<table>
<thead>
<tr>
<th>Title</th>
<th>Existence and Approximation of Attractive Points for Nonlinear Mappings in Banach Spaces (Nonlinear Analysis and Convex Analysis)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Author(s)</td>
<td>Takahashi, Wataru</td>
</tr>
<tr>
<td>Citation</td>
<td>数理解析研究所講究録 1841: 114-122</td>
</tr>
<tr>
<td>Issue Date</td>
<td>2013-07</td>
</tr>
<tr>
<td>URL</td>
<td>http://hdl.handle.net/2433/194974</td>
</tr>
<tr>
<td>Type</td>
<td>Departmental Bulletin Paper</td>
</tr>
<tr>
<td>Textversion</td>
<td>publisher</td>
</tr>
</tbody>
</table>

Kyoto University
Existence and Approximation of Attractive Points for Nonlinear Mappings in Banach Spaces

東京工業大学, 廣電工業大学, 東京理科大学, 台湾国立中山大学
高橋 拓 (Wataru Takahashi)
Tokyo Institute of Technology, Keio University, Tokyo University of Science, Japan
and National Sun Yat-sen University, Taiwan

Abstract. Let H be a real Hilbert space norm $\| \cdot \|$. Let C be a nonempty subset of H and let T be a mapping of C into H. We denote by $F(T)$ the set of fixed points of T and by $A(T)$ the set of attractive points of T, i.e.,

(i) $F(T) = \{ z \in C : Tz = z \}$;
(ii) $A(T) = \{ z \in H : \|Tx - z\| \leq \|x - z\|, \forall x \in C \}$.

In this article, we extend the concept of attractive points in a Hilbert space to that in a Banach space and then prove attractive point theorems and mean convergence theorems without convexity for nonlinear mappings in a Banach space.

1 Introduction

Let H be a real Hilbert space with inner product $\langle \cdot , \cdot \rangle$ and norm $\| \cdot \|$. Let C be a nonempty subset of H. A mapping $T : C \to H$ is said to be nonexpansive if $\|Tx - Ty\| \leq \|x - y\|$ for all $x, y \in C$. We know that if C is a bounded, closed and convex subset of H and $T : C \to C$ is nonexpansive, then $F(T)$ is nonempty. Furthermore, from Baillon [4] we know the first nonlinear mean convergence theorem for nonexpansive mappings in a Hilbert space. An important example of nonexpansive mappings in a Hilbert space is a firmly nonexpansive mapping. A mapping F is said to be firmly nonexpansive if

$$\|Fx - Fy\|^2 \leq \langle x - y, Fx - Fy \rangle$$

for all $x, y \in C$. Kohsaka and Takahashi [16], and Takahashi [24] introduced the following nonlinear mappings which are deduced from a firmly nonexpansive mapping in a Hilbert space. A mapping $T : C \to H$ is called nonspreading [16] if

$$2\|Tx - Ty\|^2 \leq \|Tx - y\|^2 + \|Ty - x\|^2$$

for all $x, y \in C$. A mapping $T : C \to H$ is called hybrid [24] if

$$3\|Tx - Ty\|^2 \leq \|x - y\|^2 + \|Tx - y\|^2 + \|Ty - x\|^2$$

for all $x, y \in C$. The class of nonspreading mappings was first defined in a smooth, strictly convex and reflexive Banach space. The resolvents of a maximal monotone operator are
nonspreading mappings; see [16] for more details. These three classes of nonlinear mappings are important in the study of the geometry of infinite dimensional spaces. Indeed, by using the fact that the resolvents of a maximal monotone operator are nonspreading mappings, Takahashi, Yao and Kohsaka [27] solved an open problem which is related to Ray’s theorem [19] in the geometry of Banach spaces. Kocourek, Takahashi and Yao [12] defined a broad class of nonlinear mappings containing nonexpansive mappings, nonspreading mappings and hybrid mappings in a Hilbert space. A mapping $T : C \to H$ is called generalized hybrid [12] if there exist $\alpha, \beta \in \mathbb{R}$ such that

$$\alpha \| Tx - Ty \|^2 + (1 - \alpha) \| x - Ty \|^2 \leq \beta \| Tx - y \|^2 + (1 - \beta) \| x - y \|^2$$

for all $x, y \in C$, where \mathbb{R} is the set of real numbers. We call such T an (α, β)-generalized hybrid mapping; see also [2]. Kocourek, Takahashi and Yao [12] proved a fixed point theorem for such mappings in a Hilbert space.

Theorem 1.1 ([12]). Let C be a nonempty, closed and convex subset of a Hilbert space H and let $T : C \to C$ be a generalized hybrid mapping. Then T has a fixed point in C if and only if $\{T^n z\}$ is bounded for some $z \in C$.

They also proved a mean convergence theorem which generalizes Baillon’s nonlinear ergodic theorem [4] in a Hilbert space.

Theorem 1.2 ([12]). Let H be a real Hilbert space, let C be a nonempty, closed and convex subset of H, let T be a generalized hybrid mapping from C into itself with $F(T) \neq \emptyset$ and let P be the metric projection of H onto $F(T)$. Then for any $x \in C$,

$$S_n x = \frac{1}{n} \sum_{k=0}^{n-1} T^k x$$

converges weakly to $p \in F(T)$, where $p = \lim_{n \to \infty} P T^n x$.

Recently, Takahashi and Takeuchi [25] introduced the concept of attractive points of nonlinear mappings in a Hilbert space and then they proved attractive point and mean convergence theorems without convexity for generalized hybrid mappings.

In this talk, we extend the concept of attractive points in a Hilbert space to that in a Banach space and then prove attractive point theorems and mean convergence theorems without convexity for nonlinear mappings in a Banach space.

2 Preliminaries

Let E be a real Banach space with norm $\| \cdot \|$ and let E^* be the topological dual space of E. We denote the value of $y^* \in E^*$ at $x \in E$ by $\langle x, y^* \rangle$. The modulus δ of convexity of E is defined by

$$\delta(\epsilon) = \inf \left\{ 1 - \frac{\|x + y\|}{2} : \|x\| \leq 1, \|y\| \leq 1, \|x - y\| \geq \epsilon \right\}$$

for all ϵ with $0 \leq \epsilon \leq 2$. A Banach space E is said to be uniformly convex if $\delta(\epsilon) > 0$ for all $\epsilon > 0$. A uniformly convex Banach space is strictly convex and reflexive. Let E be a Banach space. The duality mapping J from E into 2^{E^*} is defined by

$$J x = \{ x^* \in E^* : \langle x, x^* \rangle = \|x\|^2 = \|x^*\|^2 \}$$
for all $x \in E$. Let $U = \{ x \in E : \|x\| = 1 \}$. The norm of E is said to be \textit{Gâteaux differentiable} if for each $x, y \in U$, the limit

$$\lim_{t \to 0} \frac{\|x + ty\| - \|x\|}{t}$$

exists. In the case, E is called \textit{smooth}. We know that E is smooth if and only if J is a single-valued mapping of E into E^*. We also know that E is reflexive if and only if J is surjective, and E is strictly convex if and only if J is one-to-one. Therefore, if E is a smooth, strictly convex and reflexive Banach space, then J is a single-valued bijection. The norm of E is said to be \textit{uniformly Gâteaux differentiable} if for each $y \in U$, the limit (2.1) is attained uniformly for $x \in U$. It is also said to be \textit{Fréchet differentiable} if for each $x \in U$, the limit (2.1) is attained uniformly for $y \in U$. A Banach space E is called \textit{uniformly smooth} if the limit (2.1) is attained uniformly for $x, y \in U$. It is known that if the norm of E is uniformly Gâteaux differentiable, then J is uniformly norm-to-weak* continuous on each bounded subset of E, and if the norm of E is Fréchet differentiable, then J is norm-to-norm continuous. If E is uniformly smooth, J is uniformly norm-to-norm continuous on each bounded subset of E. For more details, see [22, 23]. The following result is well known; see [22].

Lemma 2.1 ([22]). \textit{Let E be a smooth Banach space and let J be the duality mapping on E. Then, $(x - y, Jx - Jy) \geq 0$ for all $x, y \in E$. Furthermore, if E is strictly convex and $(x - y, Jx - Jy) = 0$, then $x = y$.}

Let E be a smooth Banach space. The function $\phi : E \times E \to \mathbb{R}$ is defined by

$$\phi(x, y) = \|x\|^2 - 2\langle x, Jy \rangle + \|y\|^2$$

for all $x, y \in E$; see [1] and [11]. We have from the definition of ϕ that

$$\phi(x, y) = \phi(x, z) + \phi(z, y) + 2\langle x - z, Jz - Jy \rangle$$

(2.2)

for all $x, y, z \in E$. From $(\|x\| - \|y\|)^2 \leq \phi(x, y)$ for all $x, y \in E$, we can see that $\phi(x, y) \geq 0$. Furthermore, we can obtain the following equality:

$$2\langle x - y, Jz - Jw \rangle = \phi(x, w) + \phi(y, z) - \phi(x, z) - \phi(y, w)$$

(2.3)

for all $x, y, z, w \in E$. Let $\phi_* : E^* \times E^* \to \mathbb{R}$ be the function defined by

$$\phi_*(x^*, y^*) = \|x^*\|^2 - 2\langle J^{-1}y^*, x^* \rangle + \|y^*\|^2$$

for all $x^*, y^* \in E^*$, where J is the duality mapping of E. It is easy to see that

$$\phi(x, y) = \phi_*(Jy, Jx)$$

(2.4)

for all $x, y \in E$. If E is additionally assumed to be strictly convex, then

$$\phi(x, y) = 0 \iff x = y.$$

(2.5)

The following results are in Xu [28] and Kamimura and Takahashi [11].

Lemma 2.2 ([28]). \textit{Let E be a uniformly convex Banach space and let $r > 0$. Then there exists a strictly increasing, continuous and convex function $g : [0, \infty) \to [0, \infty)$ such that $g(0) = 0$ and

$$\|\lambda x + (1 - \lambda)y\|^2 \leq \lambda\|x\|^2 + (1 - \lambda)\|y\|^2 - \lambda(1 - \lambda)g(\|x - y\|)$$

for all $x, y \in B_r$ and λ with $0 \leq \lambda \leq 1$, where $B_r = \{ z \in E : \|z\| \leq r \}$.
Lemma 2.3 ([11]). Let E be smooth and uniformly convex Banach space and let $r > 0$. Then there exists a strictly increasing, continuous and convex function $g : [0, 2r] \rightarrow \mathbb{R}$ such that $g(0) = 0$ and $g(||x - y||) \leq \phi(x, y)$ for all $x, y \in B_r$, where $B_r = \{z \in E : ||z|| \leq r\}$.

Let E be a smooth Banach space and let C be a nonempty subset of E. A mapping $T : C \rightarrow E$ is called generalized nonexpansive [8] if $F(T) \neq \emptyset$ and $\phi(Tx, y) \leq \phi(x, y)$ for all $x \in C$ and $y \in F(T)$. Let D be a nonempty subset of a Banach space E. A mapping $R : E \rightarrow D$ is said to be sunny if $R(Rx + t(x - Rx)) = Rx$ for all $x \in E$ and $t \geq 0$. A mapping $R : E \rightarrow D$ is said to be a retraction or a projection if $Rx = x$ for all $x \in D$. A nonempty subset D of a smooth Banach space E is said to be a generalized nonexpansive retract (resp. sunny generalized nonexpansive retract) of E if there exists a generalized nonexpansive retraction (resp. sunny generalized nonexpansive retraction) R from E onto D; see [8] for more details. The following results are in Ibaraki and Takahashi [8].

Lemma 2.4 ([8]). Let C be a nonempty closed sunny generalized nonexpansive retract of a smooth and strictly convex Banach space E. Then the sunny generalized nonexpansive retraction from E onto C is uniquely determined.

Lemma 2.5 ([8]). Let C be a nonempty closed subset of a smooth and strictly convex Banach space E such that there exists a sunny generalized nonexpansive retraction R from E onto C and let $(x, z) \in E \times C$. Then the following hold:

(i) $z = Rx$ if and only if $(x - z, Jy - Jz) \leq 0$ for all $y \in C$;
(ii) $\phi(Rx, z) + \phi(x, Rx) \leq \phi(x, z)$.

In 2007, Kohsaka and Takahashi [14] proved the following results:

Lemma 2.6 ([14]). Let E be a smooth, strictly convex and reflexive Banach space and let C be a nonempty closed subset of E. Then the following are equivalent:

(a) C is a sunny generalized nonexpansive retract of E;
(b) C is a generalized nonexpansive retract of E;
(c) JC is closed and convex.

Lemma 2.7 ([14]). Let E be a smooth, strictly convex and reflexive Banach space and let C be a nonempty closed sunny generalized nonexpansive retract of E. Let R be the sunny generalized nonexpansive retraction from E onto C and let $(x, z) \in E \times C$. Then the following are equivalent:

(i) $z = Rx$;
(ii) $\phi(x, z) = \min_{y \in C} \phi(x, y)$.

Let l^∞ be the Banach space of bounded sequences with supremum norm. Let μ be an element of $(l^\infty)^*$ (the dual space of l^∞). Then we denote by $\mu(f)$ the value of μ at $f = (x_1, x_2, x_3, \ldots) \in l^\infty$. Sometimes we denote by $\mu_n(x_n)$ the value $\mu(f)$. A linear functional μ on l^∞ is called a mean if $\mu(e) = \|\mu\| = 1$, where $e = (1, 1, 1, \ldots)$. A mean μ is called a Banach limit on l^∞ if $\mu_n(x_{n+1}) = \mu_n(x_n)$. We know that there exists a Banach limit on l^∞. If μ is a Banach limit on l^∞, then for $f = (x_1, x_2, x_3, \ldots) \in l^\infty$,

$$\liminf_{n \rightarrow \infty} x_n \leq \mu_n(x_n) \leq \limsup_{n \rightarrow \infty} x_n.$$

In particular, if $f = (x_1, x_2, x_3, \ldots) \in l^\infty$ and $x_n \rightarrow a \in \mathbb{R}$, then we have $\mu(f) = \mu_n(x_n) = a$. See [22] for the proof of existence of a Banach limit and its other elementary properties.
3 Existence of Attractive Points in Banach Spaces

In 2011, Takahashi and Takeuchi [25] proved the following attractive point theorem in a Hilbert space.

Theorem 3.1 ([25]). Let H be a Hilbert space, let C be a nonempty subset of H and let T be a generalized hybrid mapping of C into itself. Suppose that there exists an element $z \in C$ such that $\{T^n z\}$ is bounded. Then $A(T)$ is nonempty. Additionally, if C is closed and convex, then $F(T)$ is nonempty.

In this section, we first try to extend Takahashi and Takeuchi’s attractive point theorem [25] to Banach spaces. Let E be a smooth Banach space. Let C be a nonempty subset of E and let T be a mapping of C into E. We denote by $A(T)$ the set of attractive points [17] of T, i.e.,

$$A(T) = \{z \in E : \phi(z, Tx) \leq \phi(z, x), \quad \forall x \in C\}.$$

From Lin and Takahashi [17], $A(T)$ is a closed and convex subset of E. A mapping $T : C \to E$ is called generalized nonspreading [13] if there exist $\alpha, \beta, \gamma, \delta \in \mathbb{R}$ such that

$$\alpha \phi(Tx, Ty) + (1 - \alpha) \phi(x, Ty) + \gamma \{\phi(Ty, Tx) - \phi(Ty, x)\} \leq \beta \phi(Tx, y) + (1 - \beta) \phi(x, y) + \delta \{\phi(y, Tx) - \phi(y, x)\}$$

for all $x, y \in C$, where $\phi(x, y) = \|x\|^2 - 2 \langle x, Jy \rangle + \|y\|^2$ for $x, y \in E$. We call such T an $(\alpha, \beta, \gamma, \delta)$-generalized nonspreading mapping. For example, a $(1, 1, 1, 0)$-generalized nonspreading mapping is a nonspreading mapping in the sense of Kohsaka and Takahashi [16], i.e.,

$$\phi(Tx, Ty) + \phi(Ty, Tx) \leq \phi(Tx, y) + \phi(y, Tx), \quad \forall x, y \in C;$$

see also [15] and [3]. Let T be an $(\alpha, \beta, \gamma, \delta)$-generalized nonspreading mapping. Observe that if $F(T) \neq \emptyset$, then $\phi(u, Ty) \leq \phi(u, y)$ for all $u \in F(T)$ and $y \in C$. Using the technique developed by [20] and [21], we can prove an attractive point theorem for generalized nonspreading mappings in a Banach space.

Theorem 3.2 (Lin and Takahashi [17]). Let E be a smooth and reflexive Banach space. Let C be a nonempty subset of E and let T be a generalized nonspreading mapping of C into itself. Then, the following are equivalent:

(a) $A(T) \neq \emptyset$;

(b) $\{T^n x\}$ is bounded for some $x \in C$.

Additionally, if E is strictly convex and C is closed and convex, then the following are equivalent:

(a) $F(T) \neq \emptyset$;

(b) $\{T^n x\}$ is bounded for some $x \in C$.
4 Skew-Attractive Point Theorems

Let E be a smooth Banach space and let C be a nonempty subset of E. Let $T : C \to E$ be a generalized nonspreading mapping; see (3.1). This mapping has the property that if $u \in F(T)$ and $x \in C$, then $\phi(u, Tx) \leq \phi(u, x)$. This property can be revealed by putting $x = u \in F(T)$ in (3.1). Similarly, putting $y = u \in F(T)$ in (3.1), we obtain that for any $x \in C$,

$$
\alpha \phi(Tx, u) + (1 - \alpha) \phi(x, u) + \gamma \{\phi(u, Tx) - \phi(u, x)\} \\
\leq \beta \phi(Tx, u) + (1 - \beta) \phi(x, u) + \delta \{\phi(u, Tx) - \phi(u, x)\}
$$

(4.1)

and hence

$$
(\alpha - \beta) \{\phi(Tx, u) - \phi(x, u)\} + (\gamma - \delta) \{\phi(u, Tx) - \phi(u, x)\} \leq 0.
$$

(4.2)

Therefore, we have that $\alpha > \beta$ together with $\gamma \leq \delta$ implies $\phi(Tx, u) \leq \phi(x, u)$. Motivated by this property of T and $F(T)$, we give the following definition. Let E be a smooth Banach space. Let C be a nonempty subset of E and let T be a mapping of C into E. We denote by $B(T)$ the set of skew-attractive points of T, i.e.,

$$
B(T) = \{z \in E : \phi(Tx, z) \leq \phi(x, z), \ \forall x \in C\}.
$$

The following result was proved by Lin and Takahashi [17].

Lemma 4.1 ([17]). Let E be a smooth Banach space and let C be a nonempty subset of E. Let T be a mapping from C into E. Then $B(T)$ is closed.

Let E be a smooth, strictly convex and reflexive Banach space and let C be a nonempty subset of E. Let T be a mapping of C into E. Define a mapping T^* as follows:

$$
T^*x^* = JTJ^{-1}x^*, \ \forall x^* \in JC,
$$

where J is the duality mapping on E and J^{-1} is the duality mapping on E^*. A mapping T^* is called the adjoint mapping of T; see also [26] and [6]. It is easy to show that if T is a mapping of C into itself, then T^* is a mapping of JC into itself. In fact, for $x^* \in JC$, we have $J^{-1}x^* \in C$ and hence $TJ^{-1}x^* \in C$. So, we have $T^*x^* = JTJ^{-1}x^* \in JC$. Then, T^* is a mapping of JC into itself. We can prove the following result in a Banach space which was proved by Lin and Takahashi [17].

Lemma 4.2 ([17]). Let E be a smooth, strictly convex and reflexive Banach space and let C be a nonempty subset of E. Let T be a mapping of C into E and let T^* be the duality mapping of T. Then, the following hold:

1. $JB(T) = A(T^*)$;
2. $JA(T) = B(T^*)$.

In particular, $JB(T)$ is closed and convex.

Using these results, we can discuss skew-attractive point theorems in Banach spaces. Let E be a smooth Banach space and let C be a nonempty subset of E. A mapping $T : C \to E$ is called skew-generalized nonspreading [7] if there exist $\alpha, \beta, \gamma, \delta \in \mathbb{R}$ such that

$$
\alpha \phi(Ty, Tx) + (1 - \alpha) \phi(Ty, x) + \gamma \{\phi(Ty, Ty) - \phi(x, Ty)\} \\
\leq \beta \phi(y, Tx) + (1 - \beta) \phi(y, x) + \delta \{\phi(Tx, y) - \phi(x, y)\}
$$

(4.3)
for all \(x, y \in C \). We call such \(T \) an \((\alpha, \beta, \gamma, \delta)\)-skew-generalized nonspreading mapping. For example, a \((1,1,1,0)\)-skew-generalized nonspreading mapping is a skew-nonspreading mapping in the sense of Ibaraki and Takahashi [9], i.e.,

\[
\phi(Tx, Ty) + \phi(Ty, Tx) \leq \phi(x, Ty) + \phi(y, Tx), \quad \forall x, y \in C.
\]

The following theorem was proved by Lin and Takahashi [17].

Theorem 4.3 ([17]). Let \(E \) be a smooth, strictly convex and reflexive Banach space and let \(C \) be a nonempty subset of \(E \). Let \(T \) be a skew-generalized nonspreading mapping of \(C \) into itself. Then, the following are equivalent:

1. \(B(T) \neq \emptyset \);
2. \(\{T^{n}x\} \) is bounded for some \(x \in C \).

Additionally, if \(C \) is closed and \(JC \) is closed and convex, then the following are equivalent:

1. \(F(T) \neq \emptyset \);
2. \(\{T^{n}x\} \) is bounded for some \(x \in C \).

5 Mean Convergence Theorems in Banach Spaces

In this section, we can prove a mean convergence theorem without convexity for generalized nonspreading mappings in a Banach space. Before proving it, we state the following lemmas.

Lemma 5.1 ([20, 5]). Let \(E \) be a reflexive Banach space, let \(\{x_{n}\} \) be a bounded sequence in \(E \) and let \(\mu \) be a mean on \(l^{\infty} \). Then there exists a unique point \(z_{0} \in \overline{co}\{x_{n} : n \in \mathbb{N}\} \) such that

\[
\mu_{n} \langle x_{n}, y^{*} \rangle = \langle z_{0}, y^{*} \rangle, \quad \forall y^{*} \in E^{*}.
\]

(5.1)

A unique point \(z_{0} \in \overline{co}\{x_{n} : n \in \mathbb{N}\} \) satisfying (5.1) is called the mean vector of \(\{x_{n}\} \) for \(\mu \).

Lemma 5.2 ([18]). Let \(E \) be a smooth, strictly convex and reflexive Banach space with the duality mapping \(J \) and let \(D \) be a nonempty, closed and convex subset of \(E \). Let \(\{x_{n}\} \) be a bounded sequence in \(D \) and let \(\mu \) be a mean on \(l^{\infty} \). If \(g : D \to \mathbb{R} \) is defined by

\[
g(z) = \mu_{n} \phi(x_{n}, z), \quad \forall z \in D,
\]

then the mean vector \(z_{0} \) of \(\{x_{n}\} \) for \(\mu \) is a unique minimizer in \(D \) such that

\[
g(z_{0}) = \min\{g(z) : z \in D\}.
\]

Lemma 5.3 ([18]). Let \(E \) be a smooth and reflexive Banach space and let \(C \) be a nonempty subset of \(E \). Let \(T \) be a generalized nonspreading mapping of \(C \) into itself. Suppose that \(\{T^{n}x\} \) is bounded for some \(x \in C \). Define

\[
S_{n}x = \frac{1}{n} \sum_{k=0}^{n-1} T^{k}x, \quad \forall n \in \mathbb{N}.
\]

If a subsequence \(\{S_{n_{i}}x\} \) of \(\{S_{n}x\} \) converges weakly to a point \(u \), then \(u \in A(T) \). Additionally, if \(E \) is strictly convex and \(C \) is closed and convex, then \(u \in F(T) \).
Lemma 5.4 ([18]). Let \(E \) be a uniformly convex and smooth Banach space. Let \(C \) be a nonempty subset of \(E \) and let \(T : C \rightarrow C \) be a mapping such that \(B(T) \neq \emptyset \). Then, there exists a unique sunny generalized nonexpansive retraction \(R \) of \(E \) onto \(B(T) \). Furthermore, for any \(x \in C \), \(\lim_{n \to \infty} R T^n x \) exists in \(B(T) \).

Using these lemmas, we prove the following mean convergence theorem for generalized nonspreading mappings in a Banach space.

Theorem 5.5 (Lin and Takahashi [17]). Let \(E \) be a uniformly convex Banach space with a Fréchet differentiable norm and let \(C \) be a nonempty subset of \(E \). Let \(T : \rightarrow C \) be a generalized nonspreading mapping such that \(A(T) = B(T) \neq \emptyset \). Let \(R \) be the sunny generalized nonexpansive retraction of \(E \) onto \(B(T) \). Then, for any \(x \in C \), the sequence \(\{S_n x\} \) of Cesàro means

\[
S_n x = \frac{1}{n} \sum_{k=0}^{n-1} T^k x
\]

converges weakly to an element \(q \) of \(A(T) \), where \(q = \lim_{n \to \infty} R T^n x \).

Using Theorem 5.5, we obtain the following theorems.

Theorem 5.6 (Kocourek, Takahashi and Yao [13]). Let \(E \) be a uniformly convex Banach space with a Fréchet differentiable norm. Let \(T : E \rightarrow E \) be an \((\alpha, \beta, \gamma, \delta)\)-generalized nonspreading mapping such that \(\alpha > \beta \) and \(\gamma \leq \delta \). Assume that \(F(T) \neq \emptyset \) and let \(R \) be the sunny generalized nonexpansive retraction of \(E \) onto \(F(T) \). Then, for any \(x \in E \), the sequence \(\{S_n x\} \) of Cesàro means

\[
S_n x = \frac{1}{n} \sum_{k=0}^{n-1} T^k x
\]

converges weakly to an element \(q \) of \(F(T) \), where \(q = \lim_{n \to \infty} R T^n x \).

Proof. We also know that \(\alpha > \beta \) together with \(\gamma \leq \delta \) implies that \(\phi(Tx, u) \leq \phi(x, u) \) for all \(x \in E \) and \(u \in F(T) \). We also note that \(A(T) = F(T) \) and \(B(T) = F(T) \). So, we have the desired result from Theorem 5.5. \(\square \)

References