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A new approach to the existence of harmonic maps
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§1 Introduction

Throughout this article, let (M, g) and (N, k) be closed Riemannian manifolds of
dimension m and n, respectively. A map u: (M, g) — (N, h) of class C* is said to be
harmonic if it is a critical point of the so-called Dirichlet energy functional

Bw) = [ Jduld,
M

with respect to a smooth variation of the image of u. Here |du| stands for the Hilbert-
Schmidt norm of the differential du : TM — TN of u and dy, for the volume element
of (M, g). u is harmonic if and only if it satisfies the Euler-Lagrange equation

7(u) = divy(du) = 0,
where div, stands for the divergence with respect to g.

The aim of this article is to introduce a new approach to the existence theorem of
harmonic maps into a manifold with nonpositive sectional curvature.
Given € > 0, we consider the energy functional E. defined as

ee|du|2 -1
Ee(u) := /M —-e—dug

for maps u : (M, g) — (N, h). Amapu: (M,g) — (N,h) of class C*® which extremizes
E, is said to be e-ezponentially harmonic. Since E, — E as ¢ — 0 formally, a sequence
{te }e>0 of e-exponentially harmonic maps is expected to approximate a harmonic map
from (M, g) to (N, h). We then actually have the following theorem.
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Main Theorem. Let (M, g) and (N, h) be closed Riemannian manifolds and assume
that the sectional curvature of (N, h) is nonpositive. Let

{ug : (M, g) — (N,h) ; e-ezponentially harmonic map, Ec(u.) < Eo}eso

be a given sequence. Then there exists a subsequence {usk)}ozy C {Ue}es0, €(k) — 0
as k — oo, which uniformly converges to some harmonic map u : (M, g) — (N, h):

Ue(k) — U (k—>00) n COO(M,N)

As we shall mention later, it is known that, without any assumptions on the geometry
of (M, g) nor (N, h), there always exists an e-exponentially harmonic map for each € > 0
in a given homotopy class. Therefore Main Theorem, combined with this fact, implies
the following theorem due to Eells and Sampson.

Corollary 1 (Eells-Sampson [4]). Ifsect” < 0, then any homotopy class of continuous
maps from M to N admits a harmonic map.

§ 2 Exponentially harmonic maps

Definition. We say that a C™ map u : (M, g) — (N, h) is ezponentially harmonic if
it is a critical point of

E(u) = / e'd“|2dug
M
with respect to a smooth variation of the image of u.

The Euler-Lagrange equation for an exponentially harmonic map u : (M, g) — (N, h)
is given as follows:

(2.1) div, (™ du) = " {1(u) + (V|dul?,du)} =0,

where 7(u) = div,(du) stands for the tension field of u and (-, ) for the inner product
with respect to g.

One of the reasons why we are interested in studying the functional E is that the
existence of its minima in a given homotopy class is always guaranteed without any
special assumptions on (M, g) nor (N, h).

Proposition (Eells-Lemaire [3]). Any homotopy class H € [M, N| of continuous maps
from M to N contains an E-minimizer u in H, which is necessarily a-Holder continuous

for any exponent 0 < a < 1.



The proof is very simple and follows only from the following inequality

1
79—'/ |Vu|2kd,ug§/ eW”|2dug.
"M M

Indeed, a minimizing sequence for E is bounded in the Sobolev space W12¥(M, N) for
any k > 1 for the only reason that each of them has uniformly bounded E-energy.
From the proof in [3] of this proposition, however, it is not immediately followed that
u has further regularity, even is Lipschitz continuous, or it satisfies the Euler-Lagrange
equation (2.1), even in a weak sense.

However, the rapider the growth of a functional is, the higher regularity of its minima
we can expect. Indeed, in the case of N = R, Duc-Eells [2] showed that an E-minimizer
u : (M,g) — R of the Dirichlet problem is of class C* in the interior of M, where
(M, g) is a compact Riemannian manifold with boundary, and Lieberman [6] showed the
global regularity for u :  — R, where & C R™ is a domain. Also, for n > 2, Naito [7]
showed that an E-minimizer v : Q@ — R", where Q C R™ is a bounded domain, is of
class C in the interior of 2. Thereafter Duc [1] at last showed the following strongest
regularity theorem for E-minimizer.

Theorem (Duc [1]). Any homotopy class H € [M, N] of continuous maps from M to
N contains an E-minimizer u in H, which is necessarily of class C™.

§3 A gradient estimate for exponentially harmonic maps

In this section, we shall give an outline of the proof in [8] of the following gradient
estimate for exponentially harmonic maps, which is a key ingredient for the proofs of
Main Theorem.

Lemma 1 ([8, Lemma 3.1]). If the sectional curvature of (N, h) is nonpositive, then
any exponentially harmonic map u from (M, g) to (N, h) satisfies the following gradient
estimate:

sup |du|? < C’O/ (eld“|2 — 1) dp,,
M M

where the constant Cy > 0 depends only on the dimension m = dim M of M, the Ricci
curvature Ric™ of (M, g), and the exponential energy E(u).

In this article, only some essential parts of the proof of Lemma 1 are provided. For
a complete proof, see [8].

By means of J. Nash’s isometric embedding ¢ : (N, h) — R¢, we identify ¢ o u with u
for a map u: M — N. We mean by du the derivative of u : M — N, while by Vu the
gradient of the function tou : M — «(N) C R% Let B, = B.(z) C M stand for the
ball of radius r > 0 centered at a point z € M.
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If u: (M,g) — (N, h) satisfies the Euler-Lagrange equation for E, then

d d
(31) 0= Z/ ViuAviser|Vu|2dug + Z/ VdHA(u)(vzu, Viu)cpAeW“'Zd,ug
A=1 Br B

for any test function ¢ € C°(B,,R%). Here Il : Us(N) — N is the nearest projection
from a tubular neighborhood Us(NN) of N onto N. Also, we use the Einstein summation
convention, namely, when an index occurs more than once in the same expression, the
expression is implicitly summed over all possible values for that index.

As in the proof of [7, Proposition 2.10], choose

(3:2) p* = VE(P Vi)

as a test function in (3.1), where 1 : B, — R is a cut-off function satisfying
0<n<1, n=1lonB,;, suppnC B, and |Vp| < g

First we note that it follows from the Ricci identity that

Vi(,OA — Vivk(,UZVkuA)
= VAV (P Viut) - g7gM RM S, (P V ut),

where RM! #0 = V5, V0, — V5, V5,0 is the curvature tensor of (M, g). Then after
the integration by parts with respect to V¥, (3.1) becomes

0= i/ (VETut + ViuAVleulz)Vi(nQVkuA)eW“Pdug
-/Br ”ZI (du (Ric" (e;, €;)e;) , du(e;)) e'vu'2n2dpg
- Z le'IA Viu, Viu)VF (nzvkuA)e|V”|2dug
= Z (V’“V,'UA + ViuAVk|Vu|2)VinuAelv“'2n2dug
+2 Z (VkV,-uA + Vi'u,AVk|Vu|2)VkuAe|v“‘2nVin dptg
/B Z (d'u, RIC (e, e,)ej) du(ez)> e'v"lzn2dug

Tz] 1

- Z VdHA Viu, Viu) Vk(nzvku’q)e'v“|2dug,



where {e;}, is a local orthonormal frame of (M, g). Since VdII(u)(Viu, V,u) is the
vertical part of Au to IV, the last term becomes

-/ |VdII(u)(Viu, Vi) [2eV nPdu,.
Also, by the Leibniz rule and the Gauss formula,
IVV (Lo u)|? — |VdII(u)(Viu, Viu)|?
= |Vdul® + (VdIl(u)(V'y, Vu), VdII(u)(Viu, Vu)) — [VdI(w)(Viu, Viu)[?
= |Vdu|* - Xm: (RN (du(e;), du(e;)) dule;), du(e;)) .
ij=1

Substituting this into the above equation then yields

1 2
0= /B |vdu|2e|vu]2772d% T E/B {Vlvulz,zelvul 772ng

d
+ / { (V|Vul?, Vi) +22<V|Vu|2,VuA><VuA,Vn>} eIV n dug
B A=1

+ Z (du (RicM (e;, ¢;)e;) , dules)) eV n?dug

By i,5=1
- Z (RY (du(e;), due;)) dule;), dule;)) eV n2dp,.

Bri4=1

The last integral is nonpositive because (IV, k) has nonpositive sectional curvature. By
using the inequality ze® < §~1e1*9% for any § > 0 and = > 0, the third and the fourth
integrals are respectively estimated as

d
/ { (VIVul?, V) +2> (V|Vul?, Vut)(Vu?, vm} el Ve dug
i A=1
<C(m) [ VIVuP| 1+ [VuP)e™F (90l du,
By
C(m “
< —%——)/B V| Vul?| e+ [T du,,

/B Z <du (RicM(ei, ej)ej) ,du(ei)> e’v“|2772dug

T 4,j=1

< |Ric"|| / VuPel™ Py,
Br

1, .
< FIRicM o [ DI gy,

,.
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Hence we obtain
1

2 u
2 / |VIVul[* 7 n?dug
B,

1/2
< C(m,é) (/ |v|vu|2’2equ|2n2d#g> (/; E(H%NV“PWnlzdﬂg)

+C’(RicM,6)/ eUHONIVal 24, .

By

1/2

Since the first integral of the first term in the right hand side can be absorbed into the
left hand side and since :

2

by using the Sobolev embedding theorem, we infer

m-—2

m g 2 C\C
</B emlvu'zdw) <G / ’V(e%'v"'zn)l dpg < =35> /B e+ dp,
r/2 r -

where C; > 0 is the Sobolev constant and depends only on (M, g), while C; > 0 is a
constant depending only on m = dim M, Ric¥, and § > 0.

This inequality is actually a priori estimate because we can take § > 0 small enough
so that it satisfies, for example, 1 + 6 < -25.

This is a key ingredient of the proof of Lemma 1. In [8], we can actually prove
/ 6(1+6)lvu|2dﬂg < C/ equl"’d/Jg_
Br/2 B-

We can then apply the Moser iteration method to obtain

(3.3) s;llp |Vu| < C = C(m, Ric™,E(u)).

To obtain the inequality in Lemma 1, we then need the following identity of Bochner-
Weitzenbock type

SUV,V el = 2eld’ |G du|? 4 2¢l4°| 7 (u)|?

+ 2¢ldl i (du(Ric™ (e;, e5)e;), due:))
_ 20 3 (RN (dules), dule;)du(es), dule:))

1,j=1
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where the tensor S € I'(T'M ® T M) is given by
(3.4) 59 = g" + 2(du(e;), dule;)) (5,7 =1,2,...,m).
This inequality and (3.3), combined with the assumption on the sectional curvature of
(N, h), imply
SV (el ~ 1) = 59V, Vel VP’

> 2¢lVel’ i<dU(RiCM(ei, e;)e;), du(e;))

i,j=1
> —C(m, |RicM | g )el V| Vu|?
> —C(m, |Ric" || e, e”V“”%w) (e'vu'2 -1).
In the fourth line we have used the inequality |Vu|? < elV¥* — 1. Moreover (3.3)
then guarantees that S¥ has the bounded eigenvalues both from above and from below

by a constant depending only on m, Ric™ and E(u). This observation enables us to
successfully apply the maximum principle [5, Theorem 9.20] to acquire

Vul? < eV 1< ¢ M,E(u elVel® _ 1 dpg,
. g

proving Lemma 1.

84 Proof of Main Theorem

The complete proof of Main Theorem is given in this section. All we need are the
gradient estimate in Lemma 1 and Lemma 2 stated below.

Lemma 2. For anye >0, u: (M, g) — (N, h) is e-exponentially harmonic if and only
ifu:(M,g) — (N,he) is l-exponentially harmonic, where h, := h.

Proof of Main Theorem. If we consider the homothetic transformation h, = €h, then
the given v, is, by Lemma 2, a l-exponentially harmonic map u. : (M, g) — (N, h,).
Then it follows from Lemma 1 that

sup [Vu[;, < CE/ (e'v%'%e — 1) dp,.
M M

Here the constant C; > 0 depends on m, Ric™, and E*<(u,), but not on R-"¢) because
(N, h) has nonpositive sectional curvature. Since |u.[2 = e|Vu[?,

Ehe (uE) — / eE!v’LLel)% dug
M
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is bounded by a constant depending only on Ey and Volg(M). Therefore, C; > 0 is
uniformly bounded (by, say, Cp > 0) in € > 0 and thus

supe| V|2 < Co/ (e51Vuelh — 1) dg,
M M
which yields, after divided by € > 0, a gradient estimate of u, : (M, g) — (N, h):
’ e:—:qu.,l,zz -1
sup |Vu,|: < Co/ ————dug < GoEy.
M M 3

This proves the theorem. O
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