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We are interested in the motion of a membrane that is in contact with a rigid plane. In this report, we
state some important previous results, explain our new results and present several related open problems.

In many cases, the membrane is described by some partial differential equation (such as heat equation)

and on the free boundary (points where the membrane touches the plane) a contact angle condition is
prescribed which originates in the physical properties of the materials in contact (i.e., surface tensions
$\gamma,$ $\gamma_{SV)}\gamma_{SL})$ . $A$ typical example of such free boundary condition is Young’s equation

$\gamma\cos\theta=\gamma_{SV}-\gamma_{SL}.$

A pioneering beautiful paper related to this phenomenon by Alt and Caffarelli (1981) [1] deals with

the stationary problem

$\triangle u=0$ in $\Omega\cap\{u>0\},$ $|\nabla u|=Q,$ $u=0$ on $\Omega\cap\partial\{u>0\}.$

The authors study the functional
$\int_{\Omega}(|\nabla u|^{2}+Q^{2}\chi_{u>0})dx,$

where $\chi_{u>0}$ is characteristic function of the set $\{u>0\}=\{x\in\Omega;u(x)>0\}$ , and show that it possesses
minima which are Lipschitz continuous and have linear growth away from the free boundary. For such
harmonic functions they find the representation formula $\triangle u=q_{u}\mathcal{H}^{n-1}L_{\partial\{u>0\}}$ and show that the minima
are weak solutions, while the free boundary is a smooth surface except of a set of zero $(n-1)$-dimensional
Hausdorff measure. Of course, the smoothness depends on the smoothness of the datum $Q$ : for example,

if $Q$ is H\"older continuous then the function whose graph determines locally the shape of the free boundary
has H\"older continuous first derivatives.

On the other hand, Caffarelli and V\’azquez (1995) [2] studied the evolutionary problem

$u_{t}-\triangle u=0$ $in$ $\{u>0\},$ $|\nabla u|=1,$ $u=0$ $on$ $\partial\{u>0\}$

by a different technique. They regularize the problem by adding an absorption term in the following way

$u_{t}^{\epsilon}- \triangle u^{\epsilon}=-\frac{1}{2}\chi_{\epsilon}’(u^{\epsilon}) , u^{\epsilon}\geq 0.$

Here, $\chi_{\epsilon}$ is an appropriate smoothing of the characteristic function in the interval $(0, \epsilon)$ :
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They show uniform estimates for the solution of the regularized equation (Lipschitz in space and
H\"older in time) and use them to construct a weak solution of the original problem. The regularity of free
boundary is also studied in case of shrinking support. The above results were extended and generalized
by several researchers later on.

We are interested in the study of evolutionary problem with $vo$lume constraint

$\int_{\Omega}u(t, x)dx=V \forall t,$

which appears, for example, in the free boundary problem modelling the motion of bubbles or droplets
on a surface (see [6]).

The full model equation is

$\chi_{u>0}\beta u_{tt}+\mu u_{t}=\Delta u-\gamma\chi_{\epsilon}’(u)+\chi_{u>0}\lambda_{\epsilon}(u)$ in $\Omega\cross(0, T)$ , (1)

where $u$ describes the shape of the bubble under the assumption that it can be represented as graph of
scalar function. It is derived from the surface energy functional

$\gamma_{g}\int_{\Omega}\sqrt{1+|\nabla u|^{2}}\chi_{u>0}dx+\int_{\Omega}\gamma_{s}\chi_{u>0}dx\approx\frac{\gamma_{g}}{2}\int_{\Omega}|\nabla u|^{2}dx+\int_{\Omega}\gamma_{s}\chi_{\epsilon}(u)dx$

by applying Hamilton’s principle and taking into account the constraint and the presence of obstacle.
The second time derivative term has a degenerating coefficient (see [17]) and $\lambda_{\epsilon}$ is a function of time only
representing a Lagrange multiplier for the volume constraint.

If we minimize the unapproximated surface energy under volume constraint, we discover that the
stationary contact angle $\theta$ satisfies $\gamma_{s}=-\gamma_{g}\cos\theta$ , which is identical to Young’s equation. However, if the
shape of the membrane evolves in time, there is no generally accepted physical theory for the dynamic
contact angle. The advantage of our model is the fact that the dynamic contact angle is not prescribed
but is determined implicitly from other data of the model.

Based on the mathematical analysis described below, a numerical scheme for the computation of this
equation has been developed and simulation of various phenomena was attempted (see, e.g., [6] [10] [16]
[8] $)$ .

To start the mathematical analysis of the above model equation, we consider the following parabolic
problem:

$u_{t}-\Delta u=\lambda$ in $\{u>0\},$ $|\nabla u|^{2}=2\gamma$ on $\partial\{u>0\}$
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The regularized version is

$u_{t}=\triangle u-\gamma\chi_{\epsilon}’(u)+\chi_{u>0}\lambda_{\epsilon}$ $in$ $(0, T)\cross\Omega,$

where
$\lambda_{\epsilon}=\int_{\Omega}[u_{t}u+|\nabla u|^{2}+\gamma\chi_{\epsilon}’(u)u]dx$

is the nonlocal Lagrange multiplier coming from the volume constraint. Notice that the second derivative
term in the original model has been neglected, which can be interpreted as considering relatively slow
motion.

One can see by maximum principle that solutions to the regular problem are nonnegative because the
right-hand side vanishes for negative values of $u$ . This is the mathematical reason for multiplying the

nonlocal term by characteristic function. The physical reason is that the outer force or source representing
the volume constraint should not act on the region where the solution vanishes.

In the regularized problem the volume constraint gives rise to an obstacle-type problem with a nonlocal
obstacle function depending on the solution. Accordingly, the sharp contact angle limit $\epsilonarrow 0$ is expected

to have two factors influencing the behaviour on the free boundary: the stronger linear growth due to
contact angle condition and the quadratic growth (curvature) originating in the volume constraint.

With the view of numerical approximation and because of the presence of the global constraint we
analyse the regularized obstacle problem by a minimization method, where time variable is discretized
and the functional

$J_{n}(u)= \int_{\Omega}(\frac{|u-u_{n-1}|^{2}}{2h}+\frac{1}{2}|\nabla u|^{2}+\gamma\chi_{\epsilon}(u))dx$ (2)

is minimized. Here $h$ is the time step and $u_{n-1}$ refers to the minimizer on the previous time level. The

computation starts from minimizing $J_{1}$ , where $u_{0}$ is given as initial datum. This gives $u_{1}$ and minimizers
$u_{n}$ on the following time levels are computed inductively. Finally, minimizers are interpolated in time as
in the following picture to obtain functions $u^{h}$ and $\overline{u}^{h}$ :
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If we minimize $J_{n}$ in $H_{0}^{1}$ , it is easy to find from the first variation that the interpolated functions
satisfy

$u_{t}^{h}=\triangle\overline{u}^{h}-\gamma\chi_{\epsilon}’(\overline{u}^{h})$

in the weak sense and are, therefore, candidates for approximate solutions. However, in the case of
problems with volume constraint we have to restrain the space of functions admissible for minimization.
This was done together with regularity analysis in the paper [11] for parabolic problems and in the paper
[12] for hyperbolic problems.

Here we have an additional constraint represented by the obstacle and hence we define a special

constrained space
$\mathcal{K}^{\delta}=\{u\in H_{0}^{1}(\Omega) ; \int_{\Omega}\chi_{\delta}(u)udx=V\}$ (3)

as the admissible space for minimization.
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The characteristic function in the constraint of the admissible space is essential in order to satisfy
the obstacle condition, while the regularization thereof is necessary to obtain an equality from the first
variation. Indeed, the minimizers are shown to exist and be nonnegative. The weak solution is then
constructed by deriving uniform estimates in $h$ and $\delta$ and taking $h,$ $\deltaarrow 0$ (see [13] for details).

It is to be noted that this minimization approach avoids direct treatment of the complicated nonlocal
term $\lambda_{\epsilon}$ , naturally discards incorrect solutions mentioned in [2] and provides a theoretical background

for numerical computation of this type of problems.

We show here two steps from the existence proof, namely the existence of minimizers and their
nonnegativity. Since the functional (2) is nonnegative, there is a minimizing sequence $\{u^{k}\}$ such that
$J_{n}(u^{k}) \downarrow\inf_{u\in \mathcal{K}^{\delta}}J_{n}(u)$ . As this sequence is bounded in $H^{1}(\Omega)$ , there is a subsequence converging weakly
in $H^{1}(\Omega)$ and strongly in $L^{2}(\Omega)$ to some function $u_{n}\in H^{1}(\Omega)$ . However, here we have to assume that
domain $\Omega$ is bounded. From the weak lower semicontinuity of $J_{n}$ in $H^{1}(\Omega)$ one can say that $u_{n}$ is a
minimizer, if it belongs to $\mathcal{K}^{\delta}$ defined in (3). Therefore, we compute

$| \int_{\Omega}\chi_{\delta}(u)udx-V| = |\int_{\Omega}(\chi_{\delta}(u)u-\chi_{\delta}(u^{k})u^{k})dx|$

$\leq$ $\int_{\Omega}|\frac{d}{du}(\chi_{\delta}(u)u)|_{u=\overline{u}}|u-u^{k}|dxarrow 0$ as $karrow\infty.$

To show that minimizers are nonnegative a.e., let us assume that a minimizer $u_{n}$ is negative on a set
of positive measure and define a new function $\tilde{u}_{n}$ by $\tilde{u}_{n}=u_{n}\chi_{u_{n}>0}$ . Then it is easy to check that
$J_{n}(\tilde{u}_{n})<J_{n}(u_{n})$ which is in contradiction with minimality under the condition that $\tilde{u}_{n}$ belongs to $\mathcal{K}^{\delta}.$

However, $\tilde{u}_{n}$ fulfills the constraint because the smoothing of characteristic function causes that only
positive values of given function are taken into account and thus ”cutting off‘ negative part as in the
case of $\tilde{u}_{n}$ does not change the fact that the constraint is satisfied.

The analysis for the sharp contact angle limit $\epsilonarrow 0$ is yet to be done. Yamaura [15] constructed $L^{2}$

-generalized minimizing movement corresponding to the considered energy without taking into account
the volume constraint. It is expected that a similar technique would basically work for the constrained
problem. However, there is a problem closely related to the global constraint. Specifically, if we take
$\Omega=\mathbb{R}^{m}$ in order to use Bemstein’s technique to show uniform Lipschitz continuity which is indispensable
for the existence proof, we are not able to proof the existence of minimizers as the above presented proof
fails, i.e., the volume of the minimizing functions $u^{k}$ may “leak out to infinity”. On the other hand, if $\Omega$

is taken bounded, the application of Bernstein’s method becomes difficult.
Since in the present $mo$del the contact angle cannot be larger than right angle, our future plan is to

extend the theory from scalar functions to hypersurfaces. The goal is to rigorously derive the motion of
a hypersurface according to a model equation with a given contact angle on the obstacle. To this end,

we plan to consider the application of phase-field approximation, where the hypersurface is constructed
as the limit of a layer between regions where a function $u$ is identically equal to $0$ and 1, for example.
Specifically, to obtain the mean curvature flow, the following energy is considered:

$\int_{\Omega}(\epsilon^{2}|\nabla u|^{2}+W(u))dx+\int_{\partial\Omega}\epsilon\sigma(u)d\mathcal{H}^{n-1},$

where $\epsilon$ is a small parameter corresponding to the width of the layer, $W$ is a double-well potential with
minima at $0$ and 1 and $\sigma$ is a function describing contact energy. In order to prove that the limit of
the layer as $\epsilonarrow 0$ is a smooth hypersurface, the foremost task is to prepare a parabolic monotonicity
formula holding up to the boundary. This might be possible if one consults the ideas regarding interior
parabolicity formula derived in [4] and stationary boundary formula given in [14].
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An obvious future task is to analyze the full hyperbolic model equation (1). Extracting a part of the
features of the model equation we obtain slightly simpler problems. One of them is the equation

$\chi_{u>0}u_{tt}+\alpha u_{t}=\Delta u$

related in [17] to the vibration of a string with obstacle. Another similar problem

$u_{tt}-\triangle u=0$ $in$ $\{u>0\},$ $|\nabla u|^{2}-u_{t}^{2}=Q^{2}$ $on$ $\partial\{u>0\}$

describes the peeling of a tape from a plane. The classical analysis of this problem is given in [9] and
interesting numerical results were reported in [5]. Both problems were solved to some extent only in space
dimension one, the same being true for the analysis of the model equation (1) in [3]. However, there is
some doubt whether these results touch the core of the problems since in dimension one it is possible to
use special tools such as Sobolev imbedding theorem or D’Alembert’s formula.

Another challenging task is the analysis of contact problems arising, e.g., in the modelling of collision
of elastic curves with an obstacle. One such example is mentioned in [7].
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