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Abstract: It is well-known that smooth plane quartic curves in the two dimensional complex projective
space are (non-hyperelliptic) curves of genus three. And the local property of singular plane quartic
curves is also well known. We consider about the parameters of these defining equations.

1 Introduction
Let $\mathbb{P}^{2}$ be a 2-dimensional complex projective space with the coordinate $[x, y, z]$ and let
$f_{4}(x,y, z)$ be a homogeneous polynomial of variables $x,$ $y,$ $z$ with degree 4 in $\mathbb{P}^{2}$ . We con-
sider the set $V_{4}$ $:=\{(x, y, z)|f_{4}(x, y, z)=0\}$ . We call $V_{4}$ complex projective plane quartics
(in short: plane quartics). Nonhyperelliptic curves of genus 3 are non-singular plane quartics.
Let $M_{g}$ be the variety of moduli of curves of genus $g$ . Then $M_{3}$ has dimension which is less
than or equal to 6. Let $f(x, y, z)$ be a homogeneous polynomial of variables $x,y,$ $z$ with degree
4 in $\mathbb{C}^{3}$ . The analytic set defined by $f(x, y, z)=0$ has a singular point at the origin in $\mathbb{C}^{3}.$

The analytic set is a smooth plane quartic in $\mathbb{P}^{2}$ if it has only isolated singular point at the
origin in $\mathbb{C}^{3}.$

2 Normal forms of smooth plane quartics
For the defining equations of smooth plane quartics in $\mathbb{P}^{2}$ , the following theorem holds.

Theorem 2.1. For the defining equations of smooth quartics with the coordinate $[x, y, z],$

there exist the following two normal forms.
Type I: $x^{3}z+(y^{3}+pyz^{2}+qz^{3})x+ry^{4}+sy^{3}z+ty^{2}z^{2}+uyz^{3}+vz^{4}=0,$

Type II: $x^{3}z+(py^{2}+qyz+rz^{2})xz+y^{4}+sy^{2}z^{2}+tyz^{3}+uz^{4}=0,$

where $(p, q, r, s,t, u, v)\in \mathbb{C}^{7}$ are parametric coefficients.
We can rewrite any defining equation of smooth plane quartic into the one of above

normal forms. This accords for a result of Shioda’s Propositions 1 and 2 ([1]). And we got the
restrictions of parameters for the above Type I, Type $\Pi$ ([2], [3]). As the result, the following
theorem holds.

Theorem 2.2. Let $C$ be a smooth plane quartic in a 2-dimensional complex projective space
with the coordinate $[x, y, z]$ Then we can take the multiplicity of $C$ and $y$-axis at [1,0,0] such
that it is equal to 3 or 4 by replacing a suitable coordinate.
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3 Normal forms of singular plane quartics

By a same method as the rewriting of the $sm\infty th$ plane quartics, we can rewrite the defiming
equation of the singular quartic to one of the defiming $fo\mathbb{I}ow\dot{m}g$ equations.

Type I: $x^{2}yz+(y^{3}+a_{1}y^{2}z+z^{3})x+(a2y^{3}+a3y^{2}z+a_{4}yz^{2}+a5^{Z^{3})_{Z}}=0,$

Type II: $x^{2}yz+a_{1}xz^{3}+y^{4}+a_{2}y^{3}z+a_{3}y^{2}z^{2}+a_{4}yz^{3}+a_{5}z^{4}=0,$

Type III: $z(x^{2}y+a_{1}xz^{2}+y^{3}+a_{2}y^{2}z+aayz^{2}+a_{4}z^{3})=0,$

Type IV: $z(x^{2}y+a_{1}xz^{2}+a_{2}y^{2}z+a_{3}yz^{2}+a_{4}z^{3})=0,$

Type V: $x^{2}z^{2}+(y^{2}+2a_{1}z^{2})xy+(a_{2}y^{3}+a_{3}y^{2}z+a_{4}yz^{2}+a_{5}z^{3})z=0,$

Type VI: $x^{2}z^{2}+2a_{1}xy^{2}z+y^{4}+a2y^{2}z^{2}+a3yz^{3}+a4z^{4}=0,$

Type VII: $x^{2}z^{2}+2xy^{2}z+y^{4}+y^{3}z+a_{1}yz^{3}+a_{2}z^{4}=0,$

Type VIII: $x^{2}z^{2}+2xy^{2}z+y^{4}+y^{2}z^{2}+a_{1}z^{4}=0,$

Type IX: $x^{2}z^{2}+2xy^{2}z+(y^{3}+z^{3})y=0,$

Type X: $x^{2}z^{2}+2xy^{2}z+y^{4}+a_{1}z^{4}=0,$

Type XI: $z(x^{2}z+xy^{2}+a_{1}y^{2}z+a_{2}yz^{2}+a_{3}z^{3})=0,$

Type XII: $z(x^{2}z+y^{3}+a_{1}yz^{2}+a_{2}z^{3})=0,$

Type XIII: $xy^{2}z+xz^{3}+y^{4}+a_{1}yz^{3}+a_{2}z^{4}=0,$

Type XIV: $z(xy^{2}+xz^{2}+a_{1}yz^{2}+a_{2}z^{3})=0,$

Type XV: $xyz^{2}+y^{4}+a_{1}y^{3}z+a_{2}z^{4}=0,$

Type XVI: $z(xyz+y^{3}+a_{1}z^{3})=0,$

Type XVII: $z^{2}(xy+a_{1}z^{2})=0,$

Type XVIII: $xz^{3}+(y^{2}+a_{1}z^{2})y^{2}=0,$

Type XIX: $z(xz^{2}+y^{3})=0,$

Type XX: $z^{2}(xz+y^{2})=0,$

Type XXI: $z(y^{3}+a_{1}yz^{2}+a_{2}z^{3})=0,$

Type XXII: $(y^{2}+z^{2})z^{2}=0,$

Type XXIII: $y^{2}z^{2}=0,$

Type XXIV: $yz^{3}=0,$

Type XXV: $z^{4}=0.$

We obtain a following table as a classification of singular point at [1,0,0] on irreducible
plane quartics.

We can obtain the restrictions for the parameters of these defining equations by using the
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method of smooth cases. And we want to know those restrictions and their relations. It is
our next purpose.
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