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1 Introduction

The study of Banach space geometry provides basic concepts and tools in various fields
of functional analysis. The origin of geometric properties defined for Banach spaces is
probably the uniform convexity introduced by Clarkson. As the uniform convexity of
the space L, was shown by Clarkson’s inequality, most of such geometric properties are
closely related to various norm inequalities.

Theorem (Clarkson’s inequality). Let 1 <p <2 and 1/p+1/p' =1. Then,
(If + gll” +11f — gllP)V < 2Y7 (I £IIP + llg|I?)"/?

for all f,g € LP.

Theorem (Hanner’s inequality). If 1 <p < 2 then
I1f+gllP + 11F = al” = [IFI -+ Ngll” + 111 = Ngll

for all f,g € LP, and if 2 < p < oo then
If +gll>+ 11 = gl? < {11+ gl ” + [ = Ngll]®

for all f,g € LP.

In this note, we consider the following classical inequality which was proved by Beck-
ner [2] (cf. [4, Lemma 1.e.14]).

Theorem 1.1. Let 1 < p < ¢ < 0o, and let v, = v/(p — 1)/(q — 1). Then,

1 1
(IU+vp,qvl"+ Iu—vp,qvl") T (IU+UI”+ |u— vl”)"
2 = 2

for all u,v € R.



It is also known that 7,4 in Theorem 1.1 is the best constant, that is, if @ > 0 and

(|u+av|q+|u—av|q)%'< <|u+v|p+|u—v’p)%
2 - 2

for all u,v € R, then we have a < 7, ,. We note that the case 0 < a < 1 is essential in
this direction. Indeed, letting u = 0 and v = 1 in the above inequality, we obtain a < 1.
The proof of this fact can be found in the proof of [11, Theorem 6.

Our aim is to present an elementary proof of Theorem 1.1 and the above fact (cf.
[3, 5, 6, 7]). It is needless to say that Theorem 1.1 is trivial if p = ¢. So we only consider
the case p # q. Suppose that 1 < p < ¢ < oo and that b € [0,1]. Let A, be the linear
operator from (R? || - ||,,) into (R?, || - ||,) defined by

1 b
=i 1)

and let || Ay||p,, denote the operator norm of A;. Put f,,, be the real-valued function on
[0,1] defined by

1
q q 1
oas(®) = (8 +001 =07 )"+ (b7 + (1= 1)7)")"
First, we prove the following two lemmas.
Lemma 1.2. [|Asllpq = maxoci<i/z f.q(t)-

Lemma 1.3. Leta € [0,1] and let b= (1—a)/(1+a). Then, the following are equivalent:

(i) The inequality

IN

(Iu +av|?+ |u — av|q)%

(|u+v|p+|u—v|p>%
2

2
hold for all u,v € R.

(i) fpgb(1/2) = maxoci<iya fpap(t)-
Now, let

_1_’Yp,q_\/q_1“‘\/p—1_p+q—2"2\/(p_1)(q_1)

M e Va-I+vp-1 q-p

and let o = 1/p and 8 = g—1, respectively. We note that 0 < a < 1 and +1 > af—a+1.
Henceforth, 4, , is simply denoted by 4.

)

Lemma 1.4. Let b € [0,0] and let g be the real-valued function on [0,1] defined by
g1p(w) = —Bbu’ + (af + a — 1)(1 + b*)u — (2a — 1)8b — 2(1 — a)buT=s.

(i) If 1 < p < 2, then there exists a real number uy € (0,1) such that g1p(up) = 0,
g1,6(w) <0 for all u € [0,u0), and g1 4(u) > 0 for all u € (ug, 1).
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(i) If2 < p < 0o, then gi(u) > 0 for allu € (0,1).
Lemma 1.5. Let b € [0,0] and let g2 be the real-valued function on [0,1] defined by
924(8) = (@B + o — 1)(1 + b%)s* — afb(s®* ! + 5) — (1 — a)b(s** + 1).
(i) g24(s) <0 for all s € [0,1].

(ii) If 0 < b < 4, then there exists a real number sy € (0,1) such that gap(so) = 0,
g2.(8) <0 for all s € [0, 89), and gop(s) > 0 for all s € (so,1).

Lemma 1.6. Let g3}, be a real-valued function on [0,1] defined by
gap(8) = (5% +b)P(s* 1 — b) + (bs* + 1)P(bs*™! — 1).
(i) g35(s) >0 for all s € [0,1].

(i) If 0 < b < 6, then there exists a real number s; € (0,1) such that gsp(s1) = 0,
g35(s) > 0 for all s € [0, 1), and gs3p(s) <O for all s € (s1,1).

Proof of Theorem 1.1. Suppose that b € [0,6]. Let g, be the real-valued function on
[0,1/2] defined by

(1) = (fpaa(t))? = (7 +b(1 = £)7)7 + (bt7 + (1 = £)»)".

The derivative of g, is

a4 = 2= 000 (15

By Lemma 1.6 (i), we have g5(t) > 0 for all ¢ € [0,1/2]. Thus the function g5 is
nondecreasing on [0,1/2], and hence we obtain gs(1/2) = maxo<i<1/29(t). This means
that fpes(1/2) = maxo<i<i/2 fp,q,s(t). Thus, by Lemma 1.3, we have

1 1
(|u + Ypgvl? + |u — 'yp,qv|q) " o <|u +olP + |u— v|”) »
2 - 2

for all u,v € R. This proves Theorem 1.1.

Finally, we show that +,, is the best constant for Beckner’s inequality. Suppose
that v,, < a < 1. Let b = (1 —a)/(1 + a). By Lemma 1.3, it is enough to prove
that fp,5(1/2) < maxg<i<i/2 fpqp(t). To this end, we remark that 0 < b < 4. By
Lemma 1.6 (ii), g, is strictly increasing on [0,s;] and strictly decreasing on [s3,1/2],
where s2 = s1/(1 + s1).

10 [sa]---]1/2
9 + 10| -
9o / N

From this fact, we have f,45(1/2) < fpqb(S2) = maxo<i<i/z fpgp(t). The proof is com-
plete. O
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2 Application to Banach spaces

In this section, we consider an application of Beckner’s inequality. First, we extend
Beckner’s inequality to normed linear spaces.

Theorem 2.1 (Lindenstrauss and Tzafriri [4]). Let X be a normed linear space. Suppose
that 1 <p < q <00 and vpq =+/(p—1)/(g—1). Then,

1 1
(nx + Yoa¥ll? + o — vp,qynq) " (nx +ylP + ||z — yll") &

2 2

forallz,y € X.
Proof. Take arbitrary z,y € X. Put

z=z+y and w=2x—y,

respectively. Putting

_ =l A+ ) =l = Jwll
u= 5 d v= 2 3
then we have
|z + %,qy”q + ||z - ’Yp,qy”q M
’ 2
/q
1 (147, 1= 1 1 =g 1+ %4 e
< -_— _ —_—d — ) 5
< (5 (20l + 2520+ 5 (L5 + 2 e
1
AL e A E S [T A 7 < [u+v|P+ |u—vP\?
N 2 = 2
1 1
_ (1P +wlP\ e _ (e +yllP + [z —ylP\?
2 2 ’
by Beckner’s inequality. O

From this result, we remark that in any normed linear space, 7, is the best constant

for Beckner’s inequality.
Finally, we see an application of Beckner’s inequality to Banach spaces. We recall
some notions about g-uniform convexity and p-uniform smoothness.

Definition 2.2. A Banach space X is said to be uniformly convex if

dx(€) =inf{1 - H%——q‘ 1x,y € Sx, ||z -y =€} >0

for all e € (0,2]. The value 6x () is called the modulus of convexzity of X.

Definition 2.3. Let 2 < ¢ < co. Then, a Banach space X is said to be q-uniformly
convez if there exists a positive number C such that dx(g) > Ce? for alle € [0,2)].
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Clearly, g-uniform convexity implies uniform convexity.

Definition 2.4. A Banach space X is said to be uniformly smooth if

tim 20 g,
=0+ T

where px(7) is the modulus of smoothness of X defined by

prtr) =p {25 )

for all T > 0.

Definition 2.5. Let 1 < p < 2. Then, a Banach space X is said to be p-uniformly smooth
if there exists a positive number K such that px(7) < K7P for all T > 0.

It is obvious that p-uniform smoothness implies uniform smoothness. The following is
an well known characterization of p-uniform smoothness; see, for example, [1].

Theorem 2.6. Let X be a Banach space and let 1 < p < 2. Then, the following are
equivalent:

(i) X s p-uniformly smooth.
(ii) There ezists a positive number K such that

lz +ylP + llz —
2

y|P
< llz|P + | KylP

forallz,y e X.

(iii) For any positive number s € [1,00), there exists a positive number K- such that

s 1/s
z+yl®+ llz —yl°
(" I*+ llz = vl ) < (2P + | Kal?)

2
forallz,y € X.

(iv) There exist positive numbers s € [1,00) and K, such that

s\ /s
z+ylt+ -yl
(” - < (llellP + [ KaylP)?

2
forallz,y € X.

Proof. (i) = (ii): Suppose that X is p-uniformly smooth. Then, there exists a positive
number K, such that px(7) < K77 for all 7 > 0. For each z € Sx and each y € Bx\ {0},

we have
lz +yll + llz — yll

2

-1 < px(llylh) < KallyllP,



Put

o+l e =0l g g - lrtull=le=ul

respectively. Then we have

lz+yl=a+aB and |z-y|=a-op

and
/p
z+ylP+ e —ylP\!
(Lt =) P s s
< (nx +yll” + o - ynp)”p _lztyll+llz —yl
- 2 2

AN

« ((<1+ﬁ)“2r(1—6)”)1/p_ 1)
<a ((<1+5>2-2+<1—5>2>”2_1>

<a((1+6%)-1)=ap”
On the other hand, we have

(aB)? = (le+yll ; Hw—yH) < (IIwH + Iyl —2(llxll - HyH)) T

and

eyl eyl eyt @-w)l
2 - 2

Thus we obtain

|z + yl|? ‘;‘ lz -yl < ((1+ Ki|ly|lP) + aﬂz)p
< (L+ KilylP + [lyl1*y?

< [l=” + (I Kyl?

for some K > 0. From this, one can show that (ii) holds.
(ii) = (iil): Let 1 < s < oo. Then, by Beckner’s inequality, we have

(nx+ My|l* + |jo - Mynq)”s < <||x+ ylP+ |z — yup)w

2 2
< (Jl=]I” + | Kyl

for all z,y € X, where M = min{1,7,,}. Thus, putting K, = KM~! and replacing y
with M1y, we obtain

(IIRJ +yll* +llz -

yl® 1/s< P o || KPP
! < (lalP + )

13



for all z,y € X.
(iii) = (iv): Obviously holds.

14

(iv) = (i): Suppose that (iv) holds. Then, there exist positive numbers s € [1, 00)

and K, such that

/s
o+ ol + 1z = vl
(el < (el + | .y

for all z,y € X. Let z,y € Sx and 7 > 0. It follows that

8 s\ /s
c+y|+lzr—y c+yl|"+T—y
lozyl o=l (lotul | ™ < ol + oty
P
<14 BTV
p

and hence px (1) < (K?/p)rP. This proves (iv) = (i).

d

It is well known that uniform convexity and uniform smoothness are dual properties
of each other. A similar fact is true for g-uniform convexity and p-uniform smoothness.

To see this, we need the following lemma.

Lemma 2.7 (Takahashi-Hashimoto-Kato [9]). Let X be a Banach space. Suppose that
1<p<2,1<s<oo,1/p+1/g=1,1/s+1/t=1 and K > 0. Then, the following are

equivalent:

(i) The inequality

/s
syl + o -yl
(leralr] < (=P + 1FcylP) e

hold for all z,y € X.

(ii) The inequality

OV+9W+Hf—ﬂP

1/t
U= B> st + i gloe

hold for all f,g € X*.

The same is true if X is replaced with X*.

Theorem 2.8. Let X be a Banach space and let 2 < q < 0o. Then, the following are

equivalent:
(i) X is g-uniformly convez.
(ii) There exists a positive number C' such that

Iz +yll? + llz —
2

y||?
> |lz]|? + |Cy||®

forallz,y € X.
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(ili) For anyt € (1,00], there ezists a positive number Cy such that

T t T — ylt\
(” '+'y” ;’H y” ) > (”m“q"_ HCtqu)l/q

forall z,y € X.

(iv) There exist positive numbers t € (1,00] and Cy such that

z 4 y|lt + ||z — gl
<” yll - I yll ) > (|lz)|7 + HCtqu)l/q

forallz,y € X.
Finally, we have the following result.
Corollary 2.9. Let X be a Banach space.
(i) X is p-uniformly smooth if and only if X* is q-uniformly convez.
(i) X is g-uniformly convez if and only if X* is p-uniformly smooth.
The results in this section are summarized as follows:

p-uniformly smooth = uniformly smooth = smooth

7 I @

g-uniformly convex = uniformly convex = strictly convex

The smoothness and strict convexity are dual properties of each other if the space is
reflexive.
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