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Abstract

Complex programming problems have various types. In this talk, we would take an
overview concerning programming problems by complex variables. We introduce these prob-
lems start from: linear and fractional linear complex problems with complex constrained to a
typical general complex programming.

The main purpose of a complex programming could integrate to be three situations. It
includes to establish the necessary optimality conditions for a solution, then to constitute the
existence of optimal solution from the converse of necessary conditions with extra assumptions.

Many authors make efforts to find each request extra conditions for supplementary to
deduce the sufficient optimally conditions. It follows that the constitution for sufficient opti-
malities are various.

In order to complete the work, one will often consider the dual part relative to primal
problem, thus the duality problem in optimization theory also plays an important part in
solving the existence of optimal solution for primal problem. We only present the necessary
and sufficient optimality condition for typical nonsmooth complex programming.
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\S 1. Introduction

A typical minimax complex programming may be considered as the following prob-

lem:

$( FP_{c}) \min_{\zeta\in X}\sup_{\eta\in Y}\frac{Re[f(\zeta,\eta)+(z^{H}Az)^{1/2}]}{Re[g(\zeta,\eta)-(z^{H}Bz)^{1/2}]}$

subject to $X=\{\zeta=(z,\overline{z})\in \mathbb{C}^{2n}| -h(\zeta)\in S\subset \mathbb{C}^{p}\}$

and $Y$ is a compact subset of $\mathbb{C}^{2m},$ $S$ is a polyhedral cone. It is easy to see that:

all linear, fractional linear, nonfractional nonlinear, or fractional nonlinear programing

problems are deduced from $(FP_{c})$ as the special cases.
In the earliest complex linear problem is firstly given by Levinson in 1966 as the

form:

(C) $\min Re(a^{T}z+b)$

subject to $Az=d,$ $A\in \mathbb{C}^{n\cross n},$ $z\in \mathbb{C}^{n}$ , and $a,$ $b,$ $d\in \mathbb{C}^{n}.$

Shorter after in 1970, Swarap and Sharma consider the problem as:

(C) $\min Re(a^{T}z+b)/Re(c^{T}z+d)$

subject to $Az=\alpha,$ $A\in \mathbb{C}^{n\cross n}$ , and $a,$ $b,$ $c,$ $d,$ $\alpha\in \mathbb{C}^{n}.$

Hence after, Mond and Craven in 1975, they consider:

(C) $\min Ref(z)/Reg(z)$

subject to $f,$ $g$ are complex continuous on $z\in \mathbb{C}^{n},$

while nonfractional complex programming problem as the form:

(C) $\min Re[f(\zeta)+(z^{H}Az)^{1/2}]$

subject to $\zeta=(z, \overline{z})\in \mathbb{C}^{2n}$ , and

$-h(\zeta)\in S$ , a polyhedral cone in $\mathbb{C}^{P}$

where $f$ is analytic on $\Omega=\{\zeta=(z, \overline{z})\in \mathbb{C}^{2n}\}\subset \mathbb{C}^{2n},$ $A$ is positive semidefinite

Hermitian metrix $\mathbb{C}^{nxn}.$

Note that the objective in $C_{4}$ contains complex function $f(\zeta)$ and a positive valued

function $(z^{H}Az)^{1/2}$ . This type of function often occurs in engineering.
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\S 2. Preliminary of Complex Minimax Programming

We note that in our topic, the convexity (or generalized convexity) always plays an
important role. But Ferrero (cf. [2]) explored that nonlinear analytic function $f(\zeta),$ $\zeta\in$

$\mathbb{C}^{n}$ has no real convex part, so we consider that in many complex programming, the
function $f$ often varies on $z\in \mathbb{C}^{n}$ together with its conjugate complex $\overline{z}\in \mathbb{C}^{n}$ in the
discussed problem. One can see Parkush et al. (cf. 1984, ZAMM), first consider the
complex programming:

(P) $\min\frac{Re[f(z,\overline{z})+(z^{H}Az)^{1/2}]}{Re[g(z,\overline{z})-(z^{H}Bz)^{1/2}]}$

subject to $-h(z, \overline{z})\in S\subset \mathbb{C}^{p},$ $z\in \mathbb{C}^{n},$

and established sufficient optimality conditions under the assumptions in advanced that
$fand-g$ have convex real part, $and-h$ is $S$-convex. The reason comes from that $f(\zeta)$

$and-g(\zeta),$ $\zeta\in \mathbb{C}^{n}$ , may have no convex real parts if $\zeta\neq(z, \overline{z})$ .
Hence after, many works in complete programming, like Lai and Liu (cf. [12]),

investigate the complex fractional programming involving generalized quasi/pseudo
convexity function as the form $(P_{0})$ . It is natural to extend the one complex variable
$\zeta=(z, \overline{z})$ to two independent complex variable functions $g(\zeta, \eta)$ and $f(\zeta, \eta)$ in a complex
fractional programming problem as the following form:

$( FP_{c}) \min_{\zeta\in X}\sup_{\eta\in Y}\frac{Re[f(\zeta,\eta)+(z^{H}Az)^{1/2}]}{Re[g(\zeta,\eta)-(z^{H}Bz)^{1/2}]}$

subject to $X=\{\zeta=(z, \overline{z})\in \mathbb{C}^{2n}|-h(\zeta)\in S\subset \mathbb{C}^{p}\}$

$Y$ is a compact subset of $\mathbb{C}^{2m}$

where $S$ is a polyhedral cone in $\mathbb{C}^{p};A,$ $B\in \mathbb{C}^{n\cross n}$ are positive semidefinite Hermitian
matrices; $f(\cdot, \cdot)$ and $g(\cdot, \cdot)$ are continuous maps on $\mathbb{C}^{2n}\cross \mathbb{C}^{2m}$ to $\mathbb{C}$ , and for each $\eta\in$

$Y\subset \mathbb{C}^{2m},$ $f(\cdot, \eta),$ $g(\cdot, \eta)$ and $h(\cdot)$ are analytic functions on

$\zeta\in Q=\{(z, \overline{z})|z\in \mathbb{C}^{n}\}\subset \mathbb{C}^{2n}.$

This $Q$ is a linear manifold over real field $\mathbb{R}.$

There are many complex programming fractional as well as nonfractional are special
cases of problem $(FP_{c})$ including differentiable or nondifferentiable.

The main tasks in study of problem $(FP_{c})$ have three tasks including:
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1. To find the necessary optimality conditions.

2. To establish the sufficient optimality condition.

3. To constitute some duality models and prove the duality theorem holds for the dual

and primal problems have the same optimal values, that is, there is no duality gap

between primal problem and duality problem.

Usually, the sufficient optimality conditions are deduced from the converse of nec-
essary conditions with extra assumptions, and hence many researchers always effort to

search the extra conditions. Cause to this reason, the sufficient conditions are various,

and the duality models are based on the sufficient conditions, thus one may have many

duality forms. Sometimes in order to get the solution, one may propose some approx-

imation procedure to get the approximate solution. The technics or methods are also

important evaluation for solution.
In this paper, we propose theoretical approach. In order to explain some mathe-

matical methods, we start from [6, 10, 14, 15] for the necessary theorem for minimax

problem as following.

At first, we consider a nonfractional minimax programming as the form (cf. [6, 10,

14, 15] $)$ :

$( P_{c}) \min_{\zeta\in X_{\eta}}\sup_{\in Y}Re[f(\zeta, \eta)+(z^{H}Az)^{1/2}]$

subject to $X=\{\zeta=(z, \overline{z})\in \mathbb{C}^{2n}|$ $-h(\zeta)\in S\subset \mathbb{C}^{p}\}$

$Y\subset \mathbb{C}^{2m}$ is a compact subset.

For convenience, we denote a set depending the $(P_{c})$ -optimal $\zeta_{0}$ by:

$Z_{\tilde{\eta}}(\zeta_{0})=\{\zeta\in \mathbb{C}^{2n}|_{andRe[\sum_{i=1}^{k}\lambda_{i}f_{\zeta}’(\zeta_{0},\eta_{i})\zeta+\langle Az,z\rangle^{1/2}]}^{-h_{\zeta}’(\zeta_{0})\zeta\in S(-h(\zeta_{0})),\zeta=(z,\overline{z})\in Q}<0\}.$

Thus, if $Z_{\tilde{\eta}}(\zeta_{0})=\emptyset$ , then it follows that the following conditions hold:

(I) $\sum_{i=1}^{k}\lambda_{i}[\overline{\nabla_{z}f(\zeta_{0},\eta_{i})}+\nabla_{\overline{z}}f(\zeta_{0}, \eta_{i})+Au]+[\mu^{T}\overline{\nabla_{z}h(\zeta_{0})}+\mu^{H}\nabla_{\overline{z}}h(\zeta_{0})]=0,$

(II) $Re\langle h(\zeta_{0}),$ $\mu\rangle=0,$ $u^{H}Au\leq 1,$

(III) $(z_{0}^{H}Az_{0})^{1/2}=Re$ ( $z_{0}^{H}$ Au),
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where $\lambda_{i}>0,$ $\sum_{i=1}^{k}\lambda_{i}=1$ and

$\eta_{i}\in Y(\zeta_{0})=\{\eta\in Y$ $Ref( \zeta_{0}, \eta)=\sup_{\nu\in Y}Ref(\zeta_{0}, \nu)\}$ , for $i=1,$ $\ldots,$
$k.$

Therefore we obtain the following theorem.

Theorem 2.1. Let $\zeta_{0}=(z_{0}, \overline{z_{0}})\in Q$ be $a(P_{c})$ -optimal such that $\langle Az_{0},$ $z_{0}\rangle=0,$

and $Z_{\tilde{\eta}}(\zeta_{0})=\emptyset$ with some maximum point $\tilde{\eta}\in Y(\zeta_{0})$ . Then the above conditions (I),
(II) and (III) hold.

In order to establish the sufficient optimality conditions, we introduce the gen-
eralized convexity (strictly) at $\zeta=\zeta_{0}\in Q\subset \mathbb{C}^{2n}$ , involving the pseudo convex as
well as the quasi convex at $\zeta=\zeta_{0}\in Q$ for analytic functions and analytic mapping
$h(\cdot)$ : $\mathbb{C}^{2n}arrow \mathbb{C}^{p}$ in papers [6, 7] by Lai and Huang.

Consequently, we can treat with the necessary conditions as $(P_{c})$ in Theorem 2.1,
and the optimality conditions for nonsmooth minimax fractional programming $(FP_{c})$

which established by Lai and Huang in Theorem 3 of [7].
Under $z_{0}^{H}Az_{0}=0$ or $z_{0}^{H}Bz_{0}=0$ , Problem $(FP_{c})$ is nondifferentiable at the

optimal solution $\zeta_{0}=(z_{0}, \overline{z_{0}})$ , it is worthy to remark here that, if we define the set:

$Z_{\overline{\eta}}(\zeta_{0})=\{\zeta\in \mathbb{C}^{2n} -h_{\zeta}’(\zeta_{0})\zeta\in S(-h(\zeta_{0})), \zeta=(z, \overline{z})\in Q\},$

with any one of the next conditions (i), (ii), and (iii) holds:

(i) $Re \{\sum_{i=1}^{k}\lambda_{i}[f_{\zeta}’(\zeta_{0}, \eta_{i})-v^{*}g_{\zeta}’(\zeta_{0}, \eta_{i})]\zeta+\frac{\langle Az_{0},z\rangle}{\langle Az_{0},z_{0}\rangle^{1/2}}+\langle(v^{*})^{2}Bz,$ $z\rangle^{1/2}\}<0,$

if $z_{0}^{H}Az_{0}>0$ and $z_{0}^{H}Bz_{0}=0$ ;

(ii) $Re \{\sum_{i=1}^{k}\lambda_{i}[f_{\zeta}’(\zeta_{0}, \eta_{i})-v^{*}g_{\zeta}’(\zeta_{0}, \eta_{i})]\zeta+\langle Az,$ $z \rangle^{1/2}+\frac{\langle v^{*}Bz_{0},z\rangle}{\langle Bz_{0},z_{0}\rangle^{1/2}}\}<0,$

if $z_{0}^{H}Az_{0}=0$ and $z_{0}^{H}Bz_{0}>0$ ;

(iii) $Re \{\sum_{i=1}^{k}\lambda_{i}[f_{\zeta}’(\zeta_{0}, \eta_{i})-v^{*}g_{\zeta}’(\zeta_{0}, \eta_{i})]\zeta+\langle[A+(v^{*})^{2}B]z,$ $z\rangle^{1/2}\}<0,$

if $z_{0}^{H}Az_{0}=0$ and $z_{0}^{H}Bz_{0}=0.$

It then can be deduced a nondifferentiable Problem $(FP_{c})$ in nonsmooth optimality
conditions as following in which the set $Z_{\tilde{\eta}}(\zeta_{0})=\emptyset$ plays a very important role, and
the optimality conditions, in general, can be stated as the following theorem.
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Theorem 2.2. Let $\zeta_{0}=(z_{0}, \overline{z_{0}})\in Q$ be $(FP_{c})$-optimal with optimal value $v^{*}$

If Problem $(FP_{c})$ possesses the constmint qualification at $\zeta_{0}$ and $Z_{\tilde{\eta}}(\zeta_{0})=\emptyset$ . Then

there exist $\mu^{*}\in S^{*}\subset \mathbb{C}^{p}$ and vectors $u_{1},$ $u_{2}\in \mathbb{C}^{n}$ such that the Kuhn Tucker type

necessary conditions hold as in Theorem 2.1.

Theorem 2.3. Let $\zeta_{0}=(z_{0}, \overline{z_{0}})\in Q$ be a feasible solution of Problem $(FP_{c})$ .
Then by the compactness of $Y(\zeta_{0})$ , there are

$i=1,$ $\ldots,$
$k$ , with $\sum_{i=1}^{k}\lambda_{i}=1$ , and $v^{*}\in \mathbb{R}^{+}$

such that it exists $0\neq\mu\in S^{*}$ , the dual polyhedml cone of $S\subset \mathbb{C}^{p}$ , and $u_{1},$ $u_{2}\in \mathbb{C}^{n}$

satisfy the necessary conditions of Theorem 2.1 for $\langle Az_{0},$ $z_{0}\rangle>0,$ $\langle Bz_{0},$ $z_{0}\rangle>0$ and

for Theorem 2.2 provided $Z_{\tilde{\eta}}(\zeta_{0})=\emptyset$ holds. Moreover, assume that any one of these

three conditions (i), (ii) and (iii) stated in Theorem 4 of $[7J$ holds. Then the feasible
solution $\zeta_{0}=(z_{0}, \overline{z_{0}})$ is an optimal solution in $Q.$

For detail results, one can see the recent works given in references there in.
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