ON GENERALIZED POWERS-STØRMER'S INEQUALITY

HIROYUKI OSAKA^A

ABSTRACT. A generalization of Powers-Størmer's inequality for operator monotone functions on $[0, +\infty)$ and for positive linear functional on general C^* -algebras will be proved. It also will be shown that the generalized Powers-Størmer inequality characterizes the tracial functionals on C^* -algebras.

1. Introduction

Powers-Størmer's inequality (see, for example, [16, Lemma 2.4], [4, Theorem 11.19]) asserts that for $s \in [0, 1]$ the following inequality

$$2\operatorname{Tr}(A^s B^{1-s}) \ge \operatorname{Tr}(A + B - |A - B|)$$

holds for any pair of positive matrices A, B. This is a key inequality to prove the upper bound of Chernoff bound, in quantum hypothesis testing theory [1]. This inequality was first proven in [1], using an integral representation of the function t^s . After that, N. Ozawa gave a much simpler proof for the same inequality, using fact that for $s \in [0,1]$ function $f(t)=t^s$ $(t \in [0,+\infty))$ is an operator monotone ([11, Proposition 1.1]). Recently, Y. Ogata in [13] extended this inequality to standard von Neumann algebras. The motivation of this paper is that if the function $f(t)=t^s$ is replaced by another operator monotone function (this class is intensively studied, see [8][14]), then Tr(A+B-|A-B|) may get smaller upper bound than what is used in quantum hypothesis testing. Based on N. Ozawa's proof we formulate Powers-Størmer's inequality for an arbitrary operator monotone function on $[0, +\infty)$ in the context of general C^* -algebras.

2. Double piling structures for matrix functions

Throughout this note, M_n stands for the algebra of all $n \times n$ matrices, M_n^+ denote the set of positive semi-definite matrices. We call a function

 $^{^{1}A}$ Research partially supported by the JSPS grant for Scientic Research No. 20540220.

Date: 13, Feb., 2013.

²⁰⁰⁰ Mathematics Subject Classification. 46L30, 15A45.

Key words and phrases. Powers-Størmer's inequality, trace, positive functional, C^* -algebras.

f matrix convex of order n or n-convex in short (resp. matrix concave of order n or n-concave) whenever the inequality

$$f(\lambda A + (1 - \lambda)B) \le \lambda f(A) + (1 - \lambda)f(B), \ \lambda \in [0, 1]$$

(resp. $f(\lambda A + (1 - \lambda)B) \ge \lambda f(A) + (1 - \lambda)f(B)$, $\lambda \in [0, 1]$) holds for every pair of selfadjoint matrices $A, B \in M_n$ such that all eigenvalues of A and B are contained in I. Matrix monotone functions on I are similarly defined as the inequality

$$A \le B \Longrightarrow f(A) \le f(B)$$

for any pair of selfadjoint matrices $A, B \in M_n$ such that $A \leq B$ and all eigenvalues of A and B are contained in I. We call a function f operator convex (resp. operator concave) if for each $k \in \mathbb{N}$, f is k-convex (resp. k-concave) and operator monotone if for each $k \in \mathbb{N}$ f is k-monotone.

In [15] Tomiyama and the author discussed about the following 3 assertions at each level n among them in order to see clear insight of the double piling structure of matrix monotone functions and of matrix convex functions:

Theorem 2.1. Let $n \in \mathbb{N}$ and $f : [0, \alpha) \to \mathbb{R}$ and consider the following assertions.

- (i) $f(0) \leq 0$ and f is n-convex in $[0, \alpha)$,
- (ii) For each matrix a with its spectrum in $[0, \alpha)$ and a contraction c in the matrix algebra M_n ,

$$f(c^*ac) \le c^*f(a)c,$$

(iii) The function $\frac{f(t)}{t}$ (= g(t)) is n-monotone in $(0, \alpha)$. Then we have

$$(i)_{n+1} \prec (ii)_n \sim (iii)_n \prec (i)_{[\frac{n}{2}]},$$

where the denotation $(A)_m \prec (B)_n$ means that "if (A) holds for the matrix algebra M_m , then (B) holds for the matrix algebra M_n ".

The following result is proved in [5].

Lemma 2.1. Let f be a strictly positive, continuous function on $[0, \infty)$. If the function f is 2n-monotone, then for any positive semi-definite A and a contraction C in M_n we have

$$C^*f(A)C \le f(C^*AC).$$

The following result is essentially proved in [7, Theorem 2.4], but for the reader's convenience we will include a proof. **Proposition 2.1.** Let f be a strictly positive, continuous function on $[0,\infty)$. If f is 2n-monotone, the function $g(t) = \frac{t}{f(t)}$ is n-monotone on $[0,\infty)$.

Proof. Let A, B be positive matrices in M_n such that $0 < A \le B$. Let $C = B^{-\frac{1}{2}}A^{\frac{1}{2}}$. Then $||C|| \le 1$. Since f is 2n-monotone, -f satisfies the Jensen type inequality from Lemma 2.1, that is,

$$\begin{split} -f(A) &= -f(C^*BC) \leq -C^*f(B)C \\ &-f(A) \leq -A^{\frac{1}{2}}B^{-\frac{1}{2}}f(B)B^{-\frac{1}{2}}A^{\frac{1}{2}} \\ &-A^{-\frac{1}{2}}f(A)A^{-\frac{1}{2}} \leq -B^{-\frac{1}{2}}f(B)B^{-\frac{1}{2}} \\ &-A^{-1}f(A) \leq -B^{-1}f(B) \end{split}$$

Therefore, since -1/t is operator monotone, -1/(-f(t)/t) = t/f(t) is n-monotone.

Remark 1. The condition of 2n-monotonicity of f is needed to guarantee the n-monotonicity of g. Indeed, it is well-known that t^3 is monotone, but not 2-monotone. In this case the function $g(t) = \frac{t}{t^3} = \frac{1}{t^2}$ is obviously not 1-monotone.

Corollary 2.1. Let f be a 2n-monotone, continuous function on $[0, \infty)$ such that $f((0,\infty)) \subset (0,\infty)$, and let g be a Borel function on $[0,\infty)$ defined by $g(t) = \begin{cases} \frac{t}{f(t)} & (t \in (0,\infty)) \\ 0 & (t=0) \end{cases}$. Then for any pair of positive matrices $A, B \in M_n$ with $A \leq B$, $g(A) \leq g(B)$.

Similarly, we can get the concave version of the above observation [10].

Theorem 2.2. For $n \in \mathbb{N}$ and $f : [0, \alpha) \to \mathbb{R}$ we consider the following assertions:

- (iv) $f(0) \ge 0$ and f is n-concave in $[0, \alpha)$,
- (v) For each matrix a with spectrum in $[0, \alpha)$ and a contraction c in the matrix algebra M_n ,

$$f(c^*ac) \ge c^*f(a)c,$$

(vi) The function $\frac{t}{f(t)}$ is n-monotone in $(0, \alpha)$.

We can show that

$$(iv)_{n+1} \prec (v)_n \sim (vi)_n \prec (iv)_{\left[\frac{n}{2}\right]}.$$

3. Generalized Powers-Størmer's Inequality

In this section we investigate the generalized Powers-Størmer inequality from the point of matrix functions. Note that the 2n-monotonicity of a function f on $[0, \infty)$ implies the n-concavity of f by [2, Theorem V.2.5].

Theorem 3.1. Let Tr be the canonical trace on M_n and f be a (n+1)concave (or 2n-monotone) function on $[0,\infty)$ such that $f((0,\infty)) \subset$ $(0,\infty)$. Then for any pair of positive matrices $A, B \in M_n$

(2)
$$\operatorname{Tr}(A) + \operatorname{Tr}(B) - \operatorname{Tr}(|A - B|) \le 2 \operatorname{Tr}(f(A)^{\frac{1}{2}}g(B)f(A)^{\frac{1}{2}}),$$
where $g(t) = \begin{cases} \frac{t}{f(t)} & (t \in (0, \infty)) \\ 0 & (t = 0) \end{cases}$.

Proof. Note that we know that a function g is n-monotone from Corollary 2.1 and Theorem 2.2.

Let A, B be any positive matrices in M_n .

For operator (A - B) let us denote by $P = (A - B)^+$ and $Q = (A - B)^-$ its positive and negative part, respectively. Then we have

(3)
$$A - B = P - Q$$
 and $|A - B| = P + Q$,

from that it follows that

$$(4) A + Q = B + P.$$

On account of (4) the inequality (2) is equivalent to the following

$$\operatorname{Tr}(A) - \operatorname{Tr}(f(A)^{\frac{1}{2}}g(B)f(A)^{\frac{1}{2}}) \le \operatorname{Tr}(P).$$

Since $B+P\geq B\geq 0$ and $B+P=A+Q\geq A\geq 0$ and g is n-monotone, we have $g(A)\leq g(B+P)$ and

$$\begin{aligned} & \operatorname{Tr}(A) - \operatorname{Tr}(f(A)^{\frac{1}{2}}g(B)f(A)^{\frac{1}{2}}) \\ & = \operatorname{Tr}(f(A)^{\frac{1}{2}}g(A)f(A)^{\frac{1}{2}}) - \operatorname{Tr}(f(A)^{\frac{1}{2}}g(B)f(A)^{\frac{1}{2}}) \\ & \leq \operatorname{Tr}(f(A)^{\frac{1}{2}}g(B+P)f(A)^{\frac{1}{2}}) - \operatorname{Tr}(f(A)^{\frac{1}{2}}g(B)f(A)^{\frac{1}{2}}) \\ & = \operatorname{Tr}(f(A)^{\frac{1}{2}}(g(B+P)-g(B))f(A)^{\frac{1}{2}}) \\ & \leq \operatorname{Tr}(f(B+P)^{\frac{1}{2}}(g(B+P)-g(B))f(B+P)^{\frac{1}{2}}) \\ & = \operatorname{Tr}(f(B+P)^{\frac{1}{2}}g(B+P)f(B+P)^{\frac{1}{2}}) \\ & - \operatorname{Tr}(f(B+P)^{\frac{1}{2}}g(B)f(B+P)^{\frac{1}{2}}) \\ & \leq \operatorname{Tr}(B+P) - \operatorname{Tr}(f(B)^{\frac{1}{2}}g(B)f(B)^{\frac{1}{2}}) \\ & = \operatorname{Tr}(B+P) - \operatorname{Tr}(B) \\ & = \operatorname{Tr}(P). \end{aligned}$$

Hence, we have the conclusion.

Corollary 3.1. Let f be an operator monotone function on $[0, \infty)$ such that $f((0, \infty)) \subset (0, \infty)$. Then for any pair of positive matrices $A, B \in M_n$

(5)
$$\operatorname{Tr}(A) + \operatorname{Tr}(B) - \operatorname{Tr}(|A - B|) \le 2 \operatorname{Tr}(f(A)^{\frac{1}{2}}g(B)f(A)^{\frac{1}{2}}),$$
where $g(t) = \begin{cases} \frac{t}{f(t)} & (t \in (0, \infty)) \\ 0 & (t = 0) \end{cases}$.

Note that the operator monotonicity is equivalent to the operator concavity in the case that $f([0,\infty)) \subset [0,\infty)$ [2, Theorem V. 2.5].

Corollary 3.2. [1, Theorem 1] Let A and B be positive matrices, then for all $s \in [0, 1]$

$$Tr(A+B-|A-B|) \le Tr(A^s B^{1-s}).$$

Remark 2. As pointed in Proposition 2.1, 2-monotonicity of f is needed to guarantee the inequality (2). Indeed, let $f(t) = t^3$ and n = 1. Then, for any $a, b \in (0, \infty)$, the inequality (2) would imply

$$a \le f(a)^{\frac{1}{2}}g(b)f(a)^{\frac{1}{2}},$$

that is,

$$\frac{a}{f(a)} \le \frac{b}{f(b)}.$$

Since $\frac{t}{f(t)}$ is, however, not 1-monotone, the latter inequality is impossible.

Remark 3. For matrices $A, B \in M_n^+$ let us denote

(6)
$$Q(A,B) = \min_{s \in [0,1]} \text{Tr}(A^{(1-s)/2}B^s A^{(1-s)/2})$$

and

(7)
$$Q_{\mathcal{F}_{2n}}(A,B) = \inf_{f \in \mathcal{F}_{2n}} \text{Tr}(f(A)^{\frac{1}{2}}g(B)f(A)^{\frac{1}{2}}),$$

where \mathcal{F}_{2n} is the set of all 2n-monotone functions on $[0, +\infty)$ satisfy condition of the Theorem 3.1 and $g(t) = tf(t)^{-1}$ $(t \in [0, +\infty))$.

Since the class of 2n-monotone functions is large enough [14], we know that $Q_{\mathcal{F}_{2n}}(A, B) \leq Q(A, B)$. Hence, we hope on finding another 2n-monotone function f on $[0, +\infty)$ such that

(8)
$$\operatorname{Tr}(f(A)^{\frac{1}{2}}g(B)f(A)^{\frac{1}{2}}) < Q(A,B).$$

If we can find such a function, then we may get smaller upper bound than what is used in quantum hypothesis testing [1]. For example, considering the trace distance $T(A, B) = \frac{\text{Tr}(|A - B|)}{2}$, we might have the following better estimate

$$\frac{1}{2}\operatorname{Tr}(A+B) - Q_{\mathcal{F}_{2n}}(A,B) \le T(A,B) \le \sqrt{\{\frac{1}{2}\operatorname{Tr}(A+B)\}^2 - Q_{\mathcal{F}_{2n}}(A,B)^2}.$$
(See the estimate (6) in [1].)

4. Characterizations of the trace property

In this section the generalized Powers-Størmer inequality in the previous section implies the trace property for a positive linear functional on operator algebras.

Lemma 4.1. Let φ be a positive linear functional on M_n and f be a continuous function on $[0,\infty)$ such that f(0)=0 and $f((0,\infty))\subset (0,\infty)$. If the following inequality

(9)
$$\varphi(A+B) - \varphi(|A-B|) \leq 2\varphi(f(A)^{\frac{1}{2}}g(B)f(A)^{\frac{1}{2}})$$
holds true for all $A, B \in M_n^+$, then φ should be a positive scalar multiple of the canonical trace $\text{Tr on } M_n$, where $g(t) = \begin{cases} \frac{t}{f(t)} & (t \in (0,\infty)) \\ 0 & (t=0) \end{cases}$.

Theorem 4.1. Let φ be a positive normal linear functional on a von Neumann algebra \mathcal{M} and f be a continuous function on $[0,\infty)$ such that f(0) = 0 and $f((0,\infty)) \subset (0,\infty)$. If the following inequality

(10)
$$\varphi(A) + \varphi(B) - \varphi(|A - B|) \leq 2\varphi(f(A)^{\frac{1}{2}}g(B)f(A)^{\frac{1}{2}})$$
holds true for any pair $A, B \in \mathcal{M}^+$, then φ is a trace, where $g(t) = \begin{cases} \frac{t}{f(t)} & (t \in (0, \infty)) \\ 0 & (t = 0) \end{cases}$

Corollary 4.1. Let φ be a positive linear functional on a C^* -algebra \mathcal{A} and f be a continuous function on $[0,\infty)$ such that f(0)=0 and $f((0,\infty))\subset (0,\infty)$. If the following inequality

(11)
$$\varphi(A) + \varphi(B) - \varphi(|A - B|) \leq 2\varphi(f(A)^{\frac{1}{2}}g(B)f(A)^{\frac{1}{2}})$$
holds true for any pair $A, B \in \mathcal{A}^+$, then φ is a tracial functional, where
$$g(t) = \begin{cases} \frac{t}{f(t)} & (t \in (0, \infty)) \\ 0 & (t = 0) \end{cases}$$
.

Remark 4. Let \mathcal{A} be a von Neumann algebra and φ be a positive normal linear functional on \mathcal{A} . The set $P(\mathcal{A})$ of all orthogonal projections from \mathcal{A} is enough as a testing space for some inequality to characterize

the trace property of φ (see [3]). But, in the case of the inequality (10) the set P(A) is not enough as a testing set.

Indeed, let P,Q be arbitrary orthogonal projections from a von Neumann algebra \mathcal{M} . Since $Q \geq P \wedge Q$ it follows that $PQP \geq P(P \wedge Q)P = P \wedge Q$. So $PQP \geq P \wedge Q$ holds for any pair of projections. From that it follows

$$\varphi(P+Q-|P-Q|) = 2\varphi(P \wedge Q) \le 2\varphi(PQP) = 2\varphi(f(P)^{\frac{1}{2}}g(Q)f(P)^{\frac{1}{2}})$$

whenever φ is an arbitrary positive linear functional on \mathcal{M} .

REFERENCES

- K. M. R.Audenaert, J. Calsamiglia, LI. Masanes, R. Munoz-Tapia, A. Acin, E. Bagan, F. Verstraete, The Quantum Chernoff Bound, Phys. Rev. Lett. 98 (2007) 16050.
- [2] R. Bhatia, Matrix analysis, Graduate texts in mathematics, Springer New York, 1997.
- [3] A. M. Bikchentaev, Commutation of projections and characterization of traces on von Neumann algebras, Siberian Math. J., **51** (2010) 971-977. [Translation from Sibirskii Matematicheckii Zhurnal, 51 (2010) 1228-1236]
- [4] D. Petz, Quantum information theory and quantum statistics, Theoretical and Mathematical Physics. Springer-Verlag, Berlin, 2008.
- [5] F. Hansen, An operator inequality, Math. Ann. 246 (1979/80), no. 3, 249-250.
- [6] F. Hansen, Some operator monotone functions, Linear Algebra and its Applications, **430** (2009) 795-99.
- [7] F. Hansen, G. K. Pedersen, Jensen's inequality for operator and Löwner's theorem, Math. Ann., **258** (1982) 229-241.
- [8] F. Hansen, G. Ji, J. Tomiyama, Gaps between classes of matrix monotone functions, Bull. London Math. Soc. **36** (2004) 53-58.
- [9] D. T. Hoa, H. Osaka, H. M. Toan, On generalized Powers-Størmer's inequality. Linear Algebra and its Applications **438** (2013), 242 249 (in press). arxiv:1204:6665.
- [10] D. T. Hoa, H. Osaka, J. Tomiyama, Characterization of the monotonicity by the inequality, arXiv:1207.5201.
- [11] V. Jaksic, Y. Ogata, C. -A. Pillet, R. Seiringer, Quantum hypothesis testing and non-equilibrium statistical mechanics, arXiv:1109.3804v1 [math-ph].
- [12] K. Loewner, \hat{U} ber monotone Matrixfunktionen, Math. Z. 38 (1934) 177-216.
- [13] Y. Ogata, A Generalization of Powers-Størmer Inequality, Letters in Mathematical Physics, **97:3** (2011) 339-346.
- [14] H. Osaka, S. Silvestrov, J. Tomiyama, Monotone operator functions, gaps and power moment problem, Math. Scand. 100:1 (2007) 161-183.
- [15] H. Osaka, J. Tomiyama, Double piling structure of matrix monotone functions and of matrix convex functions. Linear Algebra and its Applications 431(2009), 1825-1832.
- [16] R. T. Powers, E. Størmer, Free States of the Canonical Anticommutation Relations, Commun. math. Phys., 16 (1970) 1-33.
- [17] O. E. Tikhonov, Subadditivity inequalities in von Neumann algebras and characterization of tracial functional, Positivity. 9 (2005) 259-264.

H. OSAKA

Department of Mathematical Sciences, Ritsumeikan University, Kusatsu, Shiga 525-8577, Japan.

E-mail address: osaka@se.ritsumei.ac.jp