Some reduced expressions of the classical Weyl groups and the Weyl groupoids of the Lie superalgebras osp$(2m|2n)$ (Hopf algebras and quantum groups: their possible applications)

Author(s)

Yamane, Hiroyuki

Citation

数理解析研究所講究録 (2013), 1840: 72-88

Issue Date

2013-06

URL

http://hdl.handle.net/2433/194960

Type

Departmental Bulletin Paper

Textversion

publisher

Kyoto University
Some reduced expressions of the classical Weyl groups and the Weyl groupoids of the Lie superalgebras $\text{osp}(2m|2n)$

Hiroyuki Yamane†

Abstract

We give some reduced expressions of the classical Weyl groups $W(A_{N-1}), W(B_N) = W(C_N), W(D_N)$ and the Weyl groupoid of the Lie superalgebra $\text{osp}(2m|2(N - m))$.

1 Some reduced expressions of the classical Weyl groups

For $m, n \in \mathbb{Z}$, let $J_{n,m} := \{k \in \mathbb{Z} | m \leq k \leq n\}$.

Let $N \in \mathbb{N}$. Let $M_N(\mathbb{R})$ be the \mathbb{R}-algebra of $N \times N$-matrices. For $k, r \in J_{1,N}$, let $E_{k,r} := [\delta_{k,k'}\delta_{r,r'}]_{k',r' \in J_{1,N}} \in M_N(\mathbb{R})$, that is $E_{k,r}$ is the matrix unite such that its (k, r)-component is 1 and the other components is 0. Then $M_N(\mathbb{R}) = \bigoplus_{k,r \in J_{1,N}} \mathbb{R}E_{k,r}$. Let \mathbb{R}^N denote the \mathbb{R}-linear space of $N \times 1$-matrices. For $k \in J_{1,N}$, let e_k is the element of \mathbb{R}^N such that its $(k,1)$-component is 1 and the other components is 0. That is $\{e_k | k \in J_{1,N}\}$ is the standard basis of \mathbb{R}^N. The \mathbb{R}-algebra $M_N(\mathbb{R})$ acts on \mathbb{R}^N in the ordinal way, that is $E_{k,r}e_p = \delta_{r,p}e_r$. Let $GL_N(\mathbb{R})$ be the group of invertible $N \times N$-matrices, that is $GL_N(\mathbb{R}) = \{X \in M_N(\mathbb{R}) | \det X \neq 0\}$. Let $(,) : \mathbb{R}^N \times \mathbb{R}^N \rightarrow \mathbb{R}$ be the \mathbb{R}-bilinear map defined by $(e_k, e_r) := \delta_{kr}$.

† Department of Pure and Applied Mathematics, Graduate School of Information Science and Technology, Osaka University, Toyonaka, Osaka, 560-0043, Japan, E-mail: yamane@ist.osaka-u.ac.jp
Definition 1.1. For \(v \in \mathbb{R}^N \setminus \{0\} \), define \(s_v \in \text{GL}_N(\mathbb{R}) \) by
\[
 s_v(u) := u - \frac{2(u,v)}{(v,v)}v \quad (u \in \mathbb{R}^N),
\]
that is, \(s_v \) is the reflection with respect to \(v \).

Note that
\[
 s_v^2 = 1. \tag{1.1}
\]

We say that a subset \(R \) of \(\mathbb{R}^N \setminus \{0\} \) is a root system (in \(\mathbb{R}^N \)) if \(|R|<\infty\), \(s_v(R) = R \) and \(\mathbb{R}v \cap R = \{v, -v\} \) for all \(v \in R \), see [Hum, 1.1].

Let \(R \) be a root system in \(\mathbb{R}^N \). We say that a subset \(\Pi \) of \(R \) is a root basis of \(R \) if \(\Pi \) is a (set) basis of \(\text{Span}_\mathbb{R}(\Pi) \) as an \(\mathbb{R} \)-linear space and \(R \subset \text{Span}_{\mathbb{R}_{\geq 0}}(\Pi) \cup -\text{Span}_{\mathbb{R}_{\geq 0}}(\Pi) \) (this is called a simple system in [Hum, 1.3]).

Let \(R \) be a root system in \(\mathbb{R}^N \). Let \(\Pi \) be a root basis of \(R \). Let \(R^+(\Pi) := R \cap \text{Span}_{\mathbb{R}_{\geq 0}}(\Pi) \). We call \(R^+(\Pi) \) a positive root system of \(R \) associated with \(\Pi \) (this is called a positive system in [Hum, 1.3]).

Definition 1.2. (See [Hum, 2.10].) Let \(R \) be a root system in \(\mathbb{R}^N \). Let \(\Pi \) be a root basis of \(R \).

(1) Assume \(N \geq 2 \). We call \(R \) the \(A_{N-1} \)-type root system if
\[
 R = \{ e_x - e_y \mid x, y \in J_{1,N}, x \neq y \}.
\]
We call \(\Pi \) the \(A_{N-1} \)-type standard root basis if
\[
 \Pi = \{ e_x - e_{x+1} \mid x \in J_{1,N-1} \}.
\]

(2) Assume \(N \geq 2 \). We call \(R \) the \(B_N \)-type standard root system if
\[
 R = \{ ce_x + c'e_y \mid x, y \in J_{1,N}, x < y, c, c' \in \{1, -1\} \} \cup \{ c''e_x \mid c'' \in \{1, -1\} \}.
\]
We call \(\Pi \) the \(B_N \)-type standard root basis if
\[
 \Pi = \{ e_x - e_{x+1} \mid x \in J_{1,N-1} \} \cup \{ e_N \}.
\]

(3) Assume \(N \geq 2 \). We call \(R \) the \(C_N \)-type root system if
\[
 R = \{ ce_x + c'e_y \mid x, y \in J_{1,N}, x < y, c, c' \in \{1, -1\} \} \cup \{ 2c''e_x \mid c'' \in \{1, -1\} \}.
\]
We call \(\Pi \) the \(C_N \)-type standard root basis if
\[
 \Pi = \{ e_x - e_{x+1} \mid x \in J_{1,N-1} \} \cup \{ 2e_N \}.
\]
(4) Assume $N \geq 4$. We call R the D_N-type root system if
$$R = \{ ce_x + c'e_y | x, y \in J_{1,N}, x < y, c, c' \in \{1, -1\} \}.$$
We call Π the D_N-type standard root basis if
$$\Pi = \{ e_x - e_{x+1} | x \in J_{1,N-1} \} \cup \{ e_{N-1} + e_N \}.$$
Let R be a root system in \mathbb{R}^N. Let Π be a root basis of R. We call $W(\Pi)$ the Coxeter group associated with (R, Π). Let $S(\Pi) := \{ s_v \in W(\Pi) | v \in \Pi \}$. We call $(W(\Pi), S(\Pi))$ the Coxeter system associated with (R, Π), see [Hum, 1.9 and Theorem 1.5]. Define the map $\ell : W(\Pi) \rightarrow \mathbb{Z}_{\geq 0}$ in the following way, see [Hum, 1.6]. Let $\ell(1) := 0$, where 1 is a unit of $W(\Pi)$. Note that an arbitrary $w \in W(\Pi)$ can be written as a product of finite s_v's with some $v \in \Pi$, say $w = s_{v_1} \cdots s_{v_r}$ for some $r \in \mathbb{N}$ and some $v_x \in \Pi (x \in J_{1,r})$. If $w \neq 1$, let $\ell(w)$ be the smallest r for which such an expression exists, and call the expression reduced. For $w \in W(\Pi)$, we call $\ell(w)$ the length of w. Let
$$\mathfrak{L}(w) := \{ v \in R^+(\Pi) | w(v) \in -R^+(\Pi) \}.$$
It is well-known that
$$\ell(w) = |\mathfrak{L}(w)|$$
(see [Hum, Corollary 1.7]). It is also well-known that for $v \in \Pi$,
$$s_v(R^+(\Pi) \setminus \{v\}) = R^+(\Pi) \setminus \{v\}$$
(see [Hum, Proposition 1.4]), and
$$\ell(ws_v) = \begin{cases} \ell(w) + 1 & \text{if } w(v) \in R^+(\Pi), \\ \ell(w) - 1 & \text{if } w(v) \in -R^+(\Pi) \end{cases}$$
(see [Hum, Lemma 1.6 and Corollary 1.7]). Assume that $|R| < \infty$. By the above properties, we can see that there exists a unique $w_o \in W(\Pi)$ such that $w_o(\Pi) = -\Pi$, see [Hum, 1.8]. It is well-known that
$$\ell(w_o) = |R^+(\Pi)|,$$
which can easily be proved by (1.2), (1.3) and (1.4). Note that \(w_\circ \) is the only element \(W(\Pi) \) that \(\ell(w) \leq \ell(w_\circ) \) for all \(w \in W(\Pi) \), and \(\ell(w) = \ell(w_\circ) - \ell(w_\circ w^{-1}) \) for all \(w \in W(\Pi) \). We call \(w_\circ \) the longest element of the Coxeter system of \((W(\Pi), S(\Pi)) \).

Let \(k, r \in J_{1,N} \) be such that \(k \leq r \). For \(z_p \in J_{k,r} \cup (-J_{k,r}) \) \((p \in J_{k,r})\) with \(|u_p| \neq |u_t| \) \((p \neq t)\), let

\[
\begin{align*}
\left\{ k \quad k+1 \quad \ldots \quad r \right\} &= \sum_{p \in J_{k,r}} \frac{z_p}{|z_p|} E_{|z_p|,p} + \sum_{t \in J_{1,N} \setminus J_{k,r}} E_{t,t} \in \GL_N(\mathbb{R}).
\end{align*}
\]

We have

\[
(1.6) \quad s_{ek} = \left\{ \begin{array}{c} k \\ -k \end{array} \right\} \quad (k \in J_{1,N}),
\]

\[
(1.7) \quad s_{e_k-e_{k+1}} = \left\{ \begin{array}{c} k \\ k+1 \\ k \end{array} \right\} \quad (k \in J_{1,N-1}),
\]

and

\[
(1.8) \quad s_{e_k+e_{k+1}} = \left\{ \begin{array}{c} k \\ -(k+1) \\ -k \end{array} \right\} \quad (k \in J_{1,N-1}).
\]

Let \(k, p, r \in J_{k,r} \) with \(k \leq p \leq r \), let

\[
\left\{ k \quad \ldots \quad z_k \quad \ldots \quad p \quad \ldots \quad p+1 \quad \ldots \quad r \right\} := \left\{ \begin{array}{c} k \\ \ldots \end{array} \right\} \left\{ \begin{array}{c} z_k \\ \ldots \end{array} \right\} \left\{ \begin{array}{c} p \\ \ldots \end{array} \right\} \left\{ \begin{array}{c} p+1 \\ \ldots \end{array} \right\} \left\{ \begin{array}{c} r \\ \ldots \end{array} \right\}.
\]

Let \(k, r \in J_{1,N-1} \) with \(k \leq r \). Define \(s_{(k,r)} \) inductively by

\[
(1.9) \quad s_{(k,r)} := \left\{ \begin{array}{c} 1 \quad \text{if} \quad k = r \\ s_{(k,r-1)} s_{e_{r-1}-e_r} \quad \text{if} \quad k < r. \end{array} \right.
\]

Then, if \(r > k \), we have

\[
(1.10) \quad s_{(k,r)} = \left\{ \begin{array}{c} k \\ \ldots \\ p \\ \ldots \\ r-1 \\ r \end{array} \right\},
\]

since (if \(r \geq k+2 \))

\[
(1.11) \quad s_{(k,r)} = s_{(k,r-1)} s_{e_{r-1}-e_r} - \left\{ \begin{array}{c} k \\ \ldots \\ p \\ \ldots \\ r-2 \\ r-1 \end{array} \right\} \left\{ \begin{array}{c} r-1 \\ r \end{array} \right\}
\]

(by (1.7) and an induction)

\[
= \left\{ \begin{array}{c} k \\ \ldots \\ p \\ \ldots \\ r-1 \\ r \end{array} \right\}.
\]
Define $s_{(r,k)}$ inductively by $s_{(r,k)} := s_{e_{r-1}-e_r} s_{(r-1,k)}$ if $r \geq k + 1$. Clearly (if $r > k$) we have

(1.12) \[s_{(r,k)} = s_{(k,r)}^{-1} = \begin{array}{llllllllll} k & k+1 & \ldots & p & \ldots & r \\ r & k & \ldots & p-1 & \ldots & r-1 \end{array} \]

Lemma 1.3. Let Π be the A_{N-1}-type standard root basis. Let w_\circ be the longest element of $(W(\Pi), S(\Pi))$. Let $s_k := s_{e_k-e_{k+1}} \in S(\Pi)$ for $k \in J_{1,N-1}$.

(1) We have

(1.13) \[w_\circ = \begin{array}{llllll} 1 & \ldots & p & \ldots & N \\ N & \ldots & N-p+1 & \ldots & 1 \end{array} \]

Moreover

(1.14) \[w_\circ = (s_1 s_2 \cdots s_{N-1}) (s_1 s_2 \cdots s_{N-2}) \cdots (s_1 s_2) \frac{s_1}{2} \frac{s_1}{1} \]

Furthermore RHS of (1.14) is the reduced expression of w_\circ.

(2) Let $m \in J_{2,N-1}$. Then

(1.15) \[w_\circ = \left(s_{1} s_{2} \cdots s_{m-1} \right) \left(s_{1} s_{2} \cdots s_{m-2} \right) \cdots \left(s_{1} s_{2} \right) \frac{s_{1}}{1} \]

and RHS of (1.15) is a reduced expression of w_\circ.

Proof. By (1.5), we have

(1.16) \[\ell(w) = \frac{N(N-1)}{2} \]

Let $k, r \in J_{1,n}$ with $k < r$. Let

\[x_{(k,r)} := \begin{array}{llllll} k & \ldots & p & \ldots & r \\ r & \ldots & r-p+k & \ldots & k \end{array} \]
Then

\[(1.17) \quad s_{(k,r)}^{(k,r-1)} \cdots s_{(k,k+1)} = x_{(k,r)},\]

since, if \(r \geq k + 2 \), we have

\[
s_{(k,r)}(s_{(k,r-1)} \cdots s_{(k,k+1)}) = \begin{cases}
k \cdots p \cdots r-1 \; \; r \\
k+1 \cdots p+1 \cdots r \; \; k \\
\end{cases} \cdot x_{(k,r-1)}
\]

(by (1.11) and an induction)

\[= x_{(k,r)}.
\]

We have

\[(1.18) \quad x_{(k,r)} \in W(\Pi) \quad \text{and} \quad \ell(x_{(k,r)}) = \frac{(k-r+1)(k-r)}{2},\]

where the first claim follows from (1.17) and the second claim follows from

by (1.2), since \(\mathfrak{L}(x_{(k,r)}) = \{e_x - e_y | k \leq x < y \leq r\} \).

We obtain the claim (1) from (1.16). (1.17) and (1.18) for \(k = 1 \) and \(r = N \).

For \(k, \; r, \; t \in J_{1,N-1} \) with \(k < r \leq t \), let

\[(1.19) \quad y_{(k,r-1;r,t)} := \begin{cases}
k \cdots p \quad r-1 \\
k+1 \cdots p+1 \; \; r \\
\end{cases} \cdot x_{(k,r-1)}
\]

We have

\[(1.20) \quad s_{(k+t-r,t)}s_{(k+t-r-1,t-1)} \cdots s_{(k+1,r+1)}s_{(k,r)} = y_{(k,r-1;r,t)}\]

since, if \(t > r \),

\[
(s_{(k+t-r,t)}s_{(k+t-r-1,t-1)} \cdots s_{(k+1,r+1)})s_{(k,r)}
\]

\[= y_{(k+1,r+1;r,t)} \cdot \begin{cases}
k \cdots p \quad r-1 \\
k+1 \cdots p+1 \; \; r \\
\end{cases} \cdot k
\]

(by (1.11) and an induction)

\[= y_{(k,r-1;r,t)}.
\]
We have
\begin{align}
(1.21) \quad & y_{(k,r-1;r,t)} \in W(\Pi) \quad \text{and} \quad \ell(y_{(k,r-1;r,t)}) = (t - r + 1)(r - k),
\end{align}
where the first claim follows from (1.20) and the second claim follows from
by (1.2), since \(\mathcal{L}(x_{(k,r)}) = \{ e_x - e_y | x \in J_{k,r-1}, \ x \in J_{r,t} \} \).

Let \(m \in J_{2,N-1} \). By (1.13), we have
\begin{align}
(1.22) \quad & w_o = x_{(1,m)}x_{(m+1,N)}y_{(1,N-m;N-m+1,N)}. \nonumber
\end{align}
Then we obtain the claim (2) from (1.16), (1.18), (1.21) and (1.22), since
\[
\frac{m(m-1)}{2} + \frac{(N-m)(N-m-1)}{2} + (N - m)m = \frac{N(N-1)}{2}. \nonumber
\]

Let \(k, r \in J_{1,N} \) with \(k \leq r \). Let
\begin{align}
(1.23) \quad & b_{(k,r)} := s_{e_k} \cdots s_{e_r} = \begin{pmatrix} k & \ldots & p & \ldots & r \\ -k & \ldots & -p & \ldots & -r \end{pmatrix}, \nonumber
\end{align}
see also (1.6). By (1.10), we have
\begin{align}
(1.24) \quad & (s_{(k,r)})^{r-k+1} = 1. \nonumber
\end{align}

By (1.6) and (1.10), we have
\begin{align}
(1.25) \quad & s_{e_t}s_{(k,r)} = s_{(k,r)}s_{e_{t-1}} \nonumber
\end{align}

By (1.23), (1.24) and (1.25), for \(t \in J_{k+1,r} \), we have
\begin{align}
(1.26) \quad & (s_{(k,r)}s_{e_r})^{r-k+1} = (s_{(k,r)})^{r-k+1}s_{e_k} \cdots s_{e_r} = b_{(k,r)}. \nonumber
\end{align}

By (1.6), (1.10) and (1.12), we have
\begin{align}
(1.27) \quad & s_{e_k-e_{k+1}} \cdots s_{e_{r-1}-e_r} s_{e_r} s_{e_{r-1}-e_r} \cdots s_{e_k-e_{k+1}} = s_{(k,r)}s_{e_r}s_{(r,k)} = s_{e_k}. \nonumber
\end{align}

\textbf{Lemma 1.4.} Let \(\Pi \) be the \(B_N \)-type standard root basis. Let \(w_o \) be the longest
element of \((W(\Pi), S(\Pi)) \). Let \(s_k := s_{e_k-e_{k+1}} \in S(\Pi) \) for \(k \in J_{1,N-1} \) and let
\(s_N := s_{e_N} \in S(\Pi) \).

(1) We have
\begin{align}
(1.28) \quad & w_o = b_{(1,N)} = (s_1s_2 \cdots s_N)^N. \nonumber
\end{align}
Moreover the rightmost hand side of (1.28) is a reduced expression of w_o.

(2) Let $k, r \in J_{1,N}$ with $k \leq r$. Then

\begin{equation}
(1.29) \quad b_{(k,r)} = \left(\frac{s_ks_{k+1}\cdots s_{N-1}sNs_{N-1}\cdots s_{r+1}s_r}{2N-k-r+1}\right)^{r-k+1}.
\end{equation}

Moreover RHS of (1.29) is a reduced expression of $b_{(k,r)}$.

(3) Let $k_1, k_2, \ldots, k_{r-1} \in J_{1,N}$ with $k_1 < k_2 < \ldots < k_{r-1}$. Let $b'_y := b_{(k_{y-1},k_y-1)}(y \in J_{1,r})$, where let $k_0 := 1$ and $k_r := N + 1$. Then we have $w_o = b'_1b'_2\cdots b'_r$ and $\ell(w_o) = \sum_{y=1}^{r} \ell(b'_y)$. Moreover $b'_yb'_z = b'_z b'_y$ for $y, z \in J_{1,r}$.

(4) Let $m \in J_{1,N-1}$. Then

\begin{equation}
(1.30) \quad w_o = \left(\frac{s_{N-m+1}s_{N-m+2}\cdots s_N}{m}\right)^{m} \cdot \left(\frac{s_1s_2\cdots s_{N-1}s_{N-1}\cdots s_{N-m+1}s_{N-m}}{N+m}\right)^{N-m}.
\end{equation}

Moreover RHS of (1.30) is a reduced expression of w_o.

Proof. We can easily show (1.29) by (1.26) and (1.27).

Let $k, r \in J_{1,N}$ be such that $k \leq r$. Note that

\[\mathcal{L}(b_{(k,r)}) = \{ e_t \mid t \in J_{k,r} \} \cup \{ e_t + ce_{t'} \mid c \in \{-1, 1\}, t \in J_{k,r}, t' \in J_{t',N} \}. \]

Hence by (1.2), we have

\begin{equation}
(1.31) \quad \ell(b_{(k,r)}) = (r - k + 1) + 2\sum_{t=k}^{r} (N - t)
\quad = (r - k + 1) + 2N(r - k + 1) - 2\left(\frac{r(r+1)}{2} - \frac{k(k-1)}{2} \right)
\quad = (r - k + 1)(1 + 2N - (r + k))
\quad = (2N - k - r + 1)(r - k + 1).
\end{equation}

Hence we obtain the second claim of the claim (2). We also obtain the claim (1) since $|R^+(\Pi)| = N^2$.

Let $k, t, r \in J_{1,N}$ be such that $k \leq t < r$. By (1.23), we have

\begin{equation}
(1.32) \quad b_{(k,t)}b_{(t+1,r)} = b_{(k,r)}.
\end{equation}
By (1.31), we have

\[
\ell(b_{(k,t)}) + \ell(b_{(t+1,r)}) \\
= (2N - k - t + 1)(t - k + 1) + (2N - t - r)(r - t) \\
= 2N(r - k + 1) - (k + t - 1)(t - k + 1) - (t + r)(r - t) \\
= 2N(r - k + 1) - (-k^2 + t^2 + 2k - 1) - (r^2 - t^2) \\
= 2N(r - k + 1) + (k^2 - r^2 - 2k + 1) \\
= 2N(r - k + 1) + (k - 1 + r)(k - 1 - r) \\
= (2N - r - k - 1)(r - k + 1) \\
= \ell(b_{(k,r)}).
\]

(1.33)

By (1.32), (1.32) and the claim (1), we get the claim (3).

The claim (4) follows immediately from the claims (1) and (2).

Using Lemma 1.4, we have

Lemma 1.5. Let \(\Pi \) be the \(D_{N} \)-type standard root basis. Let \(w_{o} \) be the longest element of \((W(\Pi), S(\Pi))\). Let \(s_{k} := s_{e_{k} - e_{k+1}} \in S(\Pi) \) for \(k \in J_{1,N-1} \) and let \(s_{N} := s_{e_{k} + e_{k+1}} \in S(\Pi) \). For \(k \in J_{1,N-1} \), let

\[
(1.34) \quad d_{(k)} := s_{k} \cdots s_{N-2} s_{N-1} s_{N}^{N-k}.
\]

Then

\[
(1.35) \quad \ell(d_{(k)}) = (N - k)(N - k + 1)
\]

and

\[
(1.36) \quad d_{(k)} = \begin{cases}
 b_{(k,N)} & \text{if } N - k \text{ is odd,} \\
 b_{(k,N-1)} & \text{if } N - k \text{ is even.}
\end{cases}
\]

In particular,

\[
(1.37) \quad w_{o} = d_{(1)}.
\]
Proof. By (1.6), (1.7) and (1.8), we have

\begin{equation}
\begin{aligned}
s_{N-1}s_{N} &= \left\{ \begin{array}{ll}
N - 1 & N \\
-(N - 1) & -N
\end{array} \right\} = s_{e_{N-1}}s_{e_{N}}.
\end{aligned}
\end{equation}

Then we have

\[
\text{RHS of (1.34)} = (s_{(k,N-1)}s_{e_{N-1}}s_{e_{N}})^{N-k} \quad \text{(by (1.38))}
\]

\begin{equation}
\begin{aligned}
&= (s_{(k,N-1)}s_{e_{N-1}}s_{e_{N}})^{N-k}s_{e_{N}}^{N-k} \quad \text{(by (1.6) and (1.10))} \\
&= b_{(k,N-1)}s_{e_{N}}^{N-k} \quad \text{(by (1.26))} \\
&= \text{RHS of (1.36)}
\end{aligned}
\end{equation}

By (1.36), we have

\[
\mathcal{L}(d_{(k)}) = \{ e_{t} + ce_{t'} \mid c \in \{-1, 1\}, t \in J_{k,r}, t' \in J_{t',N} \}.
\]

Hence by (1.2), we have (1.35) and (1.37). This completes the proof. \(\square\)

2 Weyl groupoids of super C\(D\)-type

Let \(m \in J_{1,N-1}\). Let \(\mathcal{D}_{m|N-m}\) be the set of maps \(a : J_{1,n} \rightarrow J_{0,1}\) with \(|a^{-1}(\{0\})| = m\).

Let \(a \in \mathcal{D}_{m|N-m}\). Let \((\cdot, \cdot)^{a} : \mathbb{R}^{N} \times \mathbb{R}^{N} \rightarrow \mathbb{R}\) be the \(\mathbb{R}\)-bilinear map defined by \((e_{i}, e_{j})^{a} := \delta_{ij} \cdot (-1)^{a(i)}\). For \(v \in \mathbb{R}^{N}\) with \((v, v)^{a} \neq 0\), define \(s_{v} \in \text{GL}_{N}(\mathbb{R})\) by \(s_{v}^{a}(u) := u - \frac{2(u,v)^{a}}{(v,v)^{a}}v\) \((u \in \mathbb{R}^{N})\).

Let \(\dot{\mathcal{D}}_{m|N-m} := \{ (a, d) \in \mathcal{D}_{m|N-m} \times J_{0,1} \mid d \in J_{0,a(N)} \}\).
For $i \in J_{1,N}$, define the bijection $\tau_i : \dot{\mathcal{D}}_{m|N-m} \to \dot{\mathcal{D}}_{m|N-m}$ by

$$\tau_i(a, d) := \begin{cases} (a \circ s_{e_i-e_{i+1}}, d) & \text{if } i \in J_{1,N-2} \text{ and } a(i) \neq a(i+1), \\ (a \circ s_{e_{N-1}-e_N}, d) & \text{if } i = N - 1, d = 0 \text{ and } a(N-1) \neq b(N), \\ (a \circ s_{e_{N-1}-e_N}, 1) & \text{if } i = N, a(N-1) = 1, a(N) = 0, \\ (a \circ s_{e_{N-1}-e_N}, 0) & \text{if } i = N, a(N-1) = 0, a(N) = 1 \text{ and } d = 1, \\ (a, d) & \text{otherwise.} \end{cases}$$

Then $\tau_i^2 = id_{\mathbb{R}^N}$.

Let $(a, d) \in \dot{\mathcal{D}}_{m|N-m}$. Let

$$R^{(a,d)}_+ := \{e_x + te_y | x, y \in J_{1,N}, x < y, t \in \{1, -1\}\} \cup \{2e_z | z \in J_{1,N}, a(z) = 1\},$$

and $R^{(a,d)} := R^{(a,d)}_+ \cup -R^{(a,d)}_+$. Then

$$(2.1) \quad |R^{(a,d)}_+| = N(N - 1) + (N - m) = N^2 - m.$$

For $i \in J_{1,N}$, let

$$\alpha^{(a,d)}_i := \begin{cases} e_i - e_{i+1} & \text{if } i \in J_{1,N-2}, \\ e_{N-1} - e_N & \text{if } i = N - 1 \text{ and } d = 0, \\ 2e_N & \text{if } i = N - 1 \text{ and } d = 1, \\ e_{N-1} + e_N & \text{if } i = N, a(N) = 0 \text{ and } d = 0, \\ 2e_N & \text{if } i = N, a(N) = 1 \text{ and } d = 0, \\ e_{N-1} - e_N & \text{if } i = N, d = 1. \end{cases}$$

Let $\Pi^{(a,d)} := \{\alpha_i^{(a,d)} | i \in J_{1,N}\}$. Then $\Pi^{(a,d)}$ is an \mathbb{R}-basis of \mathbb{R}^N. Moreover

$$\Pi^{(a,d)} \subset R^{(a,d)}_+ \subset (\bigoplus_{t=1}^{N} \mathbb{Z}_{\geq 0}\alpha_i^{(a,d)}) \setminus \{0\}.$$
Note that
\[\tau_i(a, d) = (a, d) \text{ if and only if } (\alpha_{i}^{(a,d)}, \alpha_{i}^{(a,d)})^a \neq 0. \]

For \(i \in J_{1,N}\), define \(s_{i}^{(a,d)} \in GL_N(\mathbb{R})\) by
\[
s_{i}^{(a,d)}(\alpha_{i}^{(a,d)}) := \begin{cases}
-\alpha_{i}^{\tau_i(a,d)} & \text{if } i = j, \\
\sigma_{\alpha_{i}^{\tau_i(a,d)}}^a(\alpha_{j}^{\tau_i(a,d)}) & \text{if } i \neq j \text{ and } (\alpha_{i}^{(a,d)}, \alpha_{i}^{(a,d)})^a \neq 0, \\
\alpha_{j}^{\tau_i(a,d)} & \text{if } i \neq j \text{ and } (\alpha_{i}^{(a,d)}, \alpha_{i}^{(a,d)})^a = (\alpha_{i}^{(a,d)}, \alpha_{j}^{(a,d)})^a = 0, \\
\alpha_{j}^{\tau_i(a,d)} + \alpha_{i}^{\tau_i(a,d)} & \text{if } i \neq j, (\alpha_{i}^{(a,d)}, \alpha_{i}^{(a,d)})^a = 0 \text{ and } (\alpha_{i}^{(a,d)}, \alpha_{j}^{(a,d)})^a \neq 0.
\end{cases}
\]

We can directly see

\textbf{Lemma 2.1.} Let \((a, d) \in \mathcal{D}_{m|N-m}\) and \(i \in J_{1,N}\). Assume that \(d = 0\).
Assume that \(i \in J_{1,N-1}\) if \(a(N-1) = 1\) and \(a(N) = 0\). Then \(s_{i}^{(a,d)} = s_{\alpha_{i}^{(a,d)}}\), where \(s_{\alpha_{i}^{(a,d)}}\) is the one of Definition 1.1.

\textbf{Notation.} Let \((a, d) \in \mathcal{D}_{m|N-m}\). Let \(\text{Map}^N_0\) be a set with \(|\text{Map}^N_0| = 1\).
For \(r \in \mathbb{N}\), let \(\text{Map}^N_r\) be the set of all maps from \(J_{1,r}\) to \(J_{1,N}\). Let \(\text{Map}^N_\infty\) be
the set of all maps from \(\mathbb{N}\) to \(J_{1,N}\). For \(r \in \mathbb{Z}_{\geq 0}\), \(f \in \text{Map}^N_r \cup \text{Map}^N_\infty\) and \(t \in J_{1,r}\), let
\[
(a, d)_{f,0} := (a, d), \quad 1^{(a,d)} s_{f,0} := \text{id}_{\mathbb{R}^N}
\]
\[
(a, d)_{f,t} := \tau_i((a, d)_{f,t-1}), \quad 1^{(a,d)} s_{f,t} := 1^{(a,d)} s_{f,t-1} s_{f(t)}^{(a,d)_{f,t}}.
\]

\textbf{Proposition 2.2.} Let \((a, d) \in \mathcal{D}_{m|N-m}\) be such that \(d = 0\), \(b(z) = 1\) (\(z \in J_{1,N-m}\)) and \(b(z') = 0\) (\(z' \in J_{N-m+1,N}\)). Let \(n := |\mathcal{D}_{m|N}\|\). Define \(f \in \text{Map}^N_n\) by
\[
f(t) := \begin{cases}
N - m + t & (\text{if } t \in J_{1,m}), \\
f(t - m) & (\text{if } t \in J_{m+1,m(m-1)}), \\
t - m(m-1) & (\text{if } t \in J_{m(m-1)+1,m(m-1)+N}), \\
2N + m(m-1) - t & (\text{if } t \in J_{m(m-1)+N+1,m^2+N}), \\
f(t - (N + m)) & (\text{if } t \in J_{m^2+N+1,n}).
\end{cases}
\]
Then

\[(2.3) \quad 1^{(a,d)} s_{f,n} = \begin{cases}
 b_{(1,N)} & \text{if } m \text{ is odd,} \\
 b_{(1,N-1)} & \text{if } m \text{ is even.}
\end{cases}\]

Proof. For \(y \in J_{1,m} \), define \(a^{(y)} \in \mathcal{D}_{m|N-m} \) by

\[a^{(y)}(z) := \begin{cases}
 1 & \text{if } z \in J_{1,N-m-1} \cup \{N-m+y\}, \\
 0 & \text{if } z \in J_{N-m,N-m+y-1} \cup J_{N-m+y+1,N}.
\end{cases} \]

Then we can directly see that for \(t \in J_{1,n} \),

\[(a, d)_{f,t} = \begin{cases}
 (a, d) & \text{if } t \in J_{1,m(m-1)+N-m-1}, \\
 (a^{t-(N-m-1)}, 0) & \text{if } t \in J_{m(m-1)+N-m(m-1)+N-1}, \\
 (a^{(m-(t-(m(m-1)+N))-1)}, 0) & \text{if } t \in J_{m(m-1)+N,m(m-1)+N+m}, \\
 (a, d)_{f,t-(N+m)} & \text{if } t \in J_{m^{2}+N+1,n}.
\end{cases} \]

So we see that for \(t \in J_{1,n} \),

\[(2.4) \quad s_{f(t)}^{(a,d)} = \begin{cases}
 s_{e_{f(t)}-e_{f(t)+1}} & \text{if } f(t) \in J_{1,N-1}, \\
 s_{e_{N-1}+e_{N}} & \text{if } t \in J_{1,m(m-1)} \text{ and } f(t) = N, \\
 s_{2e_{N}} (= s_{e_{N}}) & \text{if } t \in J_{m(m-1)+1,n} \text{ and } f(t) = N.
\end{cases} \]

Define \(f' \in \text{Map}_{n-m(m-1)}^{N} \) by \(f'(t) := f(t+m(m-1)) \), so

\[(2.5) \quad 1^{(a,d)} s_{f,n} = 1^{(a,d)} s_{f,m(m-1)} 1^{(a,d)} f', \quad n-m(m-1). \]

By (1.29) and (1.36), \(1^{(a,d)} s_{f,m(m-1)} \) equals \(b_{(N-m+1,N)} \) (resp. \(b_{(N-m+1,N-1)} \)) if \(m \) is odd (resp. even). By (1.29) and (2.4), \(1^{(a,d)} s_{f',n-m(m-1)} = b_{(1,N-m)} \). Hence by (1.22) and (2.5), we have (2.3), as desired. \(\square \)

For \((a, d) \in \dot{\mathcal{D}}_{m|N-m} \) and \(i, j \in J_{1,N} \), define \(C^{(a,d)} = [c_{ij}^{(a,d)}]_{i,j \in J_{1,N}} \in M_{N}(\mathbb{Z}) \) by

\[s_{i}^{(a,d)} (\alpha_{j}^{(a,d)}) = \alpha_{j}^{\tau(a,d)} - c_{ij}^{(a,d)} \alpha_{i}^{\tau(a,d)}. \]
Then $C^{(a,d)}$ is a generalized Cartan matrix, i.e., (M1) and (M2) below hold.

(M1) $c^{(a,d)}_{ii} = 2$ (i $\in J_{1,N}$).
(M2) $c^{(a,d)}_{jk} \leq 0$, $\delta_{c^{(a,d)}_{jk},0} = \delta_{c^{(a,d)}_{kj},0}$ (j, k $\in J_{1,N}$, j \neq k).

Then the data

\[\hat{C}_{m|N-m} := C(J_{1,N}, \hat{D}_{m|N-m}, (\tau_{i})_{i \in J_{1,N}}, (C^{(a,d)})_{(a,d) \in \hat{D}_{m|N-m}}) \]

is a (rank-N) Cartan scheme, i.e., (C1) and (C2) below hold.

(C1) $\tau_{i}^{2} = \text{id}_{\hat{D}_{m|N-m}}$ (i $\in J_{1,N}$).
(C2) $c^{\tau_{i}(a,d)}_{ij} = c^{(a,d)}_{ij}$ (i $\in J_{1,N}$).

Note that

\[-c^{(a,d)}_{ij} = |R^{(a,d)}_{+} \cap (\mathbb{Z}\alpha_{i}^{(a,d)} \oplus \mathbb{Z}\alpha_{j}^{(a,d)})| \quad (i, j \in J_{1,N}, i \neq j).\]

The data

\[\hat{R}_{m|N-m} := R(\hat{C}_{m|N-m}, (R^{(a,d)}_{+})_{(a,d) \in \hat{D}_{m|N-m}}). \]

is a generalized root system of type C, i.e., (R1)-(R4) below hold.

(R1) $R^{(a,d)} = R^{(a,d)}_{+} \cup -R^{(a,d)}_{+}$ ((a, d) $\in \hat{D}_{m|N-m}$).
(R2) $R^{(a,d)} \cap \mathbb{Z}\alpha_{i} = \{ \alpha_{i}, -\alpha_{i} \}$ ((a, d) $\in \hat{D}_{m|N-m}$, i $\in J_{1,N}$).
(R3) $s_{i}^{(a,d)}(R^{(a,d)}) = R^{\tau_{i}(a,d)}$ ((a, d) $\in \hat{D}_{m|N-m}$, i $\in J_{1,N}$).
(R4) $(\tau_{i}\tau_{j})^{-c^{(a,d)}_{ij}}(a, d) = (a, d)$ ((a, d) $\in \hat{D}_{m|N-m}$, i, j $\in J_{1,N}$).

For (a, d) $\in \hat{D}_{m|N-m}$, let

\[W^{(a,d)} := \{ 1^{(a,d)}s_{f,r} \in GL_{N}(\mathbb{R}) \mid r \in \mathbb{Z}_{\geq 0}, f \in \text{Map}_{r}^{N} \}, \]

and define the map $\ell^{(a,d)} : W^{(a,d)} \to \mathbb{Z}_{\geq 0}$ by

\[\ell^{(a,d)}(w) := \min\{ r \in \mathbb{Z}_{\geq 0} \mid \exists f \in \text{Map}_{r}^{N}, w = 1^{(a,d)}s_{f,r} \}. \]

By [HY08, Lemma 8 (iii)], we see that

\[1^{(a,d)}s_{f,r} = 1^{(a,d)}s_{f',r'} \text{ implies } (a, d)_{f,r} = (a, d)_{f',r'}, \]
and that

\[(2.7) \quad \ell^{(a,d)}(w) = |w^{-1}(R_{+}^{(a,d)}) \cap \mathbb{Z}_{\geq 0}\alpha_i|.
\]

For \((a, d) \in \mathcal{D}_{m|N-m}, w \in W^{(a,d)}\) and \(f \in \text{Map}^{N}_{\ell^{(a,d)}}(w),\) if \(w = 1^{(a,d)}s_{f,\ell^{(a,d)}}(w),\)
we call \(f\) a reduced word map of \(w\).

By (2.6) and (2.7), we have formulas for \(W^{(a,d)}\) similar to (1.3) and (1.4). In particular, for each \((a, d) \in \mathcal{D}_{m|N-m},\) there exists a unique \(w_{0}^{(a,d)} \in W^{(a,d)}\) such that

\[\ell^{(a,d)}(w_{0}^{(a,d)}) = |R_{+}^{(a,d)}|,
\]
and we call \(w_{0}^{(a,d)}\) the longest element of \(W^{(a,d)}\).

By Proposition 2.2, we have

Theorem 2.3. Let \((a, d) \in \mathcal{D}_{m|N-m}\) be such that \(d = 0, a(z) = 1 (z \in J_{1,N-m})\) and \(a(z') = 0 (z' \in J_{N-m+1,N}).\) Then a reduced word map of \(w_{0}^{(a,d)}\) is given by (2.2). Moreover,

\[(2.8) \quad w_{0}^{(a,d)} = \begin{cases} \ b_{(1,N)} & \text{if } m \text{ is odd}, \\ b_{(1,N-1)} & \text{if } m \text{ is even}. \end{cases}
\]

Definition 2.4. For \((a, d), (a', d') \in \mathcal{D}_{m|N-m},\) let \(W^{(a,d)}_{(a',d')}\) be the subset of \(W^{(a,d)}\) composed of all the elements \(1^{(a,d)}s_{f,r}\) with \(r \in \mathbb{Z}_{\geq 0}, f \in \text{Map}^{N}_{r}\) and \((a, d)_{f,r} = (a', d'),\) and \(H^{(a,d)}_{(a',d')} := \{(a, d)\} \times W^{(a,d)}_{(a',d')} \times \{(a', d')\}(\subset \mathcal{D}_{m|N-m} \times \text{GL}_{N}(\mathbb{R}) \times \mathcal{D}_{m|N-m}).\) Let

\[(\mathcal{W}_{m|N-m})' := \bigcup_{(a,d),(a',d')\in\mathcal{D}_{m|N-m}} H_{(a',d')}^{(a,d)},
\]
and \(\mathcal{W}_{m|N-m} := (\mathcal{W}_{m|N-m})' \cup \{0\},\) where \(0\) is an element such that \(0 \notin (\mathcal{W}_{m|N-m})'.\) We regard \(\mathcal{W}_{m|N-m}\) as the semigroup by \(\omega 0 := 0 \omega := 0 (\omega \in \mathcal{W}_{m|N-m})\) and

\[((a_1, d_1), w_1, (a_2, d_2))((a_3, d_3), w_2, (a_4, d_4))
:= \begin{cases} ((a_1, d_1), w_1 w_2, (a_4, d_4)) & \text{if } (a_2, d_2) = (a_3, d_3), \\ 0 & \text{if } (a_2, d_2) \neq (a_3, d_3). \end{cases}
\]

We call \(\mathcal{W}_{m|N-m}\) the Weyl groupoid of the Lie superalgebra osp\((2m|2(N-m)).\)
For \((a, d) \in \dot{\mathcal{D}}_{m|N-m}\), let
\[\epsilon^{(a,d)} := ((a, d), \text{id}_{\mathbb{R}^N}, (a, d)) \in \mathcal{H}_{(a,d)}^{(a,d)}.\]

For \((a, d) \in \dot{\mathcal{D}}_{m|N-m}\) and \(i \in J_{1,N}\), let
\[\sigma_i^{(a,d)} := (\tau_i(a, d), s_i^{(a,d)}, (a, d)) \in \mathcal{H}_{\tau_i(a,d)}^{(a,d)}.\]

For \(r \in \mathbb{Z}_{\geq 0}\), \(t \in J_{0,r}\) and \(f \in \text{Map}_r^N\), let
\[1^{(a,d)}s_{f,r} := ((a, d), 1^{(a,d)}s_{f,r}, (a, d)) \in \mathcal{H}_{(a,d)_{f,r}}^{(a,d)}(t \in \mathbb{N}).\]

Let \((a, d) \in \dot{\mathcal{D}}_{m|N-m}, r \in \mathbb{Z}_{\geq 0}\) and \(f, f' \in \text{Map}_r^N\). We write
\[f \sim_r^{(a,d)} f'\]
if there exist \(i, j \in J_{1,N}\) and \(t \in J_{0,r}\) such that \(i \neq j, t - c_{ij}^{(a,d)} \leq r, f(k_1) = f'(k_1) (k_1 \in J_{1,t} \cup J_{t-c_{ij}^{(a,d)}+1,r}), f(k_2) = i, f'(k_2) = j (k_2 \in J_{t+1,t-c_{ij}^{(a,d)}+1,r} \cap 2\mathbb{N}).\]

By [HY08, Theorem 1], we have

Theorem 2.5. The semigroup \(\dot{\mathcal{W}}_{m|N-m}\) can also be defined by the generators

\[0, \epsilon^{(a,d)}, \sigma_i^{(a,d)} ((a, d) \in \dot{\mathcal{D}}_{m|N-m}, i \in J_{1,N}),\]
and relations

\[\alpha \omega = \omega \alpha = \omega (\omega \in \dot{\mathcal{W}}_{m|N-m}),\]
\[\epsilon^{(a,d)}(a,d) = \epsilon^{(a,d)(a',d')} = \epsilon^{(a,d)} (a, d) \neq (a', d'),\]
\[\epsilon^{\tau_i(a,d)} \sigma_i^{(a,d)} = \sigma_i^{(a,d)} \epsilon^{(a,d)} = \sigma_i^{(a,d)}, \sigma_i^{\tau_i(a,d)} \sigma_i^{(a,d)} = \epsilon^{(a,d)},\]
\[1^{(a,d)} \sigma_{f_{ij},-2c_{ij}^{(a,d)}}(a,d) = \epsilon^{(a,d)} (i \neq j).\]

We write \(f \sim_r^{(a,d)} f'\) if \(f = f'\) or there exists \(t \in \mathbb{N}\) and \(f_k \in \text{Map}_r^N (k \in J_{1,t})\) such that \(f \sim_r^{(a,d)} f_1, f_k \sim_r^{(a,d)} f_{k+1}\) and \(f_{t} \sim_r^{(a,d)} f'.\)

By [HY08, Theorem 5, Corollary 6], we have

Theorem 2.6. Let \((a, d) \in \dot{\mathcal{D}}_{m|N-m}\) and \(w \in W^{(a,d)}\).

(1) Let \(f, f' \in \text{Map}_{\ell(a,d)^\prime}^N(w)\) be such that
\[1^{(a,d)}s_{f,\ell(a,d)^\prime}(w) = 1^{(a,d)}s_{f',\ell(a,d)^\prime}(w) = w.\]
Then \(f \sim_{\ell(a,d)} f'\).

(2) Let \(r \in \mathbb{N}\) and \(f \in \text{Map}_r^N\) be such that \(r > \ell(a,d)(w)\) and
\[1^{(a,d)}s_{f,r}(w) = w.\]
Then there exist \(f' \in \text{Map}_r^N\) and \(t \in J_{1,r-1}\) such that \(f \sim_r^{(a,d)} f'\) and
\[f(t) = f'(t + 1).\]
References

