<table>
<thead>
<tr>
<th>Title</th>
<th>Fixed point and nonlinear ergodic theorems for new nonlinear mappings in Hilbert spaces (Nonlinear Analysis and Convex Analysis)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Author(s)</td>
<td>Kawasaki, Toshiharu; Takahashi, Wataru</td>
</tr>
<tr>
<td>Citation</td>
<td>数理解析研究所講究録 1841: 50-57</td>
</tr>
<tr>
<td>Issue Date</td>
<td>2013-07</td>
</tr>
<tr>
<td>URL</td>
<td>http://hdl.handle.net/2433/194982</td>
</tr>
<tr>
<td>Type</td>
<td>Departmental Bulletin Paper</td>
</tr>
<tr>
<td>Textversion</td>
<td>publisher</td>
</tr>
</tbody>
</table>
Fixed point and nonlinear ergodic theorems for new nonlinear mappings in Hilbert spaces

(Toshiharu Kawasaki, Niigata University)
(Wataru Takahashi, Tokyo Institute of Technology)

Abstract

In this paper we introduce a broad class of nonlinear mappings which contains the class of constructive mappings and the class of generalized hybrid mappings in a Hilbert space. Then we prove a fixed point theorem for such mappings in a Hilbert space. Furthermore, we prove a nonlinear ergodic theorem of Baillon's type in a Hilbert space. Their results generalize the fixed point theorem and the nonlinear ergodic theorem proved by Kocourek, Takahashi and Yao [10].

1 Introduction

Let H be a real Hilbert space. A mapping T from H into H is said to be constructive if there exists a real number α with $0 < \alpha < 1$ such that

$$\|Tx - Ty\| \leq \alpha \|x - y\|$$

for any $x, y \in H$. By Banach [2] it is known that any constructive mapping has a unique fixed point. Let C be a non-empty subset of H. A mapping T from C into H is said to be nonexpansive if

$$\|Tx - Ty\| \leq \|x - y\|$$

for any $x, y \in C$. By Baillon [1] we know the following nonlinear ergodic theorem in a Hilbert space.

Theorem 1.1. Let H be a real Hilbert space, let C be a non-empty closed convex subset of H and let T be a nonexpansive mapping from C into C with a fixed point. Then for any $x \in C$,

$$S_n x = \frac{1}{n} \sum_{k=0}^{n-1} T^k x$$

is weakly convergent to a fixed point of T.
An important example of nonexpansive mappings in a Hilbert space is a firmly nonexpansive mapping. A mapping T from C into H is said to be firmly nonexpansive if

$$
\|Tx - Ty\|^2 \leq \langle x - y, Tx - Ty \rangle
$$

for any $x, y \in C$; see Browder [4] and Goebel and Kirk [6]. It is known that a firmly nonexpansive mapping can be deduced from an equilibrium problem in a Hilbert space; see Blum and Oettli [3] and Combettes and Hirstoaga [5]. Recently Kohsaka and Takahashi [12], and Takahashi [16] introduced the following nonlinear mappings which are deduced from a firmly nonexpansive mapping in a Hilbert space. A mapping T from C into H is said to be nonspreading if

$$
2\|Tx - Ty\|^2 \leq \|Tx - y\|^2 + \|Ty - x\|^2
$$

for any $x, y \in C$. A mapping T from C into H is said to be hybrid if

$$
3\|Tx - Ty\|^2 \leq \|x - y\|^2 + \|Tx - y\|^2 + \|Ty - x\|^2
$$

for any $x, y \in C$. Motivated by these mappings, Kocourek, Takahashi and Yao [10] defined a class of nonlinear mappings in a Hilbert space. A mapping T from C into H is said to be generalized hybrid if there exist real numbers α and β such that

$$
\alpha\|Tx - Ty\|^2 + (1 - \alpha)\|x - Ty\|^2 \leq \beta\|Tx - y\|^2 + (1 - \beta)\|x - y\|^2
$$

for any $x, y \in C$. We call such a mapping an (α, β)-generalized hybrid mapping. We observe that the class of the mappings above covers the classes of well-known mappings. For example, an (α, β)-generalized hybrid mapping is nonexpansive for $\alpha = 1$ and $\beta = 0$, nonspreading for $\alpha = 2$ and $\beta = 1$, and hybrid for $\alpha = \frac{3}{2}$ and $\beta = \frac{1}{2}$. They proved fixed point theorems for such mappings; see also Kohsaka and Takahashi [11] and Iemoto and Takahashi [7]. Moreover Kocourek, Takahashi and Yao [10] proved the following nonlinear ergodic theorem.

Theorem 1.2. Let H be a real Hilbert space, let C be a non-empty closed convex subset of H, let T be a generalized hybrid mapping from C into C which has a fixed point, and let P be the metric projection of H onto the set of fixed points of T. Then for any $x \in C$,

$$
S_n x = \frac{1}{n} \sum_{k=0}^{n-1} T^k x
$$

is weakly convergent to a fixed point p of T, where $p = \lim_{n \to \infty} PT^n x$.

In this paper we introduce a broad class of nonlinear mappings T from C into H which contains the class of constructive mappings and the class of generalized hybrid mappings. Then we prove a fixed point theorem for such mappings in a Hilbert space. Furthermore, we prove a nonlinear ergodic theorem of Baillon's type in a Hilbert space. There results generalize the fixed point theorem and the nonlinear ergodic theorem proved by Kocourek, Takahashi and Yao [10].
2 Preliminaries

Let H be a real Hilbert space with inner product $\langle \cdot, \cdot \rangle$ and norm $\| \cdot \|$. We denote the strong convergence and the weak convergence of $\{x_n\}$ to $x \in H$ by $x_n \rightarrow x$ and $x_n \rightharpoonup x$, respectively. Let A be a nonempty subset of H. We denote by $\overline{\partial}A$ the closure of the convex hull of A. In a Hilbert space, it is known that

$$\|\alpha x + (1 - \alpha)y\|^2 = \alpha\|x\|^2 + (1 - \alpha)\|y\|^2 - \alpha(1 - \alpha)\|x - y\|^2 \tag{1}$$

for any $x, y \in H$ and for any $\alpha \in \mathbb{R}$; see [15]. Furthermore, in a Hilbert space, we have that

$$2\langle x - y, z - w \rangle = \|x - w\|^2 + \|y - z\|^2 - \|x - z\|^2 - \|y - w\|^2 \tag{2}$$

for any $x, y, z, w \in H$. Let C be a nonempty subset of H and let T be a mapping from C into H. We denote by $F(T)$ the set of fixed points of T. A mapping T from C into H with $F(T) \neq \emptyset$ is called quasi-nonexpansive if $\|x - Ty\| \leq \|x - y\|$ for any $x \in F(T)$ and for any $y \in C$. It is well-known that the set $F(T)$ of fixed points of a quasi-nonexpansive mapping T is closed and convex; see Ito and Takahashi [8]. It is not difficult to prove such a result in a Hilbert space. In fact, for proving that $F(T)$ is closed, take a sequence $\{z_n\} \subset F(T)$ with $z_n \rightarrow z$. Since C is weakly closed, we have $z \in C$. Furthermore, from

$$\|z - Tz\| \leq \|z - z_n\| + \|z_n - Tz\| \leq 2\|z - z_n\| \rightarrow 0,$$

z is a fixed point of T and so $F(T)$ is closed. Let us show that $F(T)$ is convex. For $x, y \in F(T)$ and $\alpha \in [0, 1]$, put $z = \alpha x + (1 - \alpha)y$. Then, we have from (1) that

$$\|z - Tz\|^2 = \|\alpha x + (1 - \alpha)y - Tz\|^2
\leq \alpha\|x - z\|^2 + (1 - \alpha)\|y - z\|^2 - \alpha(1 - \alpha)\|x - y\|^2
= \alpha(1 - \alpha)^2\|x - y\|^2
= \alpha(1 - \alpha)(1 - \alpha + \alpha - 1)\|x - y\|^2
= 0.$$

This implies $Tz = z$. So, $F(T)$ is convex. Let C be a nonempty closed convex subset of H and $x \in H$. Then, we know that there exists a unique nearest point $z \in C$ such that $\|x - z\| = \inf_{y \in C} \|x - y\|$. We denote such a correspondence by $z = P_Cx$. The mapping P_C is called the metric projection of H onto C. It is known that P_C is nonexpansive and

$$\langle x - P_Cx, P_Cx - u \rangle \geq 0$$

for any $x \in H$ and for any $u \in C$; see [15] for more details. For proving a nonlinear ergodic theorem in this paper, we also need the following lemma proved by Takahashi and Toyoda [17].
Lemma 2.1. Let \(D \) be a nonempty closed convex subset of \(H \). Let \(P \) be the metric projection from \(H \) onto \(D \). Let \(\{u_n\} \) be a sequence in \(H \). If \(\|u_{n+1} - u\| \leq \|u_n - u\| \) for any \(u \in D \) and for any \(n \in \mathbb{N} \), then \(\{Pu_n\} \) converges strongly to some \(u_0 \in D \).

Let \(l^\infty \) be the Banach space of bounded sequences with supremum norm. Let \(\mu \) be an element of \((l^\infty)^* \) (the dual space of \(l^\infty \)). Then, we denote by \(\mu(f) \) the value of \(\mu \) at \(f = (x_1, x_2, x_3, \ldots) \in l^\infty \). Sometimes, we denote by \(\mu_n(x_n) \) the value \(\mu(f) \). A linear functional \(\mu \) on \(l^\infty \) is called a mean if \(\mu(e) = \|\mu\| = 1 \), where \(e = (1, 1, 1, \ldots) \). A mean \(\mu \) is called a Banach limit on \(l^\infty \) if \(\mu_n(x_{n+1}) = \mu_n(x_n) \). We know that there exists a Banach limit on \(l^\infty \). If \(\mu \) is a Banach limit on \(l^\infty \), then for \(f = (x_1, x_2, x_3, \ldots) \in l^\infty \),

\[
\lim_{n \to \infty} x_n \leq \mu_n(x_n) \leq \limsup_{n \to \infty} x_n.
\]

In particular, if \(f = (x_1, x_2, x_3, \ldots) \in l^\infty \) and \(x_n \to a \in \mathbb{R} \), then we have \(\mu(f) = \mu_n(x_n) = a \). See [14] for the proof of existence of a Banach limit and its other elementary properties.

Using means and the Riesz theorem, we can obtain the following result; see [13] and [14].

Lemma 2.2. Let \(H \) be a Hilbert space, let \(\{x_n\} \) be a bounded sequence in \(H \) and let \(\mu \) be a mean on \(l^\infty \). Then there exists a unique point \(z_0 \in \overline{co}\{x_n \mid n \in \mathbb{N}\} \) such that

\[
\mu_n(x_n, y) = \langle z_0, y \rangle, \quad \forall y \in H.
\]

3 Fixed point theorems

Let \(H \) be a real Hilbert space and let \(C \) be a nonempty subset of \(H \). A mapping \(T \) from \(C \) into \(H \) is said to be widely generalized hybrid if there exist \(\alpha, \beta, \gamma, \delta, \epsilon, \zeta \in \mathbb{R} \) such that

\[
\alpha\|Tx - Ty\|^2 + \beta\|x - Ty\|^2 + \gamma\|Tx - y\|^2 + \delta\|x - y\|^2 + \mu\|x - Ty\|^2 \leq 0
\]

for any \(x, y \in C \); see [9]. Such a mapping \(T \) is called \((\alpha, \beta, \gamma, \delta, \epsilon, \zeta)\)-widely generalized hybrid. An \((\alpha, \beta, \gamma, \delta, \epsilon, \zeta)\)-widely generalized hybrid mapping is generalized hybrid in the sense of Kocourek, Takahashi and Yao [10] if \(\alpha + \beta = -\gamma - \delta = 1 \) and \(\epsilon = \zeta = 0 \). We first prove a fixed point theorem for widely generalized hybrid mappings in a Hilbert space.

Theorem 3.1. Let \(H \) be a real Hilbert space, let \(C \) be a non-empty closed convex subset of \(H \) and let \(T \) be an \((\alpha, \beta, \gamma, \delta, \epsilon, \zeta)\)-widely generalized hybrid mapping from \(C \) into itself which satisfies the following conditions (1) and (2):

1. \(\alpha + \beta + \gamma + \delta \geq 0 \);
2. \(\epsilon + \alpha + \gamma > 0 \) or \(\zeta + \alpha + \beta > 0 \).
Then T has a fixed point if and only if there exists $z \in C$ such that $\{T^n z \mid n = 0, 1, \ldots \}$ is bounded. In particular, a fixed point of T is unique in the case of $\alpha + \beta + \gamma + \delta > 0$ on the condition (1).

Remark 3.2. We can also prove Theorem 3.1 by using the following condition instead of the condition (2):

(2') $\epsilon - \beta - \delta > 0$, or $\zeta - \gamma - \delta > 0$.

In the case of the condition $\epsilon - \beta - \delta > 0$, we obtain from (1) that

$$\epsilon - \beta - \delta \leq \epsilon + \alpha + \gamma.$$

Thus we obtain the desired result by Theorem 3.1. Similarly, for the case of $\zeta - \gamma - \delta > 0$, we can obtain the result by using the case of $\zeta + \alpha + \beta > 0$.

As a direct consequence of Theorem 3.1, we obtain the following.

Theorem 3.3. Let H be a real Hilbert space, let C be a non-empty bounded closed convex subset of H and let T be an $(\alpha, \beta, \gamma, \delta, \epsilon, \zeta)$-widely generalized hybrid mapping from C into itself which satisfies the following conditions (1) and (2):

1. $\alpha + \beta + \gamma + \delta \geq 0$;
2. $\epsilon + \alpha + \gamma > 0$, or $\zeta + \alpha + \beta > 0$.

Then T has a fixed point. In particular, a fixed point of T is unique in the case of $\alpha + \beta + \gamma + \delta > 0$ on the condition (1).

Note that an $(\alpha, \beta, \gamma, \delta, \epsilon, \zeta)$-widely generalized hybrid mapping T above with $\alpha = 1$, $\beta = \gamma = \epsilon = \zeta = 0$ and $-1 < \delta < 0$ is a contractive mapping. Using Theorem 3.1, we can show the Banach fixed point theorem in a Hilbert space.

Theorem 3.4 (the Banach fixed point theorem). Let H be a real Hilbert space and let T be a contractive mapping from H into H, that is, there exists a real number α with $0 < \alpha < 1$ such that

$$\|Tx - Ty\| \leq \alpha \|x - y\|$$

for any $x, y \in H$. Then T has a unique fixed point.

Using Theorem 3.1, we can show the following fixed point theorem for generalized hybrid mappings in a Hilbert space.

Theorem 3.5 (Kocourek, Takahashi and Yao [10]). Let H be a real Hilbert space, let C be a non-empty closed convex subset of H and let T be a generalized hybrid mapping from C into C, that is, there exist real numbers α and β such that

$$\alpha \|Tx - Ty\|^2 + (1 - \alpha) \|x - Ty\|^2 \leq \beta \|Tx - y\|^2 + (1 - \beta) \|x - y\|^2$$

for any $x, y \in C$. Then T has a fixed point if and only if there exists $z \in C$ such that $\{T^n z \mid n = 0, 1, \ldots \}$ is bounded.
Example 3.6. Let H be the real line and let T be a mapping from H into H defined by $Tx=2x$ for any $x \in H$. Taking $\alpha=1$, $\beta=\gamma=-2$, $\delta=4$ and $\epsilon=\zeta=2$, we have that

\[
\alpha\|Tx-Ty\|^2 + \beta\|x-Ty\|^2 + \gamma\|Tx-y\|^2 + \delta\|x-y\|^2 + \max\{\epsilon\|x-Tx\|^2, \zeta\|y-Ty\|^2\} = 8|x-y|^2 - 2|x-2y|^2 - 2|2x-y|^2 + \max\{2x^2, 2y^2\}.
\]

for any $x, y \in H$. Furthermore, since $\{T^n0 | n=0, 1, \ldots\} = \{0\}$, (1) $\alpha + \beta + \gamma + \delta = 1 > 0$ and (2) $\epsilon + \alpha + \gamma = 1 > 0$, we have from Theorem 3.1 that T has a unique fixed point. However T is not a contractive mapping. Moreover, taking $x=0$ and $y=1$, we have that for any real numbers α and β,

\[
\alpha\|Tx-Ty\|^2 + (1-\alpha)\|x-Ty\|^2 - \beta\|Tx-y\|^2 - (1-\beta)\|x-y\|^2 = 4\alpha + 4(1-\alpha) - \beta - (1-\beta) = 3 > 0.
\]

Thus T is not generalized hybrid.

4 Nonlinear ergodic theorem

In this section, using the technique developed by Takahashi [13], we prove a nonlinear ergodic theorem of Baillon's type in a Hilbert space. Before proving the result, we need the following lemmas.

Lemma 4.1. Let H be a real Hilbert space, let C be a non-empty closed convex subset of H and let T be an $(\alpha, \beta, \gamma, \delta, \epsilon, \zeta)$-widely generalized hybrid mapping from C into C which has a fixed point and satisfies the condition:

(2) $\epsilon + \alpha + \gamma > 0$, or $\zeta + \alpha + \beta > 0$.

Then the set of fixed points of T is closed.

Lemma 4.2. Let H be a real Hilbert space, let C be a non-empty closed convex subset of H and let T be an $(\alpha, \beta, \gamma, \delta, \epsilon, \zeta)$-widely generalized hybrid mapping from C into C which has a fixed point and satisfies the conditions (1) and (2):

(1) $\alpha + \beta + \gamma + \delta \geq 0$;

(2) $\epsilon + \alpha + \gamma > 0$, or $\zeta + \alpha + \beta > 0$.

Then the set of fixed points of T is convex.

Lemma 4.3. Let H be a real Hilbert space, let C be a non-empty closed convex subset of H and let T be an $(\alpha, \beta, \gamma, \delta, \epsilon, \zeta)$-widely generalized hybrid mapping from C into C which has a fixed point and satisfies the conditions (1) and (3):
Then T is quasi-nonexpansive.

Theorem 4.4. Let H be a real Hilbert space, let C be a non-empty closed convex subset of H and let T be an $(\alpha, \beta, \gamma, \delta, \epsilon, \zeta)$-widely generalized hybrid mapping from C into C which has a fixed point and satisfies the conditions (1) and (2):

1. $\alpha + \beta + \gamma + \delta \geq 0$;
2. $\epsilon + \alpha + \gamma > 0$, or $\zeta + \alpha + \beta > 0$;
3. $\alpha + \gamma > 0$, or $\alpha + \beta > 0$;

respectively. Then for any $x \in C$,

$$S_n x = \frac{1}{n} \sum_{k=0}^{n-1} T^k x$$

is weakly convergent to a fixed point p of T, where P is the metric projection from H onto $F(T)$ and $p = \lim_{n \to \infty} PT^n x$.

Using Theorem 4.4, we can show the following nonlinear ergodic theorem for generalized hybrid mappings in a Hilbert space.

Theorem 4.5 (Kocourek, Takahashi and Yao [10]). Let H be a real Hilbert space, let C be a non-empty closed convex subset of H and let T be a generalized hybrid mapping from C into C, that is, there exist $\alpha, \beta \in \mathbb{R}$ such that

$$\alpha \|Tx - Ty\|^2 + (1 - \alpha)\|x - Ty\|^2 \leq \beta \|Tx - y\|^2 + (1 - \beta)\|x - y\|^2$$

for any $x, y \in C$. Suppose that $F(T)$ is nonempty. Then for any $x \in C$,

$$S_n x = \frac{1}{n} \sum_{k=0}^{n-1} T^k x$$

is weakly convergent to a fixed point p of T, where $p = \lim_{n \to \infty} PT^n x$ and P is the metric projection from H onto $F(T)$.
References

