracial functional, where \(g(t) = \begin{cases} \frac{t}{f(t)} & (t \in (0, \infty)) \\ 0 & (t = 0) \end{cases} \).

Remark 4. Let \(\mathcal{A} \) be a von Neumann algebra and \(\varphi \) be a positive normal linear functional on \(\mathcal{A} \). The set \(P(\mathcal{A}) \) of all orthogonal projections from \(\mathcal{A} \) is enough as a testing space for some inequality to characterize
the trace property of φ (see [3]). But, in the case of the inequality (10) the set $P(\mathcal{A})$ is not enough as a testing set.

Indeed, let P, Q be arbitrary orthogonal projections from a von Neumann algebra \mathcal{M}. Since $Q \geq P \wedge Q$ it follows that $PQP \geq P(P \wedge Q)P = P \wedge Q$. So $PQP \geq P \wedge Q$ holds for any pair of projections. From that it follows

$$\varphi(P + Q - |P - Q|) = \varphi(P \wedge Q) \leq 2\varphi(PQP) = 2\varphi(f(P)^{\frac{1}{2}}g(Q)f(P)^{\frac{1}{2}})$$

whenever φ is an arbitrary positive linear functional on \mathcal{M}.

REFERENCES

H. OSAKA

DEPARTMENT OF MATHEMATICAL SCIENCES, RITSUMEIKAN UNIVERSITY, KUSATSU, SHIGA 525-8577, JAPAN.

E-mail address: osaka@se.ritsumei.ac.jp