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ON GENERALIZED POWERS-STORMER’S
INEQUALITY

HIROYUKI OSAKA4

ABSTRACT. A generalization of Powers-Stgrmer’s inequality for
operator monotone functions on [0,+00) and for positive linear
functional on general C*-algebras will be proved. It also will be
shown that the generalized Powers-Stgrmer inequality character-
izes the tracial functionals on C*-algebras.

1. INTRODUCTION

Powers-Stgrmer’s inequality (see, for example, [16, Lemma 2.4], [4,
Theorem 11.19]) asserts that for s € [0, 1] the following inequality

(1) 2Tr(A°B'*) > Tr(A+ B — [A- B|)

holds for any pair of positive matrices A, B. This is a key inequality
to prove the upper bound of Chernoff bound, in quantum hypothesis
testing theory [1]. This inequality was first proven in [1], using an
integral representation of the function ¢°. After that, N. Ozawa gave
a much simpler proof for the same inequality, using fact that for s €
[0,1] function f(t) = ¢° (¢t € [0,+00)) is an operator monotone ([11,
Proposition 1.1]). Recently, Y. Ogata in [13] extended this inequality
to standard von Neumann algebras. The motivation of this paper is
that if the function f(¢) = ¢° is replaced by another operator monotone
function (this class is intensively studied, see [8][14]), then Tr(A+ B —
|A — B|) may get smaller upper bound than what is used in quantum
hypothesis testing. Based on N. Ozawa’s proof we formulate Powers-
Stgrmer’s inequality for an arbitrary operator monotone function on
[0, +00) in the context of general C*-algebras.

2. DOUBLE PILING STRUCTURES FOR MATRIX FUNCTIONS

Throughout this note, M, stands for the algebra of all n x n matrices,
M.} denote the set of positive semi-definite matrices. We call a function
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f matriz convex of order n or n-convez in short (resp. matriz concave
of order n or n-concave) whenever the inequality

FOA+ (1 -=XNB)<Af(A)+(1-Nf(B), xe]0,1]

(resp. f(AA+ (1 —A)B) > Af(A)+ (1 - N f(B), X €[0,1]) holds for
every pair of selfadjoint matrices A, B € M, such that all eigenvalues
of A and B are contained in I. Matriz monotone functions on I are
similarly defined as the inequality

A< B= f(A) < f(B)

for any pair of selfadjoint matrices A, B € M, such that A < B and
all eigenvalues of A and B are contained in I. We call a function f
operator conver (resp. operator concave) if for each k € N, f is k-
convex (resp. k-concave) and operator monotone if for each k € N f is
k-monotone.

In [15] Tomiyama and the author discussed about the following 3
assertions at each level n among them in order to see clear insight of
the double piling structure of matrix monotone functions and of matrix
convex functions:

Theorem 2.1. Letn € N and f : [0,a) — R and consider the following
assertions.

(i) f(0) <0 and f is n-convez in [0, a),
(ii) For each matriz a with its spectrum in [0, ) and a contraction
c in the matriz algebra My,

f(c*ac) < c*f(a)c,
(iii) The function %9 (= g(t)) is n-monotone in (0, a).

Then we have

(i)n+1 < (u)n ~ (t1t)n < (i)[%]a

where the denotation (A)y, < (B), means that “if (A) holds for the
matriz algebra M,,, then (B) holds for the matriz algebra M,,”.

The following result is proved in [5].

Lemma 2.1. Let f be a strictly positive, continuous function on [0, 00).
If the function f is 2n-monotone, then for any positive semi-definite A
and a contraction C in M, we have

C*f(A)C < f(C*AC).

The following result is essentially proved in 7, Theorem 2.4], but for
the reader’s convenience we will include a proof.
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Proposition 2.1. Let f be a strictly positive, continuous function on

[0,00). If f is 2n-monotone, the function g(t) = 7% is m-monotone on

[0, 00).

Proof. Let A, B be positive matrices in M, such that 0 < A < B.
Let C = B 2A3. Then |IC|| < 1. Since f is 2n-monotone, — f
satisfies the Jensen type inequality from Lemma 2.1, that is,

~f(A) = —f(C*BC) < -C*f(B)C
—f(A) < ~AIB 3 f(B)B 3 A
~AT3f(A)A™3 < -B7Hf(B)B™
—A"f(A) < ~B71f(B)

Therefore, since —1/t is operator monotone, —1/(—f(t)/t) =t/ f(t) is
n-monotone. O

Remark 1. The condition of 2n-monotonicity of f is needed to guar-

antee the n-monotonicity of g. Indeed, it is well-known that 3 is mono-

tone, but not 2-monotone. In this case the function g(t) = 5= tl is

obviously not 1-monotone.

Corollary 2.1. Let f be a 2n-monotone, continuous function on [0, 00)

such that f((0,00)) C (0,00), and let g be a Borel function on [0, c0)
75 (t € (0,00)) . .

defined by g(t) = fg) (t=0) Then for any pair of positive

matrices A, B € M,, with A < B, g(A) < g(B).
Similarly, we can get the concave version of the above observation
[10].

Theorem 2.2. Forn € N and f : [0,a) — R we consider the following
assertions:

(iv) £(0) >0 and f is n-concave in [0, q),
(v) For each matriz a with spectrum in [0,a) and a contraction c
wn the matriz algebra M,

f(c*ac) > ¢* f(a)c,
vi) The function -5 is n-monotone in (0, ).
f®)
We can show that

((V)n41 < (V)n ~ (VD)5 < (30) ).
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3. GENERALIZED POWERS-STgRMER’S INEQUALITY

In this section we investigate the generalized Powers-Stgrmer in-

20

equality from the point of matrix functions. Note that the 2n-monotonicity

of a function f on [0,00) implies the n-concavity of f by [2, Theo-
rem V.2.5].

Theorem 3.1. Let Tr be the canonical trace on M,, and f be a (n+1)-
concave (or 2n-monotone) function on [0,00) such that f((0,00)) C
(0,00). Then for any pair of positive matrices A, B € M,

(2)  Tr(A)+ Tx(B) — Tx(|A — B|) < 2Te(f(A)2g(B)f(A)?),

& (t € (0,00))
where g(t) = { f(()) t=0)

Proof. Note that we know that a function g is n-monotone from Corol-
lary 2.1 and Theorem 2.2.

Let A, B be any positive matrices in M.

For operator (A — B) let us denote by P = (A — B)* and Q =
(A — B)~ its positive and negative part, respectively. Then we have

(3) A—-B=P-Q and |A-B|=P+Q,
from that it follows that
4) A+Q=B+P.

On account of (4) the inequality (2) is equivalent to the following
Tr(4) — T(f(A)29(B)f(A)?) < Tx(P).

Since B+ P>B>0and B+P =A+Q > A>0andgis
n-monotone, we have g(A) < g(B + P) and

Tr(A) — Te(f(A)?g(B)f(A)?)
= Tr(f(A)2g(A)f(A)?) — Tx(f(A)2g(B)f(A)?)
<ﬁUMﬁMB+HﬂM%—ﬁUMﬁ%mﬂMﬂ
Tr(f(A)?(9(B + P) — g(B))f(A)?)
< Te(f(B+ P)3(g(B+ P) — g(B))f(B + P)?)
= Tr(f(B + P)2g(B + P)f(B + P)?)
ﬁuw+PﬁmmﬂB+mﬂ
Tr(B + P) — Tx(f(B)?g(B)f(B)?)
Te(B + P) — Tx(B)
ﬂ&)

I IA
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Hence, we have the conclusion.
O

Corollary 3.1. Let f be an operator monotone function on [0,00)
such that f((0,00)) C (0,00). Then for any pair of positive matrices
A Be M,

(5)  Tr(A)+ Tr(B) — Tr(|A - B|) < 2Tx(f(A)1g(B) f(A)?),

= (t € (0,00))
where g(t) = { f(()) t=0)

Note that the operator monotonicity is equivalent to the operator
concavity in the case that f([0,00)) C [0,00) [2, Theorem V. 2.5].

Corollary 3.2. [1, Theorem 1] Let A and B be positive matrices, then
for all s € [0,1]

Tr(A+ B — |A— B|) < Tr(A*B'™).

Remark 2. As pointed in Proposition 2.1, 2-monotonicity of f is
needed to guarantee the inequality (2). Indeed, let f(t) = ¢ and
n = 1. Then, for any a,b € (0, 00), the inequality (2) would imply

a < f(a)ig(b)f(a)?,
that is,

e b

fla) = f(b)
Since 7&% is, however, not 1-monotone, the latter inequality is impos-
sible.

Remark 3. For matrices A, B € M, let us denote

(6) Q(A, B) = Iel}éri] ’D['(A(l_s)/2BSA(1—s)/2)
and
(7) Q.. (4, B) :fie%nTr(f(A)%g(B)f(A)%)>

where Fy, is the set of all 2n-monotone functions on [0, +00) satisfy
condition of the Theorem 3.1 and g(¢) = tf(t)~* (¢ € [0, +00)).

Since the class of 2n-monotone functions is large enough [14], we
know that Qr,,(A, B) < Q(A, B). Hence, we hope on finding another
2n-monotone function f on [0, +00) such that

8) Tr(f(A)2g(B)f(A)?) < Q(A, B).
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If we can find such a function, then we may get smaller upper bound
than what is used in quantum hypothesis testing [1]. For example,
Tr(|A — BJ)

5 , we might have

considering the trace distance T(A, B) =
the following better estimate

% Tr(A'*'B)_Q.an (A? B) < T(A) B) < \/{% TI'(A + B)}2 - Qf?n(A’ B)2

(See the estimate (6) in [1].)

4. CHARACTERIZATIONS OF THE TRACE PROPERTY

In this section the generalized Powers-Stgrmer inequality in the pre-
vious section implies the trace property for a positive linear functional
on operator algebras.

Lemma 4.1. Let ¢ be a positive linear functional on M, and f be
a continuous function on [0,00) such that f(0) = 0 and f((0,00)) C
(0,00). If the following inequality

(9) @(A+ B) - ¢(|A - Bl) < 20(f(4)2g(B)f(4)?)
holds true for all A, B € M., then ¢ should be a positive scalar multiple

_t_
of the canonical trace Tr on M,, where g(t) = { f(()t) g E (0(;, 00))

Theorem 4.1. Let ¢ be a positive normal linear functional on a von
Neumann algebra M and f be a continuous function on [0,00) such
that f(0) = 0 and f((0,00)) C (0,00). If the following inequality

(10)  (A) +9(B) — w(|A - B) < 20(f(A)2g(B)f(A)?)
holds true for any pair A,B € M™, then ¢ is a trace, where g(t) =
{ ﬁ (t € (0,00))

0 (t=0) '

Corollary 4.1. Let ¢ be a positive linear functional on a C*-algebra
A and f be a continuous function on [0,00) such that f(0) = 0 and
f((0,00)) C (0,00). If the following inequality

(1) o(A4) +¢(B) - p(lA - BI) < 2(f(4)79(B)f(4)})
holds true for any pair A, B € A*, then ¢ is a tracial functional, where

_[ 7 (te(0,00)
g(t) - { fé) (t — 0)

Remark 4. Let A be a von Neumann algebra and ¢ be a positive nor-
mal linear functional on A. The set P(A) of all orthogonal projections
from A is enough as a testing space for some inequality to characterize
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the trace property of ¢ (see [3]). But, in the case of the inequality (10)
the set P(A) is not enough as a testing set.

Indeed, let P, Q) be arbitrary orthogonal projections from a von Neu-
mann algebra M. Since Q > PAQ it follows that PQP > P(PAQ)P =
PAQ.So PQP > P A @ holds for any pair of projections. From that
it follows

p(P+Q—|P-Q|) = 20(PAQ) < 20(PQP) = 20(f(P)2g(Q)f(P)?)

whenever ¢ is an arbitrary positive linear functional on M.
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